
Julia Programming for Operations Research

A Primer on Computing

Changhyun Kwon

Julia Programming for Operations Research: A Primer on Computing

http://www.chkwon.net/julia

Third Printing with Updates: December 2017

Published by Changhyun Kwon
Cover Design by Joo Yeon Woo /www.spacekite.net

Copyright © 2017 by Changhyun Kwon
All Rights Reserved.
ISBN: 153332879X (Paperback)
ISBN-13: 978-1533328793 (Paperback)

ii

http://www.chkwon.net/julia

Contents

1 Introduction and Installation 1
1.1 What is Julia and Why Julia? . 2
1.2 Julia in the Cloud: JuliaBox . 4
1.3 Installing Julia . 6

1.3.1 Installing Gurobi . 6
1.3.2 Installing Julia in Windows 6
1.3.3 Installing Julia in macOS . 12
1.3.4 Running Julia Scripts . 17
1.3.5 Installing CPLEX . 17

1.4 Installing IJulia . 20
1.5 Package Management. 23
1.6 Helpful Resources. 26

2 Simple Linear Optimization 27
2.1 Linear Programming (LP) Problems 28
2.2 Alternative Ways of Writing LP Problems 32
2.3 Yet Another Way of Writing LP Problems 35
2.4 Mixed Integer Linear Programming (MILP) Problems 36

iii

3 Basics of the Julia Language 41
3.1 Vector, Matrix, and Array . 41
3.2 Tuple . 47
3.3 Indices and Ranges. 48
3.4 Printing Messages . 51
3.5 Collection, Dictionary, and For-Loop 54
3.6 Function . 58
3.7 Scope of Variables . 59
3.8 Random Number Generation . 62
3.9 File Input/Output . 66
3.10 Plotting . 72

3.10.1 ThePyPlot Package . 72
3.10.2 Avoiding Type-3 Fonts in PyPlot 77
3.10.3 TheGadfly Package . 78

4 Selected Topics in Numerical Methods 81
4.1 Curve Fitting . 81
4.2 Numerical Di�erentiation . 86
4.3 Numerical Integration . 90
4.4 Automatic Di�erentiation . 92

5 The Simplex Method 97
5.1 A Brief Description of the Simplex Method 97
5.2 Searching All Basic Feasible Solutions 100
5.3 Using theMathProgBasePackage . 106
5.4 Pivoting in Tableau Form . 108
5.5 Implementing the Simplex Method 110

5.5.1 initialize(c, A, b) . 113
5.5.2 isOptimal(tableau) . 115
5.5.3 pivoting!(tableau) . 115
5.5.4 Creating a Module . 120

5.6 Next Steps. 125

6 Network Optimization Problems 127
6.1 The Minimal-Cost Network-Flow Problem 127
6.2 The Transportation Problem . 138

iv

6.3 The Shortest Path Problem . 144
6.4 Implementing Dijkstra's Algorithm 149

7 General Optimization Problems 157
7.1 Unconstrained Optimization . 157

7.1.1 Line Search . 157
7.1.2 Unconstrained Optimization 159
7.1.3 Box-constrained Optimization 160

7.2 Convex Optimization . 161
7.3 Nonlinear Optimization . 163
7.4 Nonconvex Nonlinear Optimization 166
7.5 Mixed Integer Nonlinear Programming 170

8 Monte Carlo Methods 173
8.1 Probability Distributions . 173
8.2 Randomized Linear Program . 175
8.3 Estimating the Number of Simple Paths 183

9 Lagrangian Relaxation 193
9.1 Introduction . 193

9.1.1 Lower and Upper Bounds . 194
9.1.2 Subgradient Optimization . 196
9.1.3 Summary . 196

9.2 The p-Median Problem . 197
9.2.1 Reading the Data File . 198
9.2.2 Solving thep-Median Problem Optimally 200
9.2.3 Lagrangian Relaxation . 201
9.2.4 Finding Lower Bounds . 202
9.2.5 Finding Upper Bounds. 206
9.2.6 Updating the Lagrangian Multiplier 208

10 Parameters in Optimization Solvers 221
10.1 Setting CPU Time Limit . 221
10.2 Setting the Optimality Gap Tolerance 222
10.3 Warmstart . 223
10.4 Big M and Integrality Tolerance . 223

v

10.5 Turning o� the Solver Output . 225
10.6 Other Solver Parameters. 226

11 Useful and Related Packages 227
11.1 Basic Math . 227
11.2 Mathematical Programming . 228
11.3 Graph and Network . 229
11.4 Heuristics . 230
11.5 Statistics and Machine Learning. 231

Index 233

vi

Preface

The main motivation of writing this book was to help myself. I am a professor in the
�eld of operations research, and my daily activities involve building models of mathe-
matical optimization, developing algorithms for solving the problems, implementing
those algorithms using computer programming languages, experimenting with data,
etc. Three languages are involved: human language, mathematical language, and
computer language. My students and I need to go over three di�erent languages.
We need �translation� among the three languages.

When my students seek help on the tasks of �translation,� I often provide them
with my prior translation as an example, or �nd online resources that may be helpful
to them. If students have proper background with proper mathematical education,
su�cient computer programming experience, and good understanding of how numer-
ical computing works, students can learn easier and my daily tasks in research and
education would go smoothly.

To my frustration, however, many graduate students in operations research take
long time to learn how to �translate.� This book is to help them and help me to help
them.

I'm neither a computer scientist nor a software engineer. Therefore, this book
does not teach the best translation. Instead, I'll try to teach how one can �nish
some common tasks necessary in research and development works arising in the �eld
of operations research and management science. It will be just one translation, not

vii

the best for sure. But after reading this book, readers will certainly be able to get
things done, one way or the other.

What this book teaches

This book is neither a textbook in numerical methods, a comprehensive introduc-
tory book to Julia programming, a textbook on numerical optimization, a complete
manual of optimization solvers,nor an introductory book to computational science
and engineering�it is a little bit of all.

This book will �rst teach how to install the Julia Language itself. This book
teaches a little bit of syntax and standard libraries of Julia, a little bit of program-
ming skills using Julia, a little bit of numerical methods, a little bit of optimization
modeling, a little bit of Monte Carlo methods, a little bit of algorithms, and a little
bit of optimization solvers.

This book by no means is complete and cannot serve as a standalone textbook
for any of the above mentioned topics. In my opinion, it is best to use this book
along with other major textbooks or reference books in operations research and
management science. This book assumes that readers are already familiar with
topics in optimization theory and algorithms, or are willing to learn by themselves
from other references. Of course, I provide the best references of my knowledge to
each topic.

After reading this book and some coding exercises, readers should be able to
search and read many other technical documents available online. This book will
just help the �rst step to computing in operations research and management science.
This book is literally a primer on computing.

How this book can be used

This book will certainly help graduate students (and their advisors) for tasks in their
research. First year graduate students may use this book as atutorial that guides
them to various optimization solvers and algorithms available. This book will also
be a companion through their graduate study. While students take various courses
during their graduate study, this book will be always a good starting point to learn
how to solve certain optimization problems and implement algorithms they learned.
Eventually, this book can be a helpfulreference for their thesis research.

viii

Advanced graduate students may use this book as areference. For example, when
they need to implement a Lagrangian relaxation method for their own problem, they
can refer to a chapter in this book to see how I did it and learn how they may be
able to do it.

It is also my hope that this book can be used for courses in operations research,
analytics, linear programming, nonlinear programming, numerical optimization, net-
work optimization, management science, and transportation engineering, as asup-
plementary textbook. If there is a short course with 1 or 2 credit hours for teaching
numerical methods and computing tools in operations research and management sci-
ence, this book can beprimary or secondary textbook, depending on the instructor's
main focus.

Notes to advanced programmers

If you are already familiar with computing and at least one computer programming
language, I don't think this book will have much value for you. There are many
resources available on the web, and you will be able to learn about the Julia Language
and catch up with the state-of-the-art easily. If you want to learn and catch up even
faster with much less troubles, this book can be helpful.

I had some experiences with MATLAB and Java before learning Julia. Learning
Julia was not very di�cult, but exciting and fun. I just needed to good �excuse� to
learn and use Julia. Check what my excuse was in the �rst chapter.

Acknowledgment

I sincerely appreciate all the e�orts from Julia developers. The Julia Language is
a beautiful language that I love very much. It changed my daily computing life
completely. I am thankful to the developers of the JuMP package, especially the
three main developers: Iain Dunning, Joey Huchette, and Miles Lubin. After JuMP,
I no longer look for better modeling languages. I am grateful to Joo Yeon Woo for
designing the book cover. The cat is modi�ed from the design of Freepik.

Tampa, Florida
Changhyun Kwon

ix

x

1
Introduction and Installation

This chapter will introduce what the Julia Language is and explain why I love it.
More importantly, this chapter will teach you how to obtain Julia and install it
in your machine. Well, at this moment, the most challenging task for using Julia
in computing would probably be installing the language and other libraries and
programs correctly in your own machine. I will go over every step with �ne details
with screenshots for both Windows and Mac machines. I assumed that Linux users
can handle the installation process well enough without much help from this book
by reading online manuals and googling. Perhaps the Mac section could be useful
to Linux users.

All Julia codes in this book are shared as a git repository and are available at
the book website: http://www.chkwon.net/julia . Codes are tested with

ˆ Julia v0.6.2

ˆ JuMP v0.18.0

ˆ Optim v0.11.0

ˆ MathProgBase v0.6.4

I will introduce what JuMP, Optim, and MathProgBase are gradually later in the
book.

1

http://www.chkwon.net/julia

1.1. What is Julia and Why Julia?

1.1 What is Julia and Why Julia?

The Julia Language is a very young language. As of May 9, 2016, the latest stable
version is 0.4.5. The primary target of Julia is technical computing. It is developed
for making technical computing more fun and more e�cient. There are many good
things about the Julia Language from the perspective of computer scientists and
software engineers; you can read about the language atthe o�cial website 1.

Here is a quote from the creators of Julia from their �rst o�cial blog article �Why
We Created Julia�2:

�We want a language that's open source, with a liberal license. We want
the speed of C with the dynamism of Ruby. We want a language that's
homoiconic, with true macros like Lisp, but with obvious, familiar math-
ematical notation like Matlab. We want something as usable for general
programming as Python, as easy for statistics as R, as natural for string
processing as Perl, as powerful for linear algebra as Matlab, as good at
gluing programs together as the shell. Something that is dirt simple to
learn, yet keeps the most serious hackers happy. We want it interactive
and we want it compiled.

(Did we mention it should be as fast as C?)�

So this is how Julia is created, to serve all above greedy wishes.
Let me tell you my story. I used to be a Java developer for a few years before

I joined a graduate school. My �rst computer codes for homework assignments and
course projects were naturally written in Java; even before then, I used C for my
homework assignments for computing when I was an undergraduate student. Later,
in the graduate school, I started using MATLAB, mainly because my fellow graduate
students in the lab were using MATLAB. I needed to learn from them, so I used
MATLAB.

I liked MATLAB. Unlike in Java and C, I don't need to declare every single
variable before I use it; I just use it in MATLAB. Arrays are not just arrays in the
computer memory; arrays in MATLAB are just like vectors and matrices. Plotting
computation results is easy. For modeling optimization problems, I used GAMS

1http://julialang.org
2http://julialang.org/blog/2012/02/why-we-created-julia

2

http://julialang.org
http://julialang.org/blog/2012/02/why-we-created-julia
http://julialang.org/blog/2012/02/why-we-created-julia
http://julialang.org
http://julialang.org/blog/2012/02/why-we-created-julia

Chapter 1. Introduction and Installation

and connected with solvers like CPLEX. While the MATLAB-GAMS-CPLEX chain
suited my purpose well, I wasn't that happy with the syntax of GAMS�I couldn't
fully understand�and the slow speed of the interface between GAMS and MATLAB.
While CPLEX provides complete connectivities with C, Java, and Python, it was
very basic with MATLAB.

When I �nished with my graduate degree, I seriously considered Python. It
was�and still is�a very popular choice for many computational scientists. CPLEX
also has a better support for Python than MATLAB. Unlike MATLAB, Python is
free and open source software. However, I didn't go with Python and decided to
stick with MATLAB. I personally don't like 0 being the �rst index of arrays in C
and Java. In Python, it is also 0. In MATLAB, it is 1. For example, if we have a
vector like:

v =

2

6
6
4

1
0
3

� 1

3

7
7
5

it may be written in MATLAB as:

v = [1; 0; 3; -1]

The �rst element of this vector should be accessible byv(1) , not v(0) . The i -th
element must bev(i) , not v(i-1) . So I stayed with MATLAB.

Later in 2012, the Julia Language was introduced and it looked attractive to me,
since at least the array index begins with1. After some investigations, I didn't move
to Julia at that time. It was ugly in supporting optimization modeling and solvers.
I kept using MATLAB.

In 2014, I came across several blog articles and tweets talking about Julia again.
I gave it one more look. Then I found a package for modeling optimization problems
in Julia, called JuMP�Julia for Mathematical Programming. After spending a few
hours, I felt in love with JuMP and decided to go with Julia, well more with JuMP.
Here is a part of my code for solving a network optimization problem:

@variable (m, 0<= x[links] <=1)

@objective (m, Min, sum(c[(i,j)] * x[(i,j)] for (i,j) in links))

3

1.2. Julia in the Cloud: JuliaBox

for i =1: no_node
@constraint (m, sum(x[(ii,j)] for (ii,j) in links if ii ==i)

- sum(x[(j,ii)] for (j,ii) in links if ii ==i) == b[i])
end

solve(m)

This is indeed a direct �translation� of the following mathematical language:

min
X

(i;j)2A

cij x ij

subject to
X

(i;j)2A

x ij �
X

(j;i)2A

x ji = bi 8i 2 N

0 � x ij � 1 8(i; j) 2 A

I think it is a very obvious translation. It is quite beautiful, isn't it?
CPLEX and its competitor Gurobi are also very smoothly connected with Julia

via JuMP. Why should I hesitate? After two years of using Julia, I still love it�I
even wrote a book, which you are reading now, about Julia!

1.2 Julia in the Cloud: JuliaBox

You can enjoy many features of the Julia Language on the web athttp://juliabox.
com. Log in with your Google account and create a �New Notebook�.

First, install the Clp and JuMPpackages.

Pkg. add("Clp")
Pkg. add("JuMP")

and pressShift+Enter or click the �play� button to run your code. Clp provides an
open source LP solver, and JuMP provides a nice modeling interface.

Copy this code to your screen:

4

http://juliabox.com
http://juliabox.com

Chapter 1. Introduction and Installation

using JuMP, Clp
m = Model(solver =ClpSolver())
@variable (m, 0<= x <=40)
@variable (m, y <=0)
@variable (m, z <=0)
@objective (m, Max, x + y + z)

@constraint (m, const1, - x + y + z <= 20)
@constraint (m, const2, x + 3y + z <= 30)

solve(m)
println("Optimal Solutions:")
println("x = " , getvalue(x))
println("y = " , getvalue(y))
println("z = " , getvalue(z))

and pressShift+Enter or click the �play� button to run your code. The result will
look like:

If you want to use commercial solvers CPLEX or Gurobi, you have to install
Julia in your computer. Please follow the instruction in the next section.

5

1.3. Installing Julia

1.3 Installing Julia

Graduate students and researchers are strongly recommended to install Julia in their
local computers. In this guide, we will �rst install the Gurobi optimizer and then
Julia. Gurobi is a commercial optimization solver package for solving LP, MILP, QP,
MIQP, etc, and it is free for students, teachers, professors, or anyone else related to
educational organizations.

If you are not eligible for free licenses for Gurobi, please go ahead and install
Julia. There are open-source solvers available. Windows users go toSection 1.3.2,
and Mac users go toSection 1.3.3.

1.3.1 Installing Gurobi

First, install Gurobi Optimizer.

1. Download Gurobi Optimizer3 and install in your computer. (You will need to
register as an academic user, or purchase a license.)

2. Request a free academic license4 and follow their instruction to activate it.

(Note to Windows users: The version you select, either 32-bit or 64-bit, needs to
be consistent. That is, if you choose 64-bit Gurobi Optimizer, you will need to install
64-bit Julia in the next step. After installation, you must reboot your computer.)

The following two sections provide steps with screenshots to install the Julia
Language, the JuMP package, and the Gurobi package. Windows users go toSection
1.3.2, and Mac users go toSection 1.3.3.

1.3.2 Installing Julia in Windows

ˆ Step 1. Download Julia from the o�cial website .5 (Select an appropriate
version: 32-bit or 64-bit, same as your Gurobi Optimizer version.)

3http://user.gurobi.com/download/gurobi-optimizer
4http://user.gurobi.com/download/licenses/free-academic
5http://julialang.org/downloads/

6

http://user.gurobi.com/download/gurobi-optimizer
http://user.gurobi.com/download/licenses/free-academic
http://julialang.org/downloads/
http://user.gurobi.com/download/gurobi-optimizer
http://user.gurobi.com/download/licenses/free-academic
http://julialang.org/downloads/

Chapter 1. Introduction and Installation

ˆ Step 2. Install Julia in C:\julia . (You need to make the installation folder
consistent with the path you set in Step 3.)

ˆ Step 3. Open a Command Prompt and enter the following command:

setx PATH "%PATH%;C:\julia\bin"

7

1.3. Installing Julia

If you dont know how to open a Command Prompt, seethis link 6 (choose your
Windows version, and see �How do I get a command prompt�).

ˆ Step 4. Open a NEW command prompt and type

echo %PATH%

The output must include C:\julia\bin in the end. If not, you must have
something wrong.

ˆ Step 5. Run julia .

6http://windows.microsoft.com/en-us/windows/command-prompt-faq

8

http://windows.microsoft.com/en-us/windows/command-prompt-faq
http://windows.microsoft.com/en-us/windows/command-prompt-faq

Chapter 1. Introduction and Installation

You have successfully installed the Julia Language on your Windows computer.
Now its time for installing additional packages for mathematical programming.

ˆ Step 6. If you have not installed Gurobi yet in your system, please install it
�rst. On your julia prompt, type

Pkg. add("JuMP")
Pkg. add("Gurobi")

(If you are ineligible to use a free license of Gurobi, use theCbc solver. You
can install it by entering the following command: Pkg.add("Cbc"))

9

1.3. Installing Julia

ˆ Step 7. Open Notepad (or any other text editor, for exampleAtom 7) and type
the following, and save the �le asscript.jl in some folder of your choice.

using JuMP, Gurobi
m = Model(solver =GurobiSolver())

@variable (m, 0 <= x <= 2)
@variable (m, 0 <= y <= 30)

@objective (m, Max, 5x + 3*y)

@constraint (m, 1x + 5y <= 3.0)

print(m)

status = solve(m)

println("Objective value: " , getobjectivevalue(m))
println("x = " , getvalue(x))
println("y = " , getvalue(y))

If you are ineligible to use a free license of Gurobi, replace the �rst two lines
by

using JuMP, Cbc
m = Model(solver =CbcSolver())

ˆ Step 8. Press and hold yourShift Key and right-click the folder name, and
choose �Open command window here.�

7http://atom.io

10

Chapter 1. Introduction and Installation

ˆ Step 9. Type dir to see your script �le script.jl .

If you see a �lename such asscript.jl.txt , use the following command to
rename:

11

1.3. Installing Julia

ren script.jl.txt script.jl

ˆ Step 10. Type julia script.jl to run your julia script.

After a few seconds, the result of your julia script will be printed. Done.

Please proceed toSection 1.3.4.

1.3.3 Installing Julia in macOS

In macOS, we will use a package manager, calledHomebrew. It provides a very
convenient way of installing software in macOS.

ˆ Step 1. Open �Terminal.app� from your Applications folder. (If you dont
know how to open it, seethis video.8 It is convenience to place �Terminal.app�
in your dock.

8https://www.youtube.com/watch?v=zw7Nd67_aFw �How to open the terminal window on a Mac
�

12

Chapter 1. Introduction and Installation

ˆ Step 2. Visit http://brew.sh and follow the instruction to install Homebrew.

ˆ Step 3. Installing Julia using Homebrew: In your terminal, enter the following
command:

13

1.3. Installing Julia

brew cask install julia

ˆ Step 5. In your terminal, enter julia .

ˆ Step 6. If you have not installed Gurobi in your system yet, go back and
install it �rst. Then, on your Julia prompt, type

Pkg. add("JuMP")
Pkg. add("Gurobi")

(If you are ineligible to use a free license of Gurobi, use theCbc solver. You
can install it by entering the following command: Pkg.add("Cbc"))

14

Chapter 1. Introduction and Installation

ˆ Step 7. Open TextEdit (or any other text editor, for example Atom 9) and
type the following, and save the �le asscript.jl in some folder of your choice.

using JuMP, Gurobi
m = Model(solver =GurobiSolver())

@variable (m, 0 <= x <= 2)
@variable (m, 0 <= y <= 30)

@objective (m, Max, 5x + 3*y)

@constraint (m, 1x + 5y <= 3.0)

print(m)
status = solve(m)

println("Objective value: " , getobjectivevalue(m))
println("x = " , getvalue(x))
println("y = " , getvalue(y))

If you are ineligible to use a free license of Gurobi, replace the �rst two lines
by

9http://atom.io

15

1.3. Installing Julia

using JuMP, Cbc
m = Model(solver =CbcSolver())

ˆ Step 8. Open a terminal window10 at the folder that contains your script.jl .

ˆ Step 9. Type ls �al to check your script �le.

ˆ Step 10. Type julia script.jl to run your script.

10 To do this, you can drag the folder to the Terminal.app icon in your dock, or see http://
osxdaily.com/2011/12/07/open-a-selected-finder-folder-in-a-new-terminal-window/

16

Chapter 1. Introduction and Installation

After a few seconds, the result of your julia script will be printed. Done.

Please proceed toSection 1.3.4.

1.3.4 Running Julia Scripts

When you are ready, there are basically two methods to run your Julia script:

ˆ In your Command Prompt or Terminal, enter C:> julia your-script.jl

ˆ In your Julia prompt, enter julia> include("your-script.jl") .

1.3.5 Installing CPLEX

Instead of Gurobi, you can install and connect the CPLEX solver, which is also free
to academics. Installing CPLEX is a little more complicated task.

CPLEX in Windows

You can follow this step by step guide to install:

1. Create an account and log in atthe academic initiative page11.

2. Search for `IBM ILOG CPLEX Optimization Studio'.

3. Download an appropriate version to your system:

ˆ cplex_studio128.win-x86-32.exe for 32-bit systems

ˆ cplex_studio128.winx8664.exe for 64-bit systems.

4. Reboot.

5. Run the downloaded exe �le You may need to rightclick the exe �le and �Run
as Administrator.�

6. Run Julia and add the CPLEXpackage:

11 https://ibm.onthehub.com/

17

1.3. Installing Julia

julia> Pkg. add("CPLEX")

7. Ready. Test the following code:

using JuMP, CPLEX
m = Model(solver =CplexSolver())
@variable (m, x <= 5)
@variable (m, y <= 45)
@objective (m, Min, x + y)
@constraint (m, 50x + 24y <= 2400)
@constraint (m, 30x + 33y <= 2100)

status = solve(m)
println("Optimal objective: " ,getobjectivevalue(m))
println("x = " , getvalue(x), " y = " , getvalue(y))

CPLEX in macOS

The instruction includes how to deal with .bin �le on macOS:

1. Create an account and log in atthe academic initiative page12.

2. Search for `IBM ILOG CPLEX Optimization Studio'.

3. Download an appropriate version to your system:cplex_studio128.osx.bin .

4. Place the �le in your home directory: /Users/[Your User Name] . Copying
and pasting from the Download directory should work here.

5. To install, open Terminal.

6. At the prompt, type in

/bin/bash ~/cplex_studio128.osx.bin

and hit enter. Follow all the prompts.
12 https://ibm.onthehub.com/

18

Chapter 1. Introduction and Installation

To add the CPLEXpackage to Julia, follow:

1. Open your ~/.bash_profile �le to edit:

open -e ~/.bash_profile

2. Add the following line to your ~/.bash_profile �le: (change [USER NAME])

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH: "/Users/[USER NAME]/Applications/
IBM/ILOG/CPLEX_Studio128/cplex/bin/x86-64_osx/"

Note that the above code needs to be asingle line.

3. Reload your pro�le:

source ~/.bash_profile

4. Run Julia and add the CPLEXpackage:

julia> Pkg. add("CPLEX")

5. Ready. Test the following code:

using JuMP, CPLEX
m = Model(solver =CplexSolver())
@variable (m, x <= 5)
@variable (m, y <= 45)
@objective (m, Min, x + y)
@constraint (m, 50x + 24y <= 2400)
@constraint (m, 30x + 33y <= 2100)

status = solve(m)
println("Optimal objective: " ,getobjectivevalue(m))
println("x = " , getvalue(x), " y = " , getvalue(y))

19

1.4. Installing IJulia

1.4 Installing IJulia

As you have seen inSection 1.2, JuliaBox provides a nice interactive programming
environment. You can also use such an interactive environment in your local com-
puter. JuliaBox is based onJupyter Notebook13. Well, at �rst there was IPython
notebook that was an interactive programming environment for the Python language.
It has been popular, and now it is extended to cover many other languages such as
R, Julia, Ruby, etc. The extension became the Jupyter Notebook project. For Julia,
it is called IJulia , following the naming convention of IPython .

To use IJulia , we need a distribution of Python and Jupyter. Julia can auto-
matically install a distribution for you, unless you want to install it by yourself. If
you let Julia install Python and Jupyter, they will be private to Julia, i.e. you will
not be able to use Python and Jupyter outside of Julia. If you decided to install
Python/Jupyter by yourself, I recommend you to install Anaconda with Python 2.7
version and consult with the documentation of IJulia 14.

The following process will automatically install Python and Jupyter.

1. Open a new terminal window and run Julia. Initialize environment variables:

julia> ENV["PYTHON"] = ""
""

julia> ENV["JUPYTER"] = ""
""

2. Install IJulia :

julia> Pkg. add("IJulia")

3. To open the IJulia notebook in your web browser:

julia> using IJulia
julia> notebook()

13 http://jupyter.org
14 https://github.com/JuliaLang/IJulia.jl

20

Chapter 1. Introduction and Installation

Figure 1.1: Creating a new notebook

It will open a webpage in your browser that looks like the following screenshot:

The current folder will be your home folder. You can move to another folder and
also create a new folder by clicking the �New� button on the top-right corner of the
screen. After locating a folder you want, you can now create a newIJulia notebook
by clicking the �New� button again and select the julia version of yours, for example
�Julia 0.4.1�. SeeFigure 1.1.

21

1.4. Installing IJulia

Figure 1.2: Some basic Julia codes.

22

Chapter 1. Introduction and Installation

Figure 1.3: This is the REPL.

It will basically open an interactive session of the Julia Language. If you have
used Mathematica or Maple, the interface will look familiar. You can test basic
Julia commands. When you need to evaluate a block of codes, pressShift + Enter ,
or press the �play� button. SeeFigure 1.2.

If you properly install a plotting package like PyPlot (details in Section 3.10.1),
you can also do plotting directly within the IJulia notebook as shown inFigure 1.4.

Personally, I prefer the REPL for most tasks, but I occasionally useIJulia ,
especially when I need to test some simple things and need to plot the result quickly,
or when I need to share the result of Julia computation with someone else. (IJulia
can export the notebook in various formats, including HTML and PDF.)

What is the REPL? It stands for read-eval-print loop. It is the Julia session that
runs in your terminal; seeFigure 1.3, which must look familiar to you already.

1.5 Package Management

There are many useful packages in Julia and we rely many parts of our computations
on packages. If you have followed my instructions to install Julia, JuMP, Gurobi, and

23

1.5. Package Management

Figure 1.4: Plotting in IJulia

24

Chapter 1. Introduction and Installation

CPLEX, you have already installed a few packages. There are some more commands
that are useful in managing packages.

julia> Pkg. add("PackageName")

This installs a package, namedPackageName. To �nd its online repository, you can
just google the namePackageName.jl, and you will be directed to a repository
hosted at GitHub.com.

julia> Pkg. rm("PackageName")

This removes the package.

julia> Pkg. update()

This updates all packages that are already installed in your machine to the most
recent versions.

julia> Pkg. status()

This displays what packages are installed and what their versions are. If you just
want to know the version of a speci�c package, you can do:

julia> Pkg. status("PackageName")

julia> Pkg. build("PackageName")

Occassionally, installing a package will fail during thePkg.add("PackageName")pro-
cess, usually because some libraries are not installed or system path variables are
not con�gured correctly. Try to install some required libraries again and check the
system path variables �rst. Then you may need to reboot your system or restart
your Julia session. ThenPkg.build("PackageName") . Since you have downloaded
package �les during Pkg.build("PackageName") , you don't need to download them
again; you just build it again.

25

1.6. Helpful Resources

1.6 Helpful Resources

Readers can �nd codes and other helpful resources in the author's website at

http://www.chkwon.net/julia

which also includes a link to a Facebook page of this book for discussion and com-
munication.

This book doesnot teach everything of the Julia Language�only a very small
part of it. When you want to learn more about the language, the �rst place you
need to visit is

http://julialang.org/learning/

where many helpful books, tutorials, videos, and articles are listed. Also, you will
need to visit the o�cial documentation of the Julia Language at

http://docs.julialang.org/

which I think serves as a good tutorial as well.
When you have a question, there will be many Julia enthusiasts ready for you.

For questions and discussion, visit

https://discourse.julialang.org

and

http://julialang.org/community/

You can also ask questions athttp://stackoverflow.com with tag julia-lang .
The webpage of JuliaOpt is worth visiting. JuliaOpt is a group of people who

develop and use optimization related packages in the Julia Language. The website
provides a nice overview of the available packages and well-tailored examples. The
website is

http://www.juliaopt.org

26

