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Abstract

In conservation planning, the data related to size, growth and diffusion of populations is

sparse, hard to collect and unreliable at best. If and when the data is readily available, it is

not of sufficient quantity to construct a probability distribution. In such a scenario, applying

deterministic or stochastic approaches to the problems in conservation planning either ignores

the uncertainty completely or assumes a distribution that does not accurately describe the na-

ture of uncertainty. To overcome these drawbacks, we propose a robust optimization approach

to problems in conservation planning that considers the uncertainty in data without making

any assumption about its probability distribution. We explore two of the basic formulations in

conservation planning related to reserve selection and invasive species control to show the value

of the proposed robust optimization. Several novel techniques are developed to compare the

results produced by the proposed robust optimization approach and the existing deterministic

approach. For the case when the robust optimization approach fails to find a feasible solution, a

novel bi-objective optimization technique is developed to handle infeasibility by modifying the

level of uncertainty. Some numerical experiments are conducted to demonstrate the efficacy of

our proposed approach in finding more applicable conservation planning strategies.

Keywords: conservation planning; robust optimization; invasion control; reserve selection;

bi-objective mixed integer linear programming
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1 Introduction

Conservation Planning concerns itself with the issues related to maintaining and increasing biodi-

versity. Preserving biodiversity is crucial to human societies and the future of planet Earth. Hence

its slow erosion constitutes a threat as consequential as that posed by the climate change (Bil-

lionnet, 2013). According the International Union for Conservation of Nature (2017), about 24,000

species out of the 91,000 listed are threatened with extinction. Two of the key issues, among others,

resulting in the loss of biodiversity, as identified by the Convention on Biological Diversity (CBD),

are land fragmentation and invasive predators. The alteration and loss of the habitats for many

species is caused by rampant deforestation, overpopulation, agriculture and other economically

beneficial land use alternatives (Polasky et al., 2008).

There is an abundant body of knowledge prescribing the creation of land reserves, geographic

regions designated for the preservation of biodiversity, as a way to slow the process of habitat

destruction and to protect threatened species from the processes that threaten their existence (Ro-

drigues et al., 2004). Due to limited monetary and land resources available for conservation and the

difficulty of reversing land use decisions in the long term, it is imperative that the reserve selection

decision to be based on sound scientific evidence. There is a long history of using optimization

methods for reserve selection in assistance to the process of reserve selection (Haight et al., 2000;

Polasky et al., 2000; Cabeza and Moilanen, 2001; ReVelle et al., 2002; Arthur et al., 2002; Costello

and Polasky, 2004). More recently there has been a growing interest in solving problems of reserve

design, i.e., reserve selection with constraints on size, shape, connectivity, compactness and species

complementarity (Jafari et al., 2017; Beyer et al., 2016; Haight and Snyder, 2009; Williams et al.,

2005; Margules and Pressey, 2000). A brief review of the reserve selection literature and the issues

therein is presented in Section 3.

Another major threat to biodiversity and other ecosystem services is the introduction of invasive

species (Pejchar and Mooney, 2009). For example, Doherty et al. (2016) estimated that the invasions

of mammalian species such as feral cats, rodents and pigs were responsible for massive extinctions

(738 vertebrate species) and may have contributed to 58% of the cases of contemporary extinctions

of birds, mammals and reptiles. Once established, it is very difficult and costly to fully eliminate
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an invasive species. Many mathematical optimization formulations have been presented to manage

and control the spread of invasive species. We present a brief review of these formulations in Section

3.

Conservation planning also encompasses other problems besides the two we have mentioned

above. Other authors have discussed the use of mathematical optimization to solve a variety of

conservation problems (Billionnet, 2013). However, one crucial aspect that has not been sufficiently

considered is the issue of noisy information, for example due to imperfect detection of species during

surveys(Williams et al., 2005). In their seminal work on systematic conservation planning, Margules

and Pressey (2000) point out that conservation planning is riddled with uncertainty. Uncertainty

pervades the use of biodiversity surrogates, the setting of conservation targets, decisions about

which kinds of land tenure can be expected to contribute to targets and for which features, and

decisions about how best to locate, design, implement and manage new conservation areas in

the face of limited resources, competition for other uses, and incursions from surrounding areas.

New developments in all the planning stages will progressively reduce, but never eliminate, these

uncertainties. They recommend that planners, rather than proceeding as if certain, must learn to

deal explicitly with uncertainty in ways that minimize the chances of serious mistakes.

Many problems in conservation planning require information about state variables (e.g., species

abundance, occupancy), rates that pertain to the dynamic of ecological systems (e.g., population

growth rate, movement rate), or conservation value of land parcels among other variables (Williams

et al., 2005). Ignoring these potential sources of uncertainties may lead to bad decisions. Many

studies have addressed these uncertainties with probabilistic and stochastic approaches. These

approaches, although a big step up on the deterministic models, do not handle the uncertainty

sufficiently. This is due to the fact that there are always certain inhibiting assumptions regarding

the nature of the uncertainty in these methods. More precisely, due to sparsity of the data available,

it is overly optimistic to try and over fit this data into certain probability distributions.

To deal with the issue of uncertainty and the lack of sufficient probabilistic information, there

has long been a discussion of using robust optimization (see, for instance, Beyer et al. 2016). But

we were not able to find any study that exploits this technique. In this paper, we propose to use
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robust optimization for conservation planning and optimal control of invasive species.

Since robust optimization(Bertsimas and Sim, 2004; Ben-Tal et al., 2009) accounts for the

worst-case scenarios, it ensures that the problem is tractable and near optimal in the face of

large uncertainty. When using the robust approach, the decision maker will know the quantum

of parametric uncertainty they are protected against when they deploy the decisions and policies

recommended by the robust counterpart of a formulation. In this paper, we also show another

crucial value of the robust optimization. For some conservation problems, if the uncertainty is very

large it may be infeasible to find a solution that meets a budget constraint. A crucial question

then arises; if we are unable to address all the uncertainty using the current resources, where

can we best expend these resources for improving our data gathering efforts in order to reduce

the quantum of uncertainty as much as possible. We have developed a bi-objective optimization

approach that addresses this question. Our approach gives managers the possibility to visualize

how much uncertainty can be addressed for a given budget and provides a prescriptive set of

recommendations about where to focus their data gathering efforts. As we show in Section 5,

this knowledge can have profound policy implications. We come up with a novel bi-objective

optimization formulation to model this approach and develop it further.

This paper is organized as follows: In Section 2, we describe the robust optimization approach

that we have used. In Section 3, we review existing basic optimization formulations developed

for two fundamental problems in conservation planning. In Sections 4 and 5, we introduce a

robust optimization approach for the invasive control problem and the reserve selection problem,

respectively, and present some numerical experiments. Finally, in Section 6, we state our concluding

remarks.

2 Preliminaries: Robust Optimization

Robust optimization is a principal method to address data uncertainty in mathematical program-

ming formulations. This method has been successfully applied to solve many problems (under

uncertainty) when the exact distribution for the data is unknown or difficult to determine or oth-

erwise using stochastic optimization techniques is computationally impractical. In general, robust
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optimization is a conservative approach that seeks to protect the decision maker against the worst

realizations of outcomes. The focus of this study is the robust optimization technique developed by

Bertsimas and Sim (2004) since it allows for controlling the degree of conservatism of the solution.

Let c be an n-vector, A be an m × n matrix, and b be an m-vector. The deterministic opti-

mization formulations in this study are in the form of mixed integer linear programs, i.e.,

min cx

s.t. Ax ≤ b

x ≥ 0

xi ∈ Z for i = 1, . . . , n1,

where x is the vector of variables containing n1 number of integer variables, and n2 number of

continuous variables (note that n = n1 + n2). Also, all coefficients are rational, i.e., A ∈ Qm×n,

b ∈ Qm, and c ∈ Qn. In all proposed formulations in this study, the data uncertainty affects only

the elements of the matrix A. To avoid any unnecessary confusion, we next explain a customized

version of the robust optimization technique developed by Bertsimas and Sim (2004) that works

on this specific class of optimization problems.

We do not make any assumption about the exact distribution of each entry aij of the matrix

A. However, it is assumed that reasonable estimates for the mean value of the coefficient aij

and its range âij are available. In other words, we assume that each entry aij takes value in

[aij − âij , aij + âij ]. Note that âij can be equal to 0.

For each row i ∈ {1, . . . ,m} of the matrix A, we introduce a number Γi (defined by users)

to adjust the the required level of conservatism in the proposed robust optimization formulation.

This number simply imposes an upper bound on the number of entries of row i of the matrix A

that can reach their worst-case values. Given that Ax ≤ b and all variables are non-negative, the

worst-case value for the entry aij of the matrix A is aij + âij . So, higher the value of Γi, higher

the degree of conservatism. The parameter Γi can only take values in the interval [0, |Ji|] where

Ji = {j : âij > 0}. We assume that if Γi /∈ Z then at most bΓic number of entries of row i of
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the matrix A can reach their worst-case values, i.e., aij + âij . One other entry ri can reach the

value of aij + (Γi−bΓic)âij . In simpler terms, if there are one hundred entries in a row i of matrix

A, and the corresponding Γi value is 50.7, then 50 entries of row i of matrix A can reach their

worst-case values of aij + âij and one other entry will reach the value of aij + 0.7âij . The robust

optimization formulation that seeks to conduct the optimization against the worst-case scenario

under these stated assumptions can be presented as follows:

min cx

s.t.
n∑

j=1

aijxj + max
{Si∪{ri}: Si⊆Ji, |Si|≤bΓic, ri∈Ji\Si}

{ ∑
j∈Si

âijxj + (Γi − bΓic)âirixri
}
≤ bi for i = 1, . . . ,m

x ≥ 0

xi ∈ Z for i = 1, . . . , n1.

It can be shown that this formulation has the following equivalent mixed integer linear programming

formulation (Bertsimas and Sim, 2004):

min cx

s.t.

n∑
j=1

aijxj + ziΓi +
∑
j∈Ji

pij ≤ bi for i = 1, . . . ,m

zi + pij ≥ âijxj for i = 1, . . . ,m and j ∈ Ji

pij ≥ 0 for i = 1, . . . ,m and j ∈ Ji

zi ≥ 0 for i = 1, . . . ,m

x ≥ 0

xi ∈ Z for i = 1, . . . , n1.

In this study, we call this formulation the robust counterpart formulation.
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Table 1: Mathematical notation used in the basic formulation for invasive species control

Variables

vit A non-negative variable that captures the population size of invasive species
in parcel i at the beginning of time period t

xit A binary variable that is equal to 1 if parcel i is treated in time period t

Parameters

T The number of time periods in the planning horizon
M The number of parcels in the land under consideration
pji The proportion of population of parcel j that diffuses into parcel i between

periods t and t+1
bit A sufficiently large value that provides an upper bound for the population

of the invasive species in parcel i
g The growth rate of the invasive species at any time period
U The maximum number of parcels that can be treated at any time period
ai The initial population of invasive species in parcel i at the beginning of time

period 0

3 Optimization Models in Conservation Planning

As mentioned in the introduction, optimization methods have been used in conservation problems

including reserve selection, reserve design, landscape fragmentation, forest management, control of

invasive species, protection of genetic diversity and wildfire control (Billionnet, 2013). We illustrate

the benefits of robust optimization methods for conservation with the two types of problems that

we introduced earlier: reserve selection and control of invasive species.

3.1 Control of Invasive Species

Spatial and Temporal control of invasive species is an important problem in conservation planning.

The simplest deterministic formulation for containing the spread of an alien invader was presented

by Hof (1998). They divide the land under consideration into M identical square parcels. The

invading species grows by a constant rate g every time period. Once a control action is implemented

in a parcel i, the invader is supposed to be completely eliminated. There is also some diffusion or

spread of the species to parcel i from parcel j. Table 1 shows the mathematical notation used in

this basic deterministic formulation.
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The formulation presented by Hof (1998) can be represented as follows:

(D1) min
M∑
i=1

T∑
t=1

vit (1)

M∑
i=1

xit ≤ U for i = 1, . . . , T (2)

vi0 = ai for i = 1, . . . ,M (3)

vit + bit

t∑
t′=1

xik ≥
M∑
j=1

pji(1 + g)vjt−1 for i = 1, . . . ,M and t = 1, . . . , T (4)

vit ≥ 0 for i = 1, . . . ,M and t = 1, . . . , T (5)

xit ≥ {0, 1} for i = 1, . . . ,M and t = 1, . . . , T (6)

The objective function minimizes the population size of the invasive species on all parcels during

a planning horizon with T time steps. Constraint (2) guarantees that the number of parcels treated

in each time period is not greater than the imposed upper bound, i.e., U . Constraint (3) gives us

the initial species population at each parcel at the beginning of first period. Finally, Constraint

(4) simply captures the population size of invasive species in each parcel at the beginning of each

time period. Given the previous period’s population vjt−1 in all parcels, the growth rate g and

the inter-parcel diffusion rates pji, the next period’s population for a particular parcel i will be vit

when no control action is taken (xit = 0). However, if a control action is taken (xit = 1), then for a

sufficiently large bit, vit becomes zero. We assume that bit is sufficiently large, i.e., regardless of the

value of vjt−1, ∀j, we must have that bit ≥
∑M

j=1 pji(1 + g)vjt−1. Therefore, the value of bit can be

computed recursively by using bit =
∑M

j=1 pji(1 + g)bjt−1 and bi0 = ai. In light of this observation,

the objective function and constraint (4) together imply that vit = 0 if parcel i is treated in or

before time period t and vit =
∑M

j=1 pji(1 + g)vjt−1 otherwise. Hence, implicitly, treating a parcel

more than once is unnecessary in this formulation. In practice it is computationally advantageous

to add the following valid inequalities to the formulation,

T∑
t=1

xit ≤ 1 for i = 1, . . . ,M (7)

8



Note that these valid inequalities are not part of the original formulation introduced by Hof (1998).

However, we decide to use them since in practice we have observed that they can reduce the solution

time by a factor of around two. Next, we briefly review some of the more advanced formulations.

The formulation we presented thus far is one of the oldest and most basic formulations. While

we briefly describe some more sophisticated models here, it is important to note that robust op-

timization techniques presented in this paper can be applied to any deterministic formulation in

order to incorporate uncertainty. Our choice of the most basic formulation does not imply an

acceptance of all simplifying assumptions therein. Others have since come up with more realistic

models of invasion control that consider a different set of assumptions on growth, diffusion and

control of an invasive species. Büyüktahtakın et al. (2011, 2014, 2015) are examples of a series of

more incrementally sophisticated models. As their objective, they attempt to reduce the damage

to multiple resources in a single and multi objective setting. They also consider logistic growth

as opposed to linear growth Hof (1998) has considered. Their formulation also considers different

kill rates depending on the critical population density in a parcel, as opposed to 100% kill rate

assumed by Hof (1998). In one of the models, they consider an age-structured approach to take

into account the biological dynamics of the population. According to the authors, the large size

of the dynamic problem and the nonlinearity make the application of direct optimization methods

impossible. Instead, they analyze and compare the most frequently suggested strategies and their

consequences.

Epanchin-Niell and Wilen (2012) present a temporally and spatially explicit formulation of the

spread of invasive species. Their mixed integer linear programming (MILP) formulation considers

binary decisions related to clearing of patches and controlling the spread of species across patch

boundaries. They minimize the present value of the sum of control costs and invasion damages

across space and time. Another simple linear programming based approach to invasion control is

proposed by Hastings et al. (2006). They consider a linear, age or stage structured population of the

invader. At different stages (age), the invader has different growth, survival rates, and fecundity.

The issue of uncertainty has also been considered in many recent studies. In summary, the

formulations with uncertainty fall into two categories: Models that consider stochasticity in some
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parameters and formulations that consider lack of information about some parameters. The point of

introduction, growth, diffusion, response to control and the harmful impacts of an invasion can all be

stochastic processes. The data on these process for a new invader can be sparse and hence it is often

difficult to construct representative probability distributions although some recent work has been

done in this area (Guisan et al., 2013; Elith, 2015; Uden et al., 2015). The optimization formulations

also contain parameters whose values for a particular application are simply not known and their

estimation remains difficult especially before or early in an invasion. Even during the invasion,

accurate detection and measurement of invasions is difficult. These multiple uncertainties are an

impediment to devising optimal control policies or evaluating their impacts. The approaches that

have been tried so far include stochastic dynamic programming (Kotani et al., 2011), information

gap theory (Carrasco et al., 2010), learning models (Eiswerth and Van Kooten, 2007), partially

observable Markov decision processes (Haight and Polasky, 2010; Rout et al., 2014) and Bayesian

analysis (Cook et al., 2007). For an exhaustive review of the work that considers uncertainty in

invasion control we refer the readers to the review paper by Epanchin-Niell and Hastings (2010).

3.2 Reserve Selection Problem

The reserve selection problem is another well studied problem in conservation planning literature.

The problem consists in selecting a proportion of a given geographic area for the purposes of

conserving a given species or a set of species. It is oftentimes prohibitive to earmark a very large

geographic area for species conservation because of opportunity costs associated with alternative,

high economic value land use. Multiple variations on the basic reserve selection problem have been

presented over the years. For a more exhaustive review of the science of reserve selection, readers

can refer to Williams et al. (2005); Haight and Snyder (2009); Billionnet (2013); Beyer et al. (2016).

In our paper, we use the basic reserve selection formulation presented in Beyer et al. (2016).

There is a cost associated with the selection of each reserve, and each reserve contributes to the

conservation of species of interest. The optimization procedure selects parcels of land so as to

minimize the cost while achieving some explicit target conservation values for each species.

Table 2 details the mathematical notation used in the basic deterministic reserve selection
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Table 2: Mathematical notation used in the basic formulation for reserve selection

Variables

xi A binary variable that is equal to 1 if parcel i is selected as reserve for species
conservation

Parameters

K The number of species under consideration
M The number of parcels in the land under consideration
ci The cost of selecting parcel i as a reserve
wik The conservation value of parcel i for species k
Wk The target conservation value that must be achieved for species k

formulation. We divided the land under consideration into M parcels. If the conservation targets

for species k ∈ {1, . . . ,K} were achieved, the parcels were assumed to be conserved.

The formulation presented by Beyer et al. (2016) can be represented as follows:

(D2) min
M∑
i=1

cixi (8)

M∑
i=1

wikxi ≥Wk for k = 1, . . . ,K (9)

xi ∈ {0, 1} for i = 1, . . . ,M (10)

The objective function minimizes the total cost of conservation. Constraint (9) ensures that the

target conservation value for each species is achieved. Next, we explain some fundamental features

of the reserve selection problem and the existing formulations for this problem in the literature.

• In all existing formulations, the area under consideration is divided into parcels of land. One

or more species can be considered for conservation. The decision of reserve selection can be

single period or a multi-period dynamic decision (Costello and Polasky, 2004; Snyder et al.,

2005; Tóth et al., 2011; Strange et al., 2006).

• In the basic deterministic version of the problem, there is a cost of selecting a parcel of land.

11



More elaborate approaches to determine cost consider sophisticated economic models to get

a more complete picture of these costs (Polasky et al., 2008; Tóth et al., 2011). Besides

the cost or the number of reserves, other objectives like species or genetic diversity can

also be considered (Cabeza and Moilanen, 2001). Some researchers have used multiobjective

optimization to handle more than one objective functions together (Memtsas, 2003; Snyder

et al., 2004).

• All existing formulations contain parameters related to the target value of conservation to

be achieved for each species under consideration and the contribution of each parcel to the

the species’ conservation. In the more basic formulations, contribution was modeled through

binary parameters representing presence/absence of the species for each parcel and the target

was to make sure that each species is represented in the optimal choice of parcels (ReVelle

et al., 2002). Other more advanced formulations use some geographical, ecological or biological

surrogates and/or some survey or sightings data alongside statistical modeling (Margules and

Pressey, 2000; Austin, 2002) to come up with estimates of spatial species distribution.

• Almost all formulations consider constraints to ensure some sort of spatial arrangement of

parcels. This is done to achieve connectivity, contiguity, compactness, shape, size or certain

boundary or buffer zone requirements for the reserve (Williams et al., 2005; Westphal et al.,

2007; Jafari and Hearne, 2013; Wang and Önal, 2015; Beyer et al., 2016).

• Many existing formulations consider uncertainty related to one or more of the parameters

described above. Probabilistic reserve selection formulations assign probabilities to species

presence rather than using a binary variable (for presence (1) and absence (0)). These formu-

lations either maximize the expected coverage (expected coverage approach) (Polasky et al.,

2000) or the number of species covered, where a species is considered covered if its cumula-

tive presence probability exceeds a predetermined threshold (threshold approach). There are

no formulations, however, that consider the parametric uncertainty related to value of each

parcel to each species or the cost of acquiring a parcel of land in the formulation we have

presented (Haight et al., 2000; Arthur et al., 2002).
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Some recent review papers, for instance Billionnet (2013) and Beyer et al. (2016), emphasize

the necessity of dealing with uncertainty related to these parameters, they recommend robust opti-

mization approaches to account for this parametric uncertainty. Despite its great potential, robust

optimization has been under utilized to address problems of conservation and natural resource

management.

4 A Robust Optimization Approach for the Invasion Control Prob-

lem

In this section, we consider the basic deterministic formulation by Hof (1998), i.e., (D1), and

incorporate uncertainty in some parameters through the robust optimization approach presented

in Section 2. More precisely, we assume that all parameters of (D1) are known with certainty

except the diffusion rate pji. We assume that pji ∈ [pji− p̂ji, pji + p̂ji] and p̂ji > 0, i.e., we consider

a range uncertainty in diffusion rates where the size of uncertainty is determined by p̂ji.

We denote the robust counterpart formulation of (D1) with (R1). This formulation can be

easily constructed using the techniques developed in Section 2. Interested readers can find (R1) in

Appendix A.

4.1 Numerical Experiments

To compare the performance of (D1) and (R1), a random instance is generated by setting M = 40,

T = 5, U = 2 and r = 0.05 in this section. We randomly chose a geographical region in central

Florida and divide it into M equal parcels. The value of ai for each i ∈ {1, . . . ,M} is generated

randomly from (−25, 25). We set negative values to zero. The value of diffusion rate pji is considered

to be inversely proportional to the square of Euclidean distance between the parcels j and i, i.e.,

pji = 1/(dji)
2. Let α, β ≥ 0 be two user-defined parameters, we assume that p̂ji = βpji and

Γt
i = αM . Thus α and β control the level of uncertainty to be considered by modifying the range

of uncertainty or the number of uncertain parameters. It is worth mentioning that to compare

(R1) and (D1), we assume that pji = pji in (D1), i.e., the half value p̂ji is zero. Next, we conduct
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Table 3: Time required to solve problem instances of different sizes for D1 and R1 when T = 5, r = 0.2,
α = 0.5 and β = 0.5

Total
Number of

Parcels

Parcels Per
Period (U)

Time for
D1 (sec)

Time for
R1 (sec)

10 2 0.1 0.45
20 3 1.0 63
30 4 58 1589
40 5 2929 57,605

a set of experiments on the generated instance by choosing different values for α and β. It

is recognized that the Robust counterparts of the original deterministic formulations retain the

benefit of LP (Linear Programming) and MILP (Mixed Integer Linear Programming) frameworks

and are known to be computationally tractable and scalable if the original problem is also tractable

and scalable. However, it is important to note that any Robust MILP model is only as good as the

original deterministic MILP formulation that it originated from. The deterministic invasion control

problem by Hof (1998) presented here is dynamic in time and contains a large number parameter

bit , as a big-M in a formulation. To prevent infeasibility, the value of bit needs to be iteratively

determined. As a result, the original formulation is very difficult to scale and has a huge room for

improvement. We have added a valid inequality in (7) and also defined a method of determining

bit values iteratively in proposition 1 to prevent infeasibility. The basic deterministic model (D1)

and the Robust model (R1) take a large amount of time to solve to optimality as the size of the

problem increases. In Table 3 we report the time it takes to solve the problem instances of different

sizes for D1 and R1. All the numerical experiments were done on a machine with 3.60 GHz CPU

clock speed, 16 GB RAM and 64-bit Windows 8 operating system. The models D1 and R1 were

solved using the Java API of CPLEX V12.4. Optimality gap was set at 2.5%.

We first note that solving (D1) and (R1) usually results in markedly different solutions and

objective values. The objective function for both formulations is the total presence of the invasive

species over all parcels of land and all time periods. However, the robust counterpart formulation

(R1) cannot possibly achieve an objective value less than that of the deterministic formulation (D1)
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An optimal solution of (D1) An optimal solution of (R1)
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Figure 1: Optimal values of xit for i = 1, . . . ,M and t = 1, . . . , T produced by (D1) and (R1) for an instance
of invasion control problem.

due to increased diffusion rates caused by considering uncertainty. Observe that the main decision

variables of the problem are xit for i = 1, . . . ,M and t = 1, . . . , T and they indicate whether a

parcel i is selected for treatment in a time period t or not. We can easily plot the optimal values of

these variables produced by (D1) and (R1). An illustration of this observation when α = 0.3 and

β = 0.05 can be found in Figure 1 in which each cell represents xit, and it is hatched/filled only if

xit = 1. As expected, the recommended values generated by (D1) and (R1) are different.

Since optimal solutions of (R1) and (D1) may differ significantly, and since their respective

objective function values cannot be fairly compared due to increased diffusion rates in (R1), we

introduce a few techniques to be able to compare the solutions and show the value of robust

optimization. Since the main decision variables of the problem are xit, let xd and xr be the

optimal value vectors of these decision variables produced by solving (D1) and (R1), respectively.

Furthermore, for a given x, we define D(x) as the optimal objective value of (D1) when we set

xit = xit in (D1). Similarly, for a given x, we define R(x) as the optimal objective value of (R1)

when we set xit = xit in (R1). Using these definitions, four values can be computed:

• D(xd): This is the the objective value that is reached when we implement the deterministic

decision xd, made on assumptions of zero uncertainty, to a deterministic setting. If our

assumption about zero uncertainty was indeed correct then implementing the deterministic

decision represents the best case scenario for the decision maker.

• D(xr): This is the objective value that is reached if we implement xr, i.e., the robust decision,

made on assumptions of worst-case scenario, to a deterministic setting. We may incur some

extra cost in the process for being over prepared and making wrong assumptions about
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uncertainty.

• R(xr): This is the objective value we get if we choose to implement xr, the robust decision,

made on assumptions of worst-case scenario, to a non-deterministic or uncertain setting. In

this case, We are well equipped to handle this uncertainty since we prepared for it beforehand.

• R(xd): This is the objective value we achieve if we use xd, i.e., the deterministic decision

to a non-deterministic or uncertain setting. This situation represents the worst-case scenario

for the decision maker since they get penalized for being unprepared and making wrong

assumptions about uncertainty.

It can be easily shown that D(xd) ≤ D(xr) ≤ R(xr) ≤ R(xd). In other words, using xr results in

less fluctuations in the objective value if realizations of data different than those anticipated arise

in practice. To illustrate this observation, we assume that β ∈ {0.5, 1, 2} and α ∈ {0.25, 0.5, 0.75},

and run a small set of nine experiments by applying different combinations for values of α and β.

Larger values of α and β represent larger quantum of uncertainty. By varying these coefficients,

we are simply varying the quantum of uncertainty we consider. Experiments 1, 2, . . . , 9 are defined

to be precisely (β = 0.5, α = 0.25), (β = 0.5, α = 0.5), . . . , (β = 2, α = 0.75). The scaled results

are reported in Figure 2 in which the vertical axis shows the ratio, i.e., D(xd)
R(xd)

, D(xr)
R(xd)

, R(xr)
R(xd)

, and

R(xd)
R(xd)

, and the horizontal axis shows the experiment number. Observe that D(xd)
R(xd)

≈ D(xr)
R(xd)

(in

fact D(xd)
R(xd)

is slightly better/smaller than D(xr)
R(xd)

in all experiments). This implies that xr is almost

optimal for (D1). So, if we prepare for uncertainty by implementing the robust decision xr, but the

worse case scenario (as defined by the robust optimization formulation) does not arise in reality, we

almost lose nothing. Also observe that R(xr)
R(xd)

is up to 14% better/smaller than R(xd)
R(xd)

. This implies

that if the worse case scenario (as defined by the robust optimization formulation) arises then we

are up to 14% better off by using xr. Simply put, we are better able to handle uncertainty if we

have prepared for it beforehand. These two observations clearly illustrate the value of the proposed

robust optimization, and the fact that xr is a better choice in practice. Of course, these experiments

can be repeated, with similar results, for any size of the problem and any set of parameters α and

β. Finally, as enunciated earlier, the assumption of uncertainty and the robust formulation used
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Figure 2: Comparing the optimal solution generated by (D1) and (R1) in 9 different experiments.

to handle it, also impacts the gist of managerial decision making by prescribing to treat different

parcels of land in different time periods, , i.e., choosing different xit variables to be 1, as compared

with those suggested by the deterministic formulation.

5 A Robust Optimization Approach to the Reserve Selection Prob-

lem

In this section, the robust counterpart formulation of the basic reserve selection problem (Beyer

et al., 2016), explained in Section 5, is developed. We assume that the cost coefficients for parcels,

i.e., ci for i = 1, . . . ,M , and the target values for species, Wk for k = 1, . . . ,K, are known with

certainty. Note that this assumption may often be reasonable because the cost can be approximated

using a range of values from alternative economic models, and the species conservation target can

be elicited from stakeholders. The parameters wik represent the contribution of parcel i to species

k and are considered to be uncertain. These values often depend on a number of biological factors

and therefore need thorough examination of the ecological characteristics of a certain parcel of land.
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The estimates for these biological factors are prone to estimation errors and changes over time. w

More specifically, we assume that wik ∈ [wik− ŵik, wik + ŵik] and ŵik > 0; i.e., we consider a range

uncertainty in contribution values where the size of uncertainty is determined by ŵik. We denote

the robust counterpart formulation of (D2) with (R2). This formulation can be easily constructed

using the techniques developed in Section 2. Interested readers can find (R2) in Appendix B.

5.1 Numerical Experiments

The goal of this section is to compare the performance of (D2) and (R2). We evaluated the

performance of (D2) and (R2) with simulated data. The simulated data are generated by setting

M = 40 and K = 5. Also, ci for i = 1, . . . ,M are randomly generated by using the discrete

uniform distribution in the interval [100, 1000]. Furthermore, wik values are randomly drawn from

the normal distribution with mean of 0 and standard deviation of 5. Values less than zero are

truncated to zero. This implies that on average 50% of the parcels do not contribute to the

conservation of a particular species. We also set Wk = 0.5
∑M

i=1wik. Let α, β ≥ 0 be two user-

defined parameters, we assume that ŵik = βwik and Γk = αM . It is worth mentioning that to

compare (R2) and (D2), we assume that wik = wik in (D2). Next, we conduct some experiments

on the simulated data by choosing different values for α and β. All the numerical experiments were

done on a machine with 3.60 GHz CPU clock speed, 16 GB RAM and 64-bit Windows 8 operating

system. The models D2, R2, and R3 were solved using the Java API of CPLEX V12.4. Optimality

gap was set at 2.5%. Although, we present the results for 40 parcels for reader’s convenience and

consistency across the paper, we ran a series of experiments with larger number of parcels to see

how the deterministic and the robust models scale with the problem size. We ran our models with

number of parcels equal to 100, 500, 1,000, 5,000 and 10,000 and reported and compared the run

times for the deterministic and robust models D2 and R2, respectively. We also ran R3 with larger

size of instances. We ran a set of experiments with number of parcels equal to 50, 100 and 200.

As the model R3 contains linearization constraints to replace the bilinear terms, and also involves

finding the full non-dominated frontier consisting of hundreds of points, we were unable to solve

the problem with number of parcels larger than 200 in a reasonable amount of time. We report
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Table 4: Time required to solve problem instances of different sizes for D2, and R2 when α = 0.5, β = 0.5

Total
Number of

Parcels

Time for
D2 (sec)

Time for
R2 (sec)

100 0.07 4.16
500 0.22 1.23

1,000 0.22 1.48
5,000 0.41 8.23
10,000 0.58 230.94

Table 5: Number of nondominated points, corresponding number of single-objective MILPs solved and the
time required to solve problem instances of different sizes for R3 when α = 0.5, β = 0.5

Total
Number of

Parcels

Time for
R3 (sec)

# of Non-
dominated

points

# of
MILPs
solved

25 5 53 106
50 41 137 274
100 576 228 456
200 35,908 329 458

these run time results in Tables 4 and 5

In rest of this section, we assume that (D2) is always feasible, but we make no such assumption

about (R2). We first note that to compare (D2) and (R2), we cannot use the same technique

developed in Section 4.1 because this problem has only one type of decision variables, and so the

solution corresponding to (D2) is unlikely to be feasible for (R2). This implies that using the

solution of the deterministic formulation would be a poor choice because under the worst-case

scenario (as defined by the robust optimization formulation), the deterministic solution fails to

satisfy the target values for species of interest.

Based on this observation, one may be tempted to make the determination to always use the

robust optimization formulation (R2), because it is always feasible. However, as we subsequently

explain, that is not necessarily the case. In general, the structure of (R2) is such that it is quite

possible to increase the degree of uncertainty in (R2) to such an extent so as to render the problem
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infeasible.

Although, using the optimal solution obtained by (D2) does not seem to be a good choice. At

the same time, however, employing (R2) as currently defined may not be a good option either as

the issue of possible infeasibility persists. Consequently, we need to revise (R2) in order to ensure

that the revised formulation is always feasible (if (D2) is feasible).

We revised (R2) by adding a second objective to the problem (in addition to the total conser-

vation cost) to measure the total infeasibility of the robust formulation. It is worth mentioning

that the total infeasibility can be interpreted as the amount of decrease in the uncertainty ranges

in order to make the robust counterpart formulation feasible. We denote the revised formulation

by (R3). It is worth mentioning that (R3) can be easily written as a bi-objective mixed integer

linear program (BOMILP) by using a few linearization techniques. In bi-objective optimization the

goal is to compute the nondominated frontier or simply the set of all nondominated points. These

points are the projection (image) of Pareto-optimal solutions in the objective space. Interested

readers can find (R3) and its linearization process in Appendix C.

We use the ε-constraint method to solve the BOMILP corresponding to (R3) for

β = {0.05, 0.1, 0.2, 0.4, 0.8, 1.6}

and α ∈ {0.25, 0.5}. Figures 3 and 4 show the (exact) nondominated frontier of the problem for

different values of β when α = 0.25 and α = 0.5, respectively. We next make a few observations

about these figures.

• Intuitively, it can be seen that the upper left and lower right endpoints of each nondominated

frontier provide information about (D2) and (R2), respectively. More specifically, the upper

left point shows the infeasibility of the optimal solution obtained with (D2) under the worst-

case scenario. For this solution, all the uncertainty is unaddressed and total infeasibility

is maximum possible. It also shows the optimal cost of conservation by allowing (R3) to

handle this amount of infeasibility when the worst-case scenario arises. Similarly, the lower

right endpoint shows the total infeasibility of (R2), and the optimal cost of conservation by
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Figure 3: The nondominated frontier of (R3) for different values of β when α = 0.25. Each curve represents
the nondominated frontier for a different value of β. The axes represent the values of the respective objective
functions.
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Figure 4: The nondominated frontier of (R3) for different values of β when α = 0.5. Each curve represents
the nondominated frontier for a different value of β. The axes represent the values of the respective objective
functions.

21



allowing (R3) to handle this amount of infeasibility.

• For a fixed α and β, the decision maker(s) can visualize the nondominated frontier and choose

a desirable point. Obviously, choosing a point closer to the lower right corner indicates that

the decision makers adopt a more conservative or risk averse approach since the lower right

point represents the total infeasibility of (R2).

• For a fixed α, the nondominated frontier shifts upward, i.e., the value of infeasibility increases,

as β increases, and it converges towards a plateau. This is not surprising because as β

increases, the uncertainty goes up. Indeed, increasing β adds more uncertainty to the problem.

We observe that it is possible that the nondominated frontier becomes so flat that eventually

reduces to a single point, see for instance β = 1.6 and α = 0.5. Note that this is also true for

the other extreme case representing very small or no uncertainty. If the uncertainty is very

small then it is expected that the nondominated frontier would become so steep that it would

eventually reduce to a single point.

These observations imply that (for the formulation of the reserve selection problem explored in this

study), the decision makers would not gain much by trying to handle a large amount of uncertainty

using the proposed robust optimization technique. At higher values of assumed uncertainty, the

nondominated frontier may become so flat that to improve the infeasibility by small amount, we

need to increase the conservation cost significantly. Similarly, if the assumed uncertainty is very

small the robust optimization technique is almost equivalent to the deterministic formulation. Even

in this extreme case, using the robust optimization approach is not particularly helpful. Never-

theless, for a reasonable amount of uncertainty using the proposed robust optimization approach

seems to be quite helpful. For instance, the nondominated frontiers of the problem when β = 0.2,

β = 0.4 or β = 0.8 and when α = 0.25 or α = 0.5 in Figures 3 and 4 seem very promising since

the lower right endpoint of these nondominated frontiers has the total infeasibility value of zero,

but the upper left point has a significant total infeasibility value. Also observe that since these

curves are generally steeper, i.e., we have significant gains on infeasibility without losing much on

the conservation cost, the decision maker can genuinely achieve a trade-off between his competing
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objectives by choosing a suitable point on these nondominated frontiers.

Another crucial information that (R3) can provide us is the optimal values of variables εik.

These values represent the portion of ŵik that remained unaddressed. These values can indicate

to a decision maker where to concentrate their data gathering efforts in order to minimize the

unaddressed uncertainty as defined by the second objective function in (R3) especially in a situation

when the budget for such efforts is limited.

6 Conclusion

Many conservation problems involve a lot of uncertainty, which may not always be captured with

probability distributions. In this study, we explored the idea of applying robust optimization

techniques for solving conservation problems while accounting for high levels of uncertainty. To

the best of our knowledge this is the first study in applying a robust optimization approach in

conservation planning problems. We illustrated our proposed approach with two types of problems:

the invasion control problem and the reserve selection problem. More importantly, we developed

novel techniques to compare the results obtained by the proposed robust optimization approach

and the corresponding deterministic formulation. We hope that the applicability, versatility, and

performance of our approach encourages practitioners and researchers to implement it to address

important issues in natural resource management and conservation.
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Appendices

A Robust Formulation of (D1)

Based on our discussion in Section 2, it is easy to show that the robust counterpart formulation of

(D1) can be stated as:

(R1) min

M∑
i=1

T∑
t=1

vit (11)

M∑
i=1

xit ≤ U for i = 1, . . . , T (12)

vi0 = ai for i = 1, . . . ,M (13)

vit + bit

t∑
t′=1

xik ≥
M∑
j=1

pji(1 + g)vjt−1 + zitΓ
t
i +

M∑
j=1

qjit

for i = 1, . . . ,M and t = 1, . . . , T (14)

zit + qjit ≥ p̂ji(1 + g)vjt−1

for i = 1, . . . ,M and j = 1, . . . ,M and t = 1, . . . , T (15)

qjit ≥ 0 for i = 1, . . . ,M and j = 1, . . . ,M and t = 1, . . . , T (16)

zit ≥ 0 for i = 1, . . . ,M and t = 1, . . . , T (17)

vit ≥ 0 for i = 1, . . . ,M and t = 1, . . . , T (18)

xit ≥ {0, 1} for i = 1, . . . ,M and t = 1, . . . , T, (19)

where Γt
i for i = 1, . . . ,M and t = 1, . . . , T is a user-defined parameter showing the level of

conservatism in constraint (14).

Note that we assume that bit is sufficiently large, i.e., regardless of the value of vjt−1, zit, and

qijt for j = 1, . . . ,M , j = 1, . . . ,M and t = 1, . . . , T , we must have that

bit ≥
M∑
j=1

pji(1 + g)vjt−1 + zitΓ
t
i +

M∑
j=1

qjit.
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Therefore, the value of bit should be computed differently in (R1). This can be done using the

following proposition.

Proposition 1. Let ui,t−1 := (u1
i,t−1, u

2
i,t−1, . . . , u

M
i,t−1) such that uji,t−1 := p̂ji(1 + g)bj,t−1 for

i = 1, . . . ,M and t = 1, . . . , T . Also, let u
(j)
i,t−1 be the j-th largest component of ui,t−1. For each,

i ∈ {1, . . . ,M} and t ∈ {1, . . . , T}, bit can be computed recursively by using

bit =

M∑
j=1

pji(1 + g)bjt−1 +

bΓt
ic∑

j=1

u
(j)
it−1 + (Γt

i − bΓt
ic)u

(dΓt
ie)

i,t−1 ,

and bi0 = ai.

Proof. We first note that based on the discussion given in Section 2, (R1) is equivalent to

min
M∑
i=1

T∑
t=1

vit (20)

M∑
i=1

xit ≤ U for i = 1, . . . , T (21)

vi0 = ai for i = 1, . . . ,M (22)

vit + bit

t∑
t′=1

xik ≥
M∑
j=1

pji(1 + g)vjt−1+

max
{St

i∪{rit}: St
i⊆Jt

i , |St
i |≤bΓt

ic, rit∈Jt
i \St

i}

{ ∑
j∈St

i

p̂ji(1 + g)vjt−1 + (Γt
i − bΓt

ic)p̂rit,i(1 + g)vrit,t−1

}
for i = 1, . . . ,M and t = 1, . . . , T (23)

vit ≥ 0 for i = 1, . . . ,M and t = 1, . . . , T (24)

xit ≥ {0, 1} for i = 1, . . . ,M and t = 1, . . . , T. (25)

Based on Constraints (23), bit where i ∈ {1, . . . ,M} and t ∈ {1, . . . , T} is sufficiently large if

regardless of the value of vjt−1 for j = 1, . . . ,M , we have that

bit ≥
M∑
j=1

pji(1 + g)vjt−1+
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max
{St

i∪{rit}: St
i⊆Jt

i , |St
i |≤bΓt

ic, rit∈Jt
i \St

i}

{ ∑
j∈St

i

p̂ji(1 + g)vjt−1 + (Γt
i − bΓt

ic)p̂rit,i(1 + g)vrit,t−1

}
.

It is evident that

max
{St

i∪{rit}: St
i⊆Jt

i , |St
i |≤bΓt

ic, rit∈Jt
i \St

i}

{ ∑
j∈St

i

p̂ji(1 + g)vjt−1 + (Γt
i − bΓt

ic)p̂rit,i(1 + g)vrit,t−1

}
≤

bΓt
ic∑

j=1

u
(j)
it−1 + (Γt

i − bΓt
ic)u

(dΓt
ie)

i,t−1 ,

for i = 1, . . . ,M and t = 1, . . . , T . So, the result follows.

B Robust Formulation of (D2)

Based on our discussion in Section 2, it is easy to show that the robust counterpart formulation of

(D2) can be stated as:

(R2) min

M∑
i=1

cixi (26)

M∑
i=1

wikxi − zkΓk −
M∑
i=1

qik ≥Wk for k = 1, . . . ,K (27)

zk + qik ≥ ŵikxi for i = 1, . . . ,M and k = 1, . . . ,K (28)

qik ≥ 0 for i = 1, . . . ,M and k = 1, . . . ,K (29)

zk ≥ 0 for k = 1, . . . ,K (30)

xi ∈ {0, 1} for i = 1, . . . ,M, (31)

where Γk for k = 1, . . . ,K is a user-defined parameter showing the level of conservatism in Con-

straint (27).

30



C Revised Robust Formulation of (D2)

It is evident from Constraint (27) that the term −zkΓk−
∑M

i=1 qik cannot take a positive value and

so it can force more xi to take the value of 1 (in comparison to (D2)). However, this in itself can

force the value of −zkΓk −
∑M

i=1 qik to become even more negative due to Constraint (28). Thus,

it is possible for (R2) to be infeasible. The higher the degree of uncertainty in (R2), i.e., larger

the values of ŵik and Γk for i = 1, . . . ,M and k = 1, . . . ,K, larger the probability of this outcome

arising.

So, to deal with infeasibility of (R2), we propose a revised formulation as follows:

(R3) min
M∑
i=1

cixi (32)

min
M∑
i=1

K∑
k=1

εik (33)

M∑
i=1

wikxi − zkΓk −
M∑
i=1

qik ≥Wk for k = 1, . . . ,K (34)

zk + qik ≥ (ŵik − εik)xi for i = 1, . . . ,M and k = 1, . . . ,K (35)

0 ≤ εik ≤ ŵik for i = 1, . . . ,M and k = 1, . . . ,K (36)

qik ≥ 0 for i = 1, . . . ,M and k = 1, . . . ,K (37)

zk ≥ 0 for k = 1, . . . ,K (38)

xi ∈ {0, 1} for i = 1, . . . ,M, (39)

where εik is a new continuous variable that is introduced in order to revise/reduce the value of

ŵik for i = 1, . . . ,M and k = 1, . . . ,K. This can be observed from Constraints (35) and (36). In

consequence, the new objective function,
∑M

i=1

∑K
k=1 εik, simply measures the infeasibility of (R2)

with respect to the value of ŵik for i = 1, . . . ,M and k = 1, . . . ,K. To understand the formulation

better, we now explore two extreme cases. In the first case we suppose that εik = 0 for i = 1, . . . ,M

and k = 1, . . . ,K. In such a scenario, (R3) is precisely equivalent to (R2). Now, in the second case,

let us suppose that εik = wik for i = 1, . . . ,M and k = 1, . . . ,K. In this case, the optimal solution
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of (D2) is also optimal for (R3) because we now have the option to set zk = 0 and qik = 0 for

i = 1, . . . ,M and k = 1, . . . ,K. So, this formulation captures the essence of both (D2) and (R2),

and it is guaranteed to be feasible (since we assume that (D2) is feasible).

Note that solving this bi-objective optimization problem returns the trade-off between the total

cost of conservation, i.e., the first objective function, and the total infeasibility, i.e., the second

objective function. However, the proposed formulation is not linear. In order to linearize it, a

new non-negative variable ε̂ik can be introduced to capture the value of the bilinear term εikxj

for i = 1, . . . ,M and k = 1, . . . ,K, and then Constraint (35) can be replaced by the following

constraints:

zk + qik ≥ ŵikxi − ε̂ik for i = 1, . . . ,M and k = 1, . . . ,K (40)

ε̂ik ≤ εik for i = 1, . . . ,M and k = 1, . . . ,K (41)

ε̂ik ≤ ŵikxi for i = 1, . . . ,M and k = 1, . . . ,K (42)

ε̂ik ≥ εik − ŵikxi − ŵik for i = 1, . . . ,M and k = 1, . . . ,K (43)

ε̂ik ≥ 0 for i = 1, . . . ,M and k = 1, . . . ,K. (44)

This linearization is valid since if xi = 1 then ε̂ik = εik and if xi = 0 then ε̂ik = 0 for i = 1, . . . ,M

and k = 1, . . . ,K.
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