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Abstract

Recently, the Value-at-Risk (VaR) framework was introduced for the routing problem of

a single hazmat trip. In this paper, we extend the VaR framework in two important ways.

First, we show how to apply the VaR concept to a more realistic multi-trip multi-hazmat type

framework, which determines routes that minimize the global VaR value while satisfying equity

constraints. Second, we show how to embed the algorithm for the single hazmat trip problem

into a Lagrangian relaxation framework to obtain an efficient solution method for this general

case. We test our computational experience based on a real-life hazmat routing scenario in the

Albany district of New York State. Our results indicate that one can achieve a high degree of

risk dispersion while controlling the VaR value within the desired confidence level.

Keywords: Value-at-Risk; multi-trip hazmat transportation; social risk mitigation; risk equity;

dissimilar path

∗Corresponding Author

1



1 Introduction

Hazardous material transportation planning has been well recognized as a Low-Probability-High-

Consequence (LPHC) problem. A study of available data on hazmat transportation accident

statistics in North America reveals that accident probabilities are extremely small, usually estimated

at 10−6 per mile [18]. However, the low likelihood of hazmat accidents results in an insufficient or

inaccurate set of historical records to predict the accident probabilities of future hazmat accidents.

On the other hand, due to their disastrous consequences, prediction of accident probabilities of

hazmat accidents is critical to reduction of societal risk. To illustrate this point further we note

that there were only 167,680 hazmat transportation incidents for the ten year period from 2000 to

2009, which resulted in a total of just 133 fatalities and 2,784 injuries, while damage caused was

$637, 270, 767 [39] due to the evacuation and cleanup efforts needed after a hazmat accident. Hazmat

transport planning has received the attention from numerous Operations Research and Management

Science researchers. Many models have been created, with objectives to minimize the expected risk

[4, 20], maximum risk [14], and the mean-variance of the risk [14]. There are some other models

that consider balancing hazmat risk and transportation cost [30, 40]. A common characteristic of

all of these approaches is that they rely on hazmat accident statistics being available and accurate.

To overcome the drawback associated with the reliance on the availability and the accuracy of

hazmat accident statistics, Kang et al. [22] have introduced the Value-at-Risk (VaR) concept as it

applies to hazmat routing and risk assessment. VaR provides a flexible decision making tool that

covers various risk preferences. By varying a model parameter that represents a certain probability

threshold, one can be flexibly risk-averse up to the level of the maximum risk model of Erkut and

Ingolfsson [14]. Unlike other models that can be flexibly adjusted such as the mean-variance model,

the model parameter is easier to understand; it is a probability threshold.

While Kang et al. [22] focused on a single trip case, we define a trip as a shipment carrying a type

of hazmat from an origin to a destination. In this paper, we expand on the work of Kang et al. [22]

in two significant directions. First, we demonstrate its application to the multi-trip, multi-hazmat

situation while considering equity as a constraint. Second, we use Lagrangian relaxation coupled

with the single trip solution to develop an efficient algorithm. By building a set of dissimilar paths

among the first k shortest paths of each trip, we reduced the search space for optimal solution
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and significantly reduce the computational effort for large-sized network problem. Subsequently,

computational testing is conducted on a realistic routing scenario in Albany, New York. Our

principal finding is that by modest increases in overall VaR value one can achieve quite stringent

levels of risk equity.

The remainder of this paper is organized as follows. The next section reviews some directly

related literature. In Section 3, we present the mathematical formulation of the generalized routing

problems for hazmat transport based on the hazmat VaR model. Sections 4 and 5 develop the

corresponding solution framework on a large-sized transportation network. Section 6 contains

our computational experience, based upon data in the Albany district of New York State. This

experience illustrates the efficiency and effectiveness of our model and summarizes our computational

results. Finally, Section 7 provides concluding remarks and suggestions for future research.

2 Literature Review

In this section, we briefly review the relevant literature in the area of hazmat routing, equity

modeling and dissimilar path generation.

2.1 hazmat Routing

The research on hazardous material transportation problems focuses on two main issues: risk

assessment and effective routing so as to mitigate risk. Much work has been done in risk modeling

with a focus on probabilistic distribution of the risk over given areas: considering the risk related to

the types of hazmat [2], using Geographic Information Systems [42], measuring the impact area of

hazmat accidents [5], studying various transport modes [2], and assuming the accident probabilities

known [33] or unknown [6].

Some prevailing studies emphasize the risk parameters to be measured during the transportation,

including minimizing population exposure [35], expected risk [4], maximal risk [14], probability

[36] or conditional probability [37], mean-variance of risk [14], and risk disutility [14]. Recently

researchers have focussed on other considerations like transportation cost or risk equity dispersion

[17]. Some bi-level hazmat transportation models have been developed to study the trade-off between

the two conflicting objectives of minimizing transportation cost and risk of the hazmat transport
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[23, 30, 40]. Another recent direction of study is on building a model which has less reliance on the

accuracy of historical accident data. An example of this is the VaR model developed in Kang et al.

[22].

The other main issue is route planning of hazmat trips, which involves a selection among the

alternative paths between O-D pairs. Carriers usually focus on the routing problem of single-

commodity single O-D pair trips individually—to select a route between a given O-D pair for a given

hazmat type—which is called local route planning [7]. However, the main concern of a government

authority is to control the total risk over the population and the equity distribution of this risk

over population zones, which can only achieved by simultaneously considering all of the local route

planning problems, i.e. through global route planning. Examples of this approach for a single O-D

pair and multiple trips of a single hazmat type are papers by Gopalan et al. [17] and Lindner-Dutton

et al. [28].

While government control problems are usually modeled as bi-level optimization problems, we

provide a single-level formulation in this paper. Our model can provide desirable paths for multiple

hazmat and multiple O-D pairs. When a central authority can control all shipments via direct

enforcements, carriers will follow the obtained paths. On the other hand, if carriers are autonomous

decision making units over whom the central authority has no control, the obtained paths will

provide guidelines for the central authority’s action in the next step and our model does not provide

how one can achieve the obtained paths. In such cases, one would need a bi-level optimization model,

which may be formulated by extending the single-level formulation of this paper, to adequately model

independent decision-making behavior of carriers. Heuristic solution approaches for such bi-level

problems often requires a model and a solution method for the single-level problem. Therefore, this

paper provides fundamental results that are useful to both cases directly and indirectly.

2.2 Equity Modeling

The concept of risk equity is well defined in Keeney [24], who defined equity as the largest difference

in the risk level among a set of individuals. Several models have been proposed for addressing equity

in the context of hazmat transport. Gopalan et al. [16] develop a model for a single hazmat trip in

which the objective is to minimize risk subject to a set of constraints that ensure that the difference

in risk borne by population zones is less than a set threshold (equity specification). This model was
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later generalized by Gopalan et al. [17] to the case of multiple hazmat trips of a single O-D pair.

For this situation, Gopalan et al. [17] were able to show empirically that high level of equity can be

achieved by modest increase in risk level.

Another method of enforcing equity is to limit the risk associated with a population zone or

link. Current and Ratick [9] take such an approach by minimizing the maximum risk for a zone.

Carotenuto et al. [8] focus on minimizing the total risk while constraining the risk on each traversed

link. Both Current and Ratick [9] and Carotenuto et al. [8] consider a single hazmat trip. Our model

is much more general than those proposed above. We allow multiple O-D pairs and multiple trips

for each O-D pair. Our method of modeling equity is the same as that used in Gopalan et al. [16]

and Gopalan et al. [17]. The other difference is that we use minimization of VaR as our objective.

However, our approach can also be used with any other risk measures, including traditional risk as

used in the majority of the literature.

2.3 Dissimilar Path Generation

The concept of dissimilar paths has been put forward in several contexts other than that of hazmat

trips. Kuby et al. [25] apply dissimilar paths to reduce the search space for path-based models

in a large, capacitated, multi-commodity network flow model. Lombard and Church [29] suggest

generating a number of topologically dissimilar paths to avoid the repeated attempt of infeasible or

undesirable paths, in the case of restricted layout problems like the corridor location application.

In the hazmat transport problem, the generation of spatially dissimilar paths is necessary to

spread the risk equitably all over the network whenever multiple hazmat shipments are transported

from an origin to a destination, and to provide more meaningful alternatives when the “best” path

choice is not allowed in varied environments like bad weather conditions. There have been many

methods to generate k shortest paths, like Yen [41]. However, Yen’s k-shortest path algorithm

makes route choices based on transportation distance, which results in the spatial similarity among

the generated paths. This situation is rather undesirable in hazmat route choices, where the

objective is to reduce transportation risk more than transportation cost and highly overlapped road

segments would severely increase the consequences of traffic accidents. To overcome this problem,

a “p-dispersion” model is proposed by Kuby [26] to maximize the minimum dissimilarity of the

paths on a general network. Erkut et al. [15] described and made an empirical comparison of ten
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heuristics for the discrete p-dispersion problem. Akgün et al. [3] present an improvement by selecting

a subset from a large set of candidate paths and use a dispersion model to maximize the minimum

dissimilarity among the paths in the subset, and compare their computational result with three

other methods, the Iterative Penalty Method [21], the Gateway Shortest Path Method [29] and

Minimax method [25]. Duarte and Marti [11] proposed and solved a similar maximum diversity

problem with a constructive semi-greedy algorithm and a tabu search method.

Though the above methods have clearly defined the path dissimilarity, their work are restricted

to single criterion, the edge length, and only consider the edges in the definition of dissimilarity.

Dell’Olmo et al. [10] developed the dissimilarity path problem from a multi-objective perspective

and proposed a multi-criteria shortest path algorithm (MSPA) to generate a set of non-dominated

paths with the multiple objectives of length and risk. Thyagarajan et al. [38] consider both spatial

and temporal information to determine dissimilar paths for military aircraft during mission ingress.

Later on, Mart́ı et al. [31] developed a modified Greedy Randomized Adaptive Search Procedure

(GRASP) (See Resende and Ribeiro [34]) heuristic for a bi-objective path dissimilarity problem by

making the trade-off between the two conflicting objectives: minimizing the average length of the

paths while maximizing the dissimilarity among the paths.

In our model, we apply the dissimilar path concept to reduce the search space of the generalized

hazmat VaR model. The generation of the p disperse paths can be generated by any of the above

methods. The main difference of our model lies in the generation of the candidate set—the k

minimal VaR paths, which cannot be converted into the k shortest path problem.

3 Formulation

Consider a transport network G = (N ,A), where N represents the node set, and A represents the

link set. Define I as the O-D pair set within this network and H as the set of hazmat types. For

each O-D pair i ∈ I, there is a set of candidate paths Ci. Suppose we have a set of trips S in the

network G. Each trip s ∈ S is defined as a trip on an O-D pair i ∈ I with a type of hazmat h ∈ H.

The risk carried by the same route j ∈ Ci may be different with different kinds of hazmat. Given a

risk confidence level α ∈ (0, 1), the objective of our problem is to find a set of paths to minimize

the total VaR over the set of trips S while incorporating VaR equity. To write the VaR equity
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constraint, we assume that the geographical region defined by the network G can be divided into a

set of mutually disjoint zones Z. We define a zone pair ordering as an ordered pair (a, b) of zones

a ∈ Z and b ∈ Z. The risk equity constraint is to maintain the difference in total VaR between each

zone pair within a set threshold µ. Table 1 presents the mathematical notation used in this paper.

In hazmat VaR models, the VaR of each path j ∈ Ci of O-D pair i ∈ I carrying a kind of hazmat

h ∈ H is defined as

VaRjhαi = min{β : Pr{Rjhi > β} ≤ 1− α} (1)

Given a set of candidate paths Ci, the corresponding hazmat shipment optimization problem is to

solve:

VaR∗hαi = min{VaRjhαi : j ∈ Ci, h ∈ H} (2)

Modeling the risk of traveling path j by an accident probability phuv and an accident consequence

chuv for each arc (u, v) ∈ j and hazmat type h, Kang et al. [22] found that the optimal VaR value

VaR∗hαi takes a value in the set {0} ∪ {chuv : (u, v) ∈ j, j ∈ Ci}.

Hazmat VaR model is a new risk model different from any traditional hazmat risk models or

finance VaR models. It is different from other hazmat risk model in that it brings the factor of

confidence levels into the risk model and provides a set of varying route solutions according to

decision makers’ risk preferences. Though VaR is a well-known concept in finance field, the definition

of VaR in hazmat transportation is different than VaR in finance. First, in hazmat VaR model, the

measurement units of investment (a route) and measurement object (risk) are inconsistent. Besides,

different from finance VaR model, the component of investment, each road segment along the route

of a shipment is dependent on their order and their risks are non-additive. Finally, evaluating the

VaR value of each path and solving the VaR minimization model for hazmat transportation have

unique characteristics and require more complicated methods than those for financial VaR problems.

Let xjhαi be an integer decision variable, representing the volume of hazmat type h ∈ H on path

j ∈ Ci for O-D pair i ∈ I given confidence level α, where Ci is the set of all paths between the O-D

pair i. A formulation for the generalized hazmat VaR routing problem is as follows:

(P ) min
x

∑
h∈H

∑
i∈I

∑
j∈Ci

βjhαix
jh
αi (3)
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Table 1: Mathematical Notation Table

Notation Definition

Sets
G(N ,A) a graph of road network
N set of nodes, |N | = n
A set of links, |A| = m
I Set of O-D (Origin-Destination) pairs
S Set of trips
H Set of hazmat types
Z Set of geographical zones in G
Ci Set of available paths for O-D pair i ∈ I
Mhk

αi Set of k-minimal VaR paths for O-D pair i ∈ I and hazmat type h ∈ H under confidence level α,
Mhk

αi ⊆ Ci
Phαi Set of dissimilar paths for O-D pair i ∈ I, Phαi ⊆Mhk

αi

Parameters
α confidence level to control the worst risk brought by hazmat transportation
δuv length of link (u, v)

phuv accident probability in link (u, v) for hazmat type h

chuv accident consequence from an accident in link (u, v) for hazmat type h

VaRjhαi cutoff risk for a path j given confidence level α

βjhαi VaR value brought by a trip with hazmat type h ∈ H on the path j ∈ Ci of O-D pair i ∈ I given
confidence level α

β̂jhαi (z) VaR value brought by a trip with hazmat type h ∈ H on the path j ∈ Ci of O-D pair i ∈ I to a
geographical zone z ∈ Z given confidence level α

nhi number of trips assigned to O-D pair i ∈ I with hazmat type h ∈ H
Dj1j2 dissimilarity index between two candidate paths j1 and j2
µ threshold for risk equity constraint
η Lagrangian multipliers

Variables

Rjhi risk brought by path j ∈ Ci with O-D pair i ∈ I carrying hazmat h ∈ H
xjhαi number of trips assigned to path j ∈ Ci selected for trip with hazmat type h ∈ H on O-D pair i ∈ I

or not given confidence level α

yjhαi binary variable indicating whether path j is selected into the dissimilar path subset Phαi

subject to

∑
j∈Ci

xjhαi = nhi, ∀ i ∈ I, ∀ h ∈ H (4)

∑
h∈H

∑
i∈I

∑
j∈Ci

(β̂jhαi (a)− β̂jhαi (b))x
jh
αi ≤ µ, ∀ a, b ∈ Z (5)

xjhαi integer, ∀ j ∈ Ci ∀ i ∈ I ∀h ∈ H (6)

where βjhαi denotes the maximum cutoff risk brought by hazmat h ∈ H along path j ∈ Ci of the

O-D pair i ∈ I under confidence level α, and β̂jhαi (z) represents the maximum cutoff risk to zone z

brought by h ∈ H along j ∈ Ci given α for all zones z ∈ Z.

8



The objective of the generalized hazmat VaR routing problem is to minimize the cumulative

VaR values of all hazmat trips in the road network G given α. The constraint set (4) constrains the

number of trips on O-D pair i ∈ I carrying hazmat type h ∈ H. The constraint set (5) represents

the risk equity constraints. Here β̂jhαi (z) represents the cumulative VaR value to a zone z given α.

We note that ordered zone pair (a, b) is different from (b, a), and we have no a priori knowledge

about which zone pair sustains the maximum risk difference for traveling on an arbitrary path.

Therefore, it is necessary to compare the VaR dissimilarity for each zone pair ordering (a, b) rather

than a random selection of a pair of zones. Finally constraint set (6) restricts xjhαi , the number of

trips with hazmat type h ∈ H on each path j ∈ Ci of an O-D pair i ∈ I, as integer.

The generalized hazmat VaR routing model is difficult to solve due to the risk equity constraint

(5). If this constraint is absent, then the problem can be decomposed into separate routing problems

for each hazmat and origin-destination combination, each of which can be solved using the algorithm

in Kang et al. [22]. There are many different ways to obtain an equitable set of routes. For example,

Gopalan et al. [17] bound the maximum risk sustained by any zone within a set threshold. This

constraint offers the advantage of being able to enforce equity between those zones that provide

reasonable transport path alternatives. We adopt this risk equity formulation in our model to spread

the risk into different zones, but with a different definition of the risk equity parameters β̂jhαi (z). In

our case, the risk of a trip to a zone is the maximal cutoff risk that its path will experience within

that zone under the given confidence level α. After segmenting the road segments of the path in

each zone, we can calculate the zone VaR value β̂jhαi (z) with the same method for path VaR value

βjhαi . The detailed calculation method has been described in Kang et al. [22].

4 Determination of Candidate Paths

For the problem (P ) to deliver an optimal solution to the hazmat routing problem, every possible

path between every O-D pair must be included. This leads to an unmanageable formulation that

requires path enumeration. To circumvent this difficulty we study in this section the problem of

finding a reasonable set of paths for each trip for inclusion in the optimization problem (P ). To

restate, two objectives are considered in this model. One is still minimizing the total VaR value,

and the other is the risk equity, i.e., dispersing traffic flows to reduce the accumulative consequences
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brought by busy road segments. In other words, we wish to select routes with as small VaR value as

possible but also as geographically dissimilar as possible. With this in mind, we provide a two-stage

candidate paths preprocessing procedure. First we reduce the candidate paths for the trip to the

first k minimal VaR paths. Second, from the k minimal VaR paths, we further reduce the candidates

to a reasonable number of dispersed paths.

4.1 Single Trip Case

We start by assuming that there are a number of feasible routes available for a given O-D pair i ∈ I,

say, set Ci. Each path in the set Ci represents an option that is acceptable to the carrier for routing

a certain hazmat between the O-D pair. Suppose that for each trip s ∈ S with the O-D pair i ∈ I

carrying a hazmat type h ∈ H, we are able to select a candidate setMhk
αi ⊆ Ci containing k-minimal

VaR paths given α. That is, the set Mhk
αi contains the path with the smallest VaR to the path with

k-th smallest VaR for the trip s ∈ S under the confidence level α.

From the candidate setMhk
αi , we will determine a subset Phαi ⊆Mhk

αi for each O-D pair such that

every pair of paths in the subset Phαi are as dissimilar from each other as possible. These candidate

routes represent routes (set of links that connect a particular O-D pair) that are spatially dissimilar

to one another (dissimilar with respect to a distance metric). By selecting a subset of dissimilar

paths from the k shortest path set Mhk
αi , we limit the usage of similar paths from consideration and

mitigate the consequence caused by trip route centralization.

k-Minimal VaR Paths Determination The k-minimal VaR path set Mhk
αi is a variant of the

k-shortest path, which aims to sort and select from the available path set for a trip from origin

(O) to destination (D) with defined criteria, shortest distance or minimal risk. In the k-minimal

hazmat VaR transportation problem, we intend to find the first k minimal VaR paths. Mhk
αi can be

constructed in many different ways. But generally speaking, no matter how those algorithms vary,

they can be divided into two categories: Removing Path algorithm and Deviation Path algorithm.

The Removing Path algorithm is proposed by Martins [32]. In this algorithm, in each iteration k,

the graph is reconstructed by removing the first 1, · · · , k − 1 paths while keeping the new graph

equivalent to the original graph. That means, any path between two nodes in the original graph

can be found in the new graph too. Then search the k-th shortest path in the original graph equals
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to the shortest path problem and can be solved by classic shortest path algorithms like Dijkstra’s.

The Deviation Path algorithm is proposed by Eppstein [12], whose main idea of this algorithm is to

obtain the k-shortest path jk from a set of candidate paths composed by the deviation paths of

j1, j2, · · · , jk−1.

The Deviation Path algorithm Yen [41] has proved to be an effective method to solve the

k-shortest path problem, as it does not need to reconstruct graphs. However, the efficiency of

the Deviation Path algorithm is built based on the construction of a partial search space for the

(k + 1)-st path—the set of deviation paths from the neighborhood of the k-th best path. Thus,

it is not necessarily effective in solving problems with objectives other than transportation cost.

In particular, for the k-minimal VaR path problem, the 2nd minimal VaR path is not necessarily

contained in the neighborhood of the 1st minimal VaR path. By contrast, the Removing Path

algorithm is much more effective in such a situation. Given a certain confidence level α, by removing

the 1st minimal VaR path from the network G1, we can always find the 2nd minimal VaR path

from the resulting graph G2. Similarly, by removing the 2nd, 3rd, · · · , (k − 1)-st paths, the k-th

minimal VaR path can be generated from the newly constructed network Gk. The k minimal VaR

path set Mhk
αi can be defined as the set of minimal VaR paths in each newly constructed graph Gk

for O-D pair i ∈ I,

Mhk
αi =

{
jk : VaRhkαi = min

j∈Q
VaRjhαi , where Q ∈ Ci r {j1, · · · , jk−1}

}
(7)

Dis/similarity Index Definition and Spatially Dissimilar Paths Selection With the k

minimal VaR path set Mhk
αi determined for a trip carrying hazmat type h with O-D pair i, we

can select the dissimilar VaR path subset Phαi with any method in the literature review. We have

discussed many methods in Section 2.3 to solve the dissimilar path problem in different ways, with

each of them having a similarity or dissimilarity function. Our model utilizes the p-dispersion

method proposed by Akgün et al. [3] to generate the |Phαi| spatially dissimilar paths.

Define Dj1j2 to be the distance between candidate paths j1 and j2. The |Phαi|-dispersion problem

can be expressed as follows:

max
Phαi⊆Mhk

αi

min
j1 6=j2

j1,j2∈Phαi

Dj1j2 (8)
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In our problem, Dj1j2 represents the dissimilarity index between any pair of paths.

Dj1j2 = 1− [d(j1, j2)/lj1 + d(j1, j2)/lj2 ]

2
,

where lj denotes the length of path j and d(·, ·) denotes the length of the shared portion of two

paths. The problem (8) can be converted into the following formulation:

max
Phαi⊆Mhk

αi

DPhαi
(9)

subject to

∑
j∈Phαi

yjhαi = |Phαi| ∀Phαi ⊆Mhk
αi (10)

DPhαi
≤ Dj1j2y

j1h
αi y

j2h
αi ∀j1, j2 > j1, j1, j2 ∈ Phαi, ∀Phαi ⊆Mhk

αi (11)

yjhαi ∈ {0, 1} ∀j ∈ P
h
αi (12)

The objective of the p-dispersion method is to maximize the minimum distance between any pair

of the selected paths. Erkut [13] solved this problem in a two-phase heuristic, by constructing an

initial solution as in a greedy-algorithm, and then searching locally to improve the initial solution.

Akgün et al. [3] provided a detailed comparison with three methods that are commonly used: the

Iterative Penalty Method, the Gateway Shortest Path Method and Minimax. They empirically

demonstrate that the p-dispersion method is more effective in generating a set of dissimilar paths.

However, a point worth noting is that, unlike the other three methods, the solution generated by

the p-dispersion method does not necessarily include the least risk path. It may be inappropriate

for any decision maker to accept a set of routes not including the best path. This drawback can be

overcome by placing restrictions on the size of |Mhk
αi | and |Phαi|, or by enforcing constraints on the

risk threshold.

4.2 Multiple Trip Case

Consider a set of trips S to be shipped among O-D pairs I, carrying different hazmat from

materials set H. There are |S| candidate sets of minimal VaR routes and |S| subsets of dissimilar
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VaR routes selected from them. Let these be labeled as Ph(1)αi(1),P
h(2)
αi(2), · · · ,P

h(|S|)
αi(|S|), where Ph(1)αi(1) ⊆

Mh(1)k
αi(1) ,P

h(2)
αi(2) ⊆ M

h(2)k
αi(2) , · · · ,P

h(|S|)
αi(|S|) ⊆ M

h(|S|)k
αi(|S|) . The key problem is how to generate the k-

minimal VaR path subsets Mh(|S|)k
αi(|S|) ,M

h(|S|)k
αi(|S|) , · · · ,M

h(|S|)k
αi(|S|) for each trip s ∈ S. Once the first k

VaR candidate path setsMh(s)k
αi(s) s are generated, the dissimilar path subset Ph(1)αi(1),P

h(2)
αi(2), · · · ,P

h(|S|)
αi(|S|)

can be selected from candidate set Mh(1)k
αi(1) ,M

h(2)k
αi(2) , · · · ,M

h(|S|)k
αi(|S|) .

General Procedure to Determine Geographically Dissimilar VaR Paths Our solution

to find dissimilar VaR paths for a hazmat trip can be described as a two-step solution:

1. Constructing the Candidate Set of Minimal VaR Paths Using Removing Paths Procedure

(a) Remove Paths Procedure

Step 0: Assuming the shortest path l = {s1, (s1, s2), · · · , sm−1, (sm−1, sm), sm = sn},

set flag = d(s1, s2);

Step 1: Delete (s1, s2) from G(N,A);

• If s2 = sn, stop;

• otherwise, go to Step 2;

Step 2: ∀j = 2, · · · ,m− 1, adjoin to N a node s
′
j ;

Step 3: ∀j = 2, · · · ,m− 1, and ∀(sj , x) ∈ A such that x 6= sj+1, adjoin (s
′
j , x) to A and

set d(s
′
j , x) = d(sj , x);

Step 4: ∀j = 2, · · · ,m− 2, adjoin (s
′
j , s
′
j+1) to A and set di+1(s

′
j , s
′
j+1) = d(sj , sj+1);

Step 5: Adjoin (s1, s
′
2) to A and set d(s1, s

′
2) = flag.

(b) Minimal VaR Path Algorithm

Step 0: Set k = 1;

Step 1: Determine the shortest path l
′
k in Gk(Nk, Ak);

• If l
′
k is not found in Gk(Nk, Ak), stop, all paths have been determined;

• Otherwise, identify l
′
k with its corresponding path lk in G1(N1, A1)− lk, as

the kth shortest path in G1(N1, A1);

Step 2: If k = |Mα|, finish the algorithm; Otherwise go to step 3;
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Step 3: Use one of the stated procedures to delete l
′
k from Gk(Nk, Ak), to obtain

Gk+1(Nk+1, Ak+1);

Step 4: Set k = k + 1, return to Step 1.

2. Selecting Spatially Dissimilar VaR Paths

(a) Define a dissimilarity index between any pair of paths.

Dj1j2 = 1− [d(j1, j2)/lj1 + d(j1, j2)/lj2 ]

2
,

where lj denotes the length of path j and d(·, ·) denotes the length of the shared portion

of two paths.

(b) p-Disperse Algorithm

Step 0: Initialization. k = 0, p-disperse path queue T0 = {j0} with the ascending VaR

order, j0 is the minimal VaR path, left path queue T̄0 =M− T0, set max minD = 0;

Step 1: Loop. In iteration k, extract path jk from T̄k, calculate the dissimilarity index

between jk and all paths in Tk, get minimal distance minDk.

Step 2: Storing the incumbent. If max minD < minDk, max minD ← minDk, T ←

T
⋃
{jk};

Step 3: Stopping rule. Stop if T̄ = ∅ or k = |P|. Else k ← k + 1, go to step1.

5 Lagrangian Relaxation Solution Method

With the VaR value of each path and risk equity parameters of each path in each zone determined,

the problem can be regarded as an integer programming problem. It can be easily solved with

software like CPLEX12.1 for small- or medium-sized road network. Table 2 displays the results

of our computational experiments with Java1.6+CPLEX12.1 on a 3.40GHz CPU, 2.00GB RAM

computer system:

In order to solve the hazmat VaR problem on a large-sized road network, we apply a branch and

bound procedure, converting this problem into a simple traffic flow assignment problem by relaxing
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Table 2: Computational Results From Data Sets By CPLEX

O-D Paths for Hazmat Geographical Presolve Time Total
Pairs Each O-D Pair Types Zone (seconds) Time

1 1 1 2 0.00 0.01 seconds
2 2 2 2 0.00 0.01 seconds
10 10 10 10 0.01 2 seconds
20 20 20 20 0.02 4 minutes 24 seconds
30 30 30 30 0.03 102 minutes 2 seconds

the risk equity constraint in a Lagrangian manner, and appending them to the objective function

with Lagrangian multipliers (penalties) ηab. We obtain the following Lagrangian relaxation problem:

g(η) = min
x

∑
h∈H

∑
i∈S

∑
j∈Phαi

β
′jh
αi x

jh
αi −

∑
a∈Z

∑
b∈Z

µηab (13)

subject to

∑
j∈Phαi

xjhαi = nhi, ∀ i ∈ I, ∀ h ∈ H (14)

xjhαi integer, ∀ j ∈ Phαi ∀ i ∈ I ∀h ∈ H (15)

where β
′jh
αi = βjhαi +

∑
a∈Z

∑
b∈Z ηab{β̂

jh
αi (a)− β̂jhαi (b)}.

With given Lagrangian multipliers, the relaxed problem reduces to a simple assignment problem

and can be easily solved by picking j with the minimum β
′jh
αi value, setting xjhαi to nhi, and all

other variables xlhαi such that l 6= j, l ∈ Phαi to 0. Usually Lagrangian relaxation can be used to

generate a lower bound for the integer programming problem. However, the Lagrangian relaxation

of our hazmat trip problem has the integrality property, that means, a solution to the Lagrangian

relaxation is naturally integral. Therefore, the Lagrangian formulation can be replaced by the linear

programming relaxation. In our solution procedure, we utilize the linear programming relaxation

of the original problem (3) as a lower bound, while applying Subgradient Search Algorithm [19]

to obtain an upper bound for our problem. Whenever the solution obtained in the Lagrangian

relaxation scheme is feasible to the original problem, we compute its objective function value with

the original objective coefficients and see if it provides an improved upper bound, i.e. it is better

than the best solution found so far. The most widely used and successful methods for finding

15



improved multipliers use the concepts of gradient and subgradient search. At iteration 0, we start

with all multipliers η0ab being zero for all a, b ∈ Z, and at each iteration r > 1, update them as

ηr+1
ab = ηrab + λr ×

∑
a∈Z

∑
b∈Z η

r
ab{πha(i, j)− πhb (i, j)} − µ

||
∑

a∈Z
∑

b∈Z η
r
ab{πha(i, j)− πhb (i, j)} − µ||

where {λr} is a sequence such that

λr ≥ 0 ∀r (16)

lim
r→∞

λr = 0 (17)

∞∑
r=1

λr =∞ (18)

Our computational analysis in Section 6.2 demonstrates that for large-sized network as 1000×

10×10×10 O-D pair× candidate paths×hazmat types× zones, the Lagrangian relaxation solution

can solve the problem within 5 minutes, with a gap within 0.5% from the LP bound.

In summary, the solution to the generalized Hazmat VaR problem can be summarized in the

following flowchart Figure 1:

6 Case Study and Experimental Analysis

We provide results from our computational experience based on the data set obtained from the

transportation network surrounding the county of Albany, New York. We chose this region because it

is a key junction of major interstates and is a hub of hazmat transportation activity. The understudy

area includes the Albany area and its neighborhoods of Rensselaer, Saratoga, and Montgomery, and

involves seven interstate and US highways: I-90, I-890, I-87, I-787, US-20, US-9 and US-9W.

We applied a two segmentation strategy in order to test the affect of geographical zone seg-

mentation to risk mitigation. We separately divide this network into 28 and 7 geographical zones

according to the nearby townships in Albany County (See Figure A.1). The transportation network

in Albany County was pruned to 90 nodes and 108 arcs. See Figure 2 for a map of the pruned

network. Two types of hazmats were chosen for the purpose of risk estimation, Benzyl Chloride

and Toluene. Different sets of data were developed, representing various combinations of O-D pairs,
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Figure 1: Generalized Hazmat VaR Problem Solution Flowchart

geographical zones, different types of hazardous materials, and assumed radius of spread considered.

The link accident probabilities are calculated according to road segment lengths as stated in

Abkowitz and Cheng [1]:

p = 10−6 × δ, (19)

where the road segment length δ is in miles.

The link consequences are calculated according to population density within the neighborhood

around the links. With different radii of spread λ from different hazmats, the endangered area can

be described with a whole λ-neighborhood which is a concept developed by Batta and Chiu [5].

Here we simply compute the link consequence as the function:

c = (πλ2 + 2× λ× δ)× ρ, (20)

where ρ is the population density in the neighborhood along the road segment, measured in persons

per mile-sq. We collected the road lengths and the population statistics from the websites of the
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Figure 2: Albany Area Highway Roadmap

U.S. Department of Transportation and the U.S. Department of Commerce.

6.1 Candidate Path Generation

Generation of dissimilar candidate set Phαi affects the computation quality and search speed of

the route choices. We apply the modified |Phαi|-dispersion method [3] to generate |Phαi| dissimilar

paths out of the Mhk
αi minimal VaR path set for each trip with O-D pair i carrying hazmat h .

We compare the effect of the size of the number of dissimilar paths selected, |Phαi|, and the size of

the number of candidate dissimilar paths, |Mhk
αi |. To do this comparison, we use four indicators:

Average VaR value (AvVaR), Average Length (AvLen), Average Dissimilarity (AvDi) and Minimal

Dissimilarity (MiDi).

6.1.1 Varying Phαi for Fixed Mhk
αi

We study the case of O-D pair (1,22). Table 3 displays the computational results for |PBenzyl Chloride
0.999995,(1,22) | =

2, 5, 10, 20, from the same set of candidate path setMBenzyl Chloride,k
0.999995,(1,22) . The values of |MBenzyl Chloride,k

0.999995,(1,22) |

considered are k = 10, 20 and 30. For each candidate set MBenzyl Chloride,k
0.999995,(1,22) , we have the same basic

result: We obtain better solutions when PBenzyl Chloride
0.999995,(1,22) is smaller.
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Table 3: Computational Results for Dissimilar Hazmat Paths—VaR Model Under α = 0.999995 vs.
TR Model, O-D Pair (1, 22)

MiVaR Rank Gap AvVaR AvLen AvDi MiDi Time
|M| |P| in M (from Opt) (sec)

VaR0.999995 Model

10
2 5571.92 1 0% 6439.50 51.25 58.37 58.37 3
5 5571.92 1 0% 6130.28 50.74 27.93 15.11 3

20
2 5571.92 1 0% 8420.46 48.6 78.19 78.19 10
10 5571.92 1 0% 8303.45 51.35 32.46 15.16 10

30
2 5571.92 1 0% 8556.85 57.15 100.0 100.0 26
10 5571.92 1 0% 9458.21 51.86 41.62 21.79 26
20 5571.92 1 0% 9417.31 51.65 28.11 10.79 26

TR Model

10
2 5571.92 1 0% 6040.58 48.5 54.01 54.01 1
5 5571.92 1 0% 6130.28 52.3 26.00 15.16 1

20
2 5571.92 1 0% 8420.46 46.35 68.38 68.38 2
10 5571.92 1 0% 8465.03 51.19 31.17 14.82 2

30
2 5571.92 1 0% 8556.85 54.05 98.51 98.51 2
10 5571.92 1 0% 10687.25 51.67 43.34 24.33 3
20 5571.92 1 0% 10018.19 51.50 29.63 11.06 3

6.1.2 Varying Mhk
αi for Fixed Phαi

Once again, we consider the case of O-D Pair (1,22). Table 4 compares the computational results

for generating 10 dissimilar paths from k = 20, 30, 50 and 80 candidate paths MBenzyl Chloride,k
0.999995,(1,22) .

From this table we conclude that a larger number of candidate paths yield a superior value of path

dissimilarity. However, a larger number of candidate paths also result in a large average VaR value.

Another observation is that the generation of candidate paths is computationally expensive

using the Removing Path Algorithm. Thus, there is a need to balance computational efficiency with

solution quality. A small number of candidate paths allows a smaller number of VaR candidate

paths but needs less computational effort; such a strategy but may exclude good dissimilar paths.

In contrast, a larger number of candidate paths needs more computational effort and may result in

a large VaR path set, but typically includes good dissimilar paths.

As shown in Table 4, the 10 out of 80 set generates solutions with larger minimal path dissimilarity

(MiDi), and average path dissimilarity (AvDi). However, its solution requires more computational

effort than the other data sets. Thus, there is a trade off between solution quality and efficiency.

Comparing with TR model, we can see except for the 10 out of 20 set cases. VaR model generate

solutions with paths with superior risk equities and smaller average VaRs. However, it is noted that

19



Table 4: Computational Results for Dissimilar Hazmat Path—VaR Model Under α = 0.999995 vs.
TR Model, O-D Pair (1, 22)

MiVaR Rank Gap AvVaR AvLen AvDi MiDi Time
|P| |M| in M (from Opt) (sec)

VaR0.999995 Model

10

20 5571.92 1 0% 8303.45 51.35 32.46 15.16 10
30 5571.92 1 0% 9458.21 51.86 41.62 21.79 26
50 5571.92 1 0% 9512.77 54.41 42.73 24.33 101
80 5571.92 1 0% 10203.28 55.41 46.14 28.53 396

TR Model

10

20 5571.92 1 0% 8465.03 51.19 31.17 14.82 2
30 5571.92 1 0% 10687.25 51.67 43.34 24.33 3
50 5571.92 1 0% 12088.80 53.61 51.01 30.28 4
80 5571.92 1 0% 13244.77 54.93 53.08 31.30 7

the TR model is more efficient than the VaR model, leading again to a tradeoff between solution

quality and efficiency.

6.1.3 Ten O-D Pair Observation

Table 5 presents the 10 out of 30 dissimilar path solutions for ten different O-D pairs. In this

computational experiment, we verify that, with rational size of candidate sets and dissimilar path

sets, most O-D pairs can obtain a better dissimilar VaR path solution than the TR model, within

acceptable computational time. The ten sets of dissimilar paths as well as the risk they bring to

their neighborhoods are displayed in Table A.2 and compared with the optimal path of each O-D

pair in Table A.1 in Appendix.

6.2 Solution for Generalized Hazmat VaR Problem

For the purpose of risk estimation, we use two types of hazmat, benzyl chloride and toluene, assuming

a radius of spread of 1 mile and 3 miles, respectively. In order to compare the sensitivity of the size

of the candidate set |Phαi| to the result, we build two sets of Phαi, with 5 and 10 dissimilar paths

individually for each type of hazmat between each O-D pair in our case. Both path sets come from

the same 30 minimal VaR path set. In each of the geographical zones, we recount the road segments

of each path and calculate the corresponding VaR values they bring to each zone. The data sets are

formed by using various combinations of dissimilar path sets and types of hazmat shipped by the

ten O-D pairs within the 7 and 28 geographical zones individually. Table A.1 displays the path VaR
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Table 5: Computational Results for Dissimilar VaR Hazmat Problem Under α = 0.999995,
|MBenzyl Chloride,30

0.999995,i | = 30, |PBenzyl Chloride
0.999995,(1,22) | = 10

O-D Pair MiVaR Rank in M Gap AvVaR MiLen MiDi AvDi Total Time (sec)

VaR0.999995 Model
(1,11) 5571.92 1 0% 8873.15 53.71 20.08 34.92 28
(13,12) 4908.01 1 0% 5064.01 23.88 38.90 20
(1,22) 5571.92 1 0% 9458.21 51.95 24.29 41.62 29
(1,12) 4908.01 1 0% 5052.45 70.70 18.89 32.57 30
(2,35) 8362.38 1 0% 26945.56 26.94 35.85 47.26 23
(3,11) 5571.92 1 0% 12622.28 34.64 27.04 38.83 19
(2,11) 8362.38 1 0% 12439.07 38.54 27.20 35.06 26
(75,21) 11541.78 1 0% 12825.99 46.07 23.63 28.52 22
(1,10) 5571.92 1 0% 9150.38 50.35 22.26 38.17 26
(76,28) 11541.78 1 0% 12445.14 35.41 20.20 30.89 17

TR Model
(1,11) 5571.92 1 0% 8303.45 53.76 21.13 33.41 3
(13,12) 4908.01 1 0% 5507.30 24.89 38.28 3
(1,22) 5571.92 1 0% 10687.35 51.67 24.95 43.34 3
(1,12) 4908.01 1 0% 5087.77 70.76 20.83 32.85 4
(2,35) 8362.38 1 0% 27190.19 25.51 35.43 50.46 2
(3,11) 5571.92 1 0% 15079.71 34.12 29.59 40.51 2
(2,11) 8362.38 1 0% 16138.89 37.72 27.26 36.57 2
(75,21) 11541.78 1 0% 13621.91 44.52 14.92 25.40 1
(1,10) 5571.92 1 0% 11334.17 50.43 23.78 43.73 3
(76,28) 11541.78 1 0% 13466.79 33.46 13.70 30.40 1

values and zone VaR values of each candidate path of the 10 O-D pairs.

6.2.1 Impact of Size of Phαi

Table 6 compares the results generated by 5 and 10 sets of dissimilar candidate paths Phαi individually,

under different risk threshold µ. In the VaR model, by allowing more paths in the candidate path

set, the total VaR we can get for the whole network can be lowered. That is, small dissimilar path

sets may exclude low risk paths from being selectable. We note that the TR model gives us an

opposite trend.

6.2.2 Impact of Zone Segmentation

In order to compare the impact of zone segmentation to our result, we segmented the network into

7 zones and 28 zones individually. Table 6 shows us in our case study, that with more segmented

zones, more evenly the risks are spread, which in turn results in more mitigated VaRs. Comparing

with TR model, we found that zone segmentation has a more obvious effect on the VaR model
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Table 6: Computational Results for Generalized VaR Hazmat Problem Under α = 0.999995

28 Zones 7 Zones

Equity Total VaR Total VaR Equity Total VaR Total VaR

µ (|Phαi| = 5) (|Phαi| = 10) µ (|Phαi| = 5) (|Phαi| = 10)

VaR0.999995 Model
1000 1346949.01 1324372.46 5000 2235933.45 1829593.51
2000 1357326.77 1335766.61 10000 2235933.45 1842297.19
4000 1357326.77 1340338.38 20000 2233121.49 1801577.07
6000 1357326.77 1340338.38 30000 2235933.45 1829593.51
8000 1346949.01 1324372.46 40000 2231401.24 1829593.51
10000 1346949.01 1309567.68 50000 2207917.01 1842297.19

TR Model
5 1216402.82 1513689.06 1 1337839.94 1352513.61
10 1065680.67 1065680.67 2 1343190.37 1366004.01
20 1065680.67 1065680.67 4 1274551.67 1349843.11
30 1065680.67 1065680.67 6 1267614.70 1243295.32
40 1065680.67 1065680.67 8 1185142.93 1161014.08
50 1065680.67 1065680.67 10 1065680.67 1065680.67

solution.

6.2.3 Impact of Risk Equity Constraint µ

From Table 6, we have another important observation regarding the risk equity constraints. The

risk equity constraint has a more linear effect on the TR model than on the VaR model. For the TR

model, a loose µ yields small global risk but will most likely lead to large risk differences between

different geographical zones. By contrast, picking a tight value for µ yields a good risk dispersion

solution, but may result in infeasibility problems and may not permit the selection of low risk paths.

However, in the VaR model, the risk equity constraint effect has no such obvious effect on the total

VaR value.

Assume that we have 56 shipments to be shipped among 10 O-D pairs, carrying two different

types of hazmats. After the candidate path selection procedure, we chose 5 dissimilar candidate

paths for each shipment. The 10 O-D pairs and 5 candidate paths are presented in Table A.2 in

Appendix. The problem we face is to select the best path for each shipment so that the total VaR

is minimal. Table 7 displays the optimal allocation of trips on each candidate path under different

µ thresholds. For example, the optimal solution places 5 shipments of benzyl chloride in Candidate

Path 1 for O-D Pair 1 in the 28 Zone case. We notice that with stricter µ, more trips are pushed to

high risk paths in order to obtain better risk equity. With µ = 5000, more trips are assigned to the
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minimal VaR paths of the 10 O-D pairs. Table 8 and Table 9 give the cumulative VaR values in

each geographical zone and the VaR difference between each zone pair. These two tables further

demonstrate that the tight threshold (µ = 1000) generates solutions with risk dispersed more evenly

than a looser threshold (µ = 5000). That means, µ = 1000 gives much smaller VaR differences

between any zone pair than µ = 5000. WE also note that the case of more zone segments (28 Zones)

is more sensitive to the risk equity constraint than having less zone segments(7 Zones).

6.2.4 Computational Analysis

Given the candidate path sets, with path VaR values and zone VaR values of each path preprocessed,

CPLEX finds a solution quickly. On the average, it takes no more than 1 second to solve the

problem. However, as we discussed in Section 5, CPLEX is not a good solver for the VaR hazmat

problem for large-scale networks, even with the given candidate path sets and all other information

preprocessed. The Lagrangian relaxation heuristic provides an effective method to solve large-scale

problems. Table 10 displays the computational results of Lagrangian relaxation and its gap from

the Linear Programming lower bound, as well as a comparison with the CPLEX computational

effort on the original integer programming problem. It demonstrates the efficiency of Lagrangian

relaxation as a solution method for this problem.

CPLEX is widely used for solving MIP problems and recently CPLEX 12.4 has been successful

at many types of MIPs. However, as the problem size increases for an MIP, CPLEX usually sees an

exponential growth in solution time, rendering it unsuitable for large problem instances. Methods

like parameter tuning and jump starting CPLEX with a good solution simply delay the onset of the

exponential growth in solution time with problem size, but do not prevent this from happening.

Therefore, a Lagrangian heuristic is still very much a viable solution method for large problems,

especially when the Lagrangian sub-problems are easy to solve as in the problem of this paper.

A potential problem of the Lagrangian relaxation approach lies in the fact that relaxing constraint

set (5) and solving the relaxed problem tends to result in all the trips with the same O-D pair

carrying the same type of hazmat on an identical route. It is clear that a solution with exactly

same routes is undesirable for a multi-trip problem, as it exposes population near a path multiple

times and does not expose other areas to any risk. But with good design of the dissimilar candidate

path sets for each O-D pair carrying each type of hazmat, we have dispersed the risk brought by
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Table 7: The Number of Shipments Assigned to Each O-D Pair and Each Path, Obtained by the
Generalized VaR Hazmat Problem With 5 Candidate Path Sets for 10 O-D Pairs Under α = 0.999995
with 7 and 28 Zones Cases

VaR0.999995 Model

28 Zones 7 Zones

Hazmat Type O-D Pair Equity Candidate Path Equity Candidate Path
µ 1 2 3 4 5 µ 1 2 3 4 5

benzyl chloride

1

1000

5 0 0 0 0

5000

5 0 0 0 0
2 0 0 0 2 0 0 0 2 0 0
3 3 0 0 0 0 0 0 0 3 0
4 0 0 0 2 0 0 0 0 2 0
5 0 0 0 0 4 0 0 0 4 0
6 0 0 0 0 3 0 0 0 3 0
7 0 0 5 0 0 0 0 0 5 0
8 0 0 0 1 0 0 1 0 0 0
9 2 0 0 0 0 2 0 0 0 0
10 0 0 0 0 1 0 1 0 0 0

toluene

1 0 0 0 0 5 5 0 0 0 0
2 0 0 0 2 0 2 0 0 0 0
3 0 0 2 0 0 0 0 0 2 0
4 3 0 0 0 0 3 0 0 0 0
5 0 0 1 0 0 0 0 1 0 0
6 0 0 0 0 4 0 0 0 4 0
7 5 0 0 0 0 0 0 0 5 0
8 0 0 1 0 0 0 0 1 0 0
9 0 0 2 0 0 0 2 0 0 0
10 0 0 2 0 0 0 0 0 0 2

Total VaR = 1346949.01 Total VaR = 2235933.45

benzyl chloride

1

6000

5 0 0 0 0

50000

5 0 0 0 0
2 2 0 0 0 0 0 0 2 0 0
3 3 0 0 0 0 0 0 0 3 0
4 2 0 0 0 0 0 0 0 2 0
5 0 0 0 0 4 0 0 0 4 0
6 0 0 0 0 3 0 0 0 3 0
7 0 0 5 0 0 0 0 0 5 0
8 0 0 1 0 0 0 1 0 0 0
9 2 0 0 0 0 2 0 0 0 0
10 0 0 1 0 0 0 1 0 0 0

toluene

1 0 0 0 0 5 5 0 0 0 0
2 2 0 0 0 0 2 0 0 0 0
3 0 0 2 0 0 0 0 0 2 0
4 3 0 0 0 0 3 0 0 0 0
5 0 0 1 0 0 0 0 1 0 0
6 0 0 0 0 4 0 0 0 4 0
7 0 0 5 0 0 0 0 0 5 0
8 0 0 1 0 0 0 0 1 0 0
9 0 0 2 0 0 0 2 0 0 0
10 0 0 2 0 0 0 0 2 0 0

Total VaR = 1357326.77 Total VaR = 2207917.01
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Table 8: Zone VaR Comparison for Generalized VaR Hazmat Problem With 5 Candidate Path Sets
for 10 O-D Pairs Under α = 0.999995

Zone
Equity µ = 1000 Equity µ = 6000 Equity µ = 10000

benzyl chloride toluene benzyl chloride toluene benzyl chloride toluene

1 0.00 83865.11 0.00 0.00 0.00 83865.11
2 0.00 219744.51 0.00 0.00 0.00 219744.51
3 51274.61 0.00 51274.61 98967.67 51274.61 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00
8 13011.91 150114.57 13011.91 150114.57 13011.91 150114.57
9 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 13217.52 0.00 13217.52 0.00

11 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00
13 0.00 0.00 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00

16 4849.90 32222.87 4849.90 32222.86 4849.90 32222.87
17 0.00 0.00 0.00 0.00 0.00 0.00
18 12287.42 22794.33 12287.42 0.00 12287.42 22794.33
19 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 79605.18 0.00 0.00

21 0.00 0.00 0.00 0.00 0.00 0.00
22 0.00 0.00 0.00 0.00 0.00 0.00
23 0.00 0.00 0.00 40856.70 0.00 0.00
24 0.00 0.00 0.00 0.00 0.00 0.00
25 0.00 0.00 0.00 0.00 0.00 0.00

26 0.00 0.00 0.00 0.00 0.00 0.00
27 0.00 0.00 0.00 0.00 0.00 0.00
28 0.00 0.00 0.00 0.00 0.00 0.00

different candidate paths. Besides, a proper selection of the risk equity threshold µ can help direct

the trips between the same O-D pair carrying the same type of hazmat onto different dissimilar

candidate paths. In the model proposed by [17], they provide a heuristic solution procedure to

avoid assigning all trips to the same optimal path by iteratively using the solution procedure of the

single-trip problem. A similar approach can certainly be used in our situation.

7 Concluding Remarks

This paper aims to generate a generalized method for the multi-trip hazmat routing plan problem

with a newly proposed VaR risk model and risk equity constraints. The VaR risk model measures

25



Table 9: 7 Zone Pair VaR Difference for Generalized Hazmat VaR Problem With 5 Candidate Path
Sets for 10 O-D Pairs Under α = 0.999995

Equity Zone
µ Zone 1 2 3 4 5 6 7

5000

1 0 107728.43 139799.65 53575.14 91892.60 137545.65 0
2 107728.43 0 32071.22 54153.29 15835.83 29817.22 107728.43
3 139799.65 32071.22 0 86224.51 47907.05 2254.00 139799.65
4 53575.14 54153.29 86224.51 0 38317.46 83970.51 53575.14
5 91892.60 15835.83 47907.05 38317.46 0 45653.05 91892.60
6 137545.65 29817.22 2254.00 83970.51 45653.05 0 137545.65
7 0 195806.08 139799.65 53575.14 91892.60 137545.65 0

50000

1 0 13217.52 139799.65 53575.14 91892.60 137545.65 0
2 13217.52 0 126582.13 40357.62 78675.08 124328.13 13217.52
3 139799.65 126582.13 0 86224.51 47907.05 2254.00 139799.65
4 53575.14 40357.62 86224.51 0 38317.46 83970.51 53575.14
5 91892.60 78675.08 47907.05 38317.46 0 45653.05 91892.60
6 137545.65 124328.13 2254.00 83970.51 45653.05 0 137545.65
7 0 13217.52 139799.65 53575.14 91892.60 137545.65 0

risks brought by hazmat transport under uncertainties. Due to the unique characteristics of hazmat

transport, none of finance VaR methodologies can be applied. Effective solution methods are

developed in this paper include finding the k best VaR paths, Pα-dispersion, and Lagrangian

relaxation. Different cases are discussed for both small-sized and large-sized road network, with

corresponding solution methods provided. This generalized hazmat VaR problem represents the

general hazmat routing problems in real life, as it allows multiple O-D pairs, multiple hazmat types,

and multiple trips. It also allows equity of risk consideration. The equity constraint is usually the

most important in the context of hazmat routing but can be incorporated within the context of many

Table 10: Computational Results Comparison Before vs. After Lagrangian Relaxation

# O-D Objective Function Value Gap Total Time

Pairs IP LB UB (UB vs. LB) IP LB UB

100 10069.80 10069.48 10084.92 0.15% 3min 37sec 2min 42sec 1min 4sec
200 19955.34 19954.87 19955.34 0.00% 15min 32sec 10min 40sec 1min 37sec
400 – 39568.62 39813.12 0.62% – 38min 16sec 2min 9sec
800 – 80035.03 80481.75 0.56% – 153min 39sec 3min 52sec

1000 – 99444.86 99914.45 0.47% – 240min 40sec 4min 34sec

Note:
IP: Integer Programming Solution by CPLEX
LB: Lower Bound by Linear Programming Relaxation
UB: Upper Bound by Lagrangian Relaxation
‘–’: too slow to finish within allowable time
# of Paths for Each O-D Pair ×# of Hazmat Types ×# of Geographical Zones = 10× 10× 10
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scheduling/assignment problems. The main focus of our paper is on generic equity modeling for the

hazmat transport problem, independent of the kind of risk measurement method applied. Clearly,

other practical constraints are needed as are more advanced heuristics like column generation. The

exploration of these avenues is suggested for future research.

There are several other directions for future research. One possibility is to relax the underlying

assumption in this paper that all link attributes including accident probability and consequence are

known. Although most research results reported in the literature rely on the assumption of known

attributes, it is obvious that we need routing methods that are robust to inaccuracy of data and

less sensitive to changes in link attributes. One possible strategy is to employ robust optimization

methods, such as the method of Kwon et al. [27]. Regarding the methodology this paper applied,

we narrow down the search space to a small set of candidate paths by k best VaR paths and

Pα-dispersion, in order to raise solution efficiency. It needs very careful of search space selection,

and it may exclude some real good solutions. One potential extension can be heuristics like column

generation for iteratively enhancing the candidate set of paths. That is, we start from a small set of

candidate paths and add one path in each iteration when the outcome is not satisfactory. Besides,

as we mentioned in literature review and Section 4, the p-dispersion method is more effective in

generating a set of dissimilar paths. However, the solution generated by the p-dispersion method

does not necessarily include the least risk path. It may be inappropriate for any decision maker

to accept a set of routes not including the best path. A potential improvement can be placing

restrictions on the size of candidate path sets and dissimilar path sets, or by enforcing constraints on

the risk threshold. Other directions of future research include application extensions, like allowing

curfews and road bans to regulate hazmat movement. Our current research assumes that there are

no time-varying impacts.
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Appendix

This appendix, which is provided for the reviewers’ convenience, may be provided as an online

supplementary document.

Figure A.1: Albany Area Township
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Table A.1: Computational Results for Single-Trip Single-Path VaR Hazmat Problem Under α =
0.999995

O-D Pair Optimal Path VaR value

(1,11) [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 11] 28204.81
(13, 12) [13, 81, 72, 73, 69, 66, 67, 68, 41, 29, 30, 12] 19557.14
(1, 22) [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 22] 28204.81
(1, 12) [1, 70, 45, 13, 81, 72, 73, 69, 66, 67, 68, 41, 29, 30, 12] 19557.14
(2, 35) [2, 3, 58, 59, 60, 61, 16, 17, 18, 19, 20, 35] 40329.18
(3, 11) [3, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 11] 28204.81
(2, 11) [2, 3, 58, 59, 60, 61, 16, 17, 18, 19, 20, 21, 10, 11] 40329.18

(75, 21) [75, 76, 77, 79, 23, 24, 25, 33, 24, 25, 33, 39, 86, 87, 9, 84, 21] 47121.44
(1, 10) [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 18, 20, 21, 10] 28294.81
(76,28) [76, 77, 79, 23, 24, 25, 33, 34, 7, 19, 36, 28] 47255.46
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Table A.2: Computational Results for Single-Trip Multiple-Path Hazmat VaR Problem Under α = 0.999995

O-D

Pair

Dissimilar Path Path VaR Zone VaR

Z1 Z2 Z3 Z4 Z5 Z6 Z7

(1, 11) [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 11] 28204.81 0 0 3743.38 0 0 1301.19 0

[1, 2, 3, 58, 59, 60, 61, 16, 17, 18, 19, 20, 84, 85, 22, 11] 41932.56 0 0 0 0 11268.99 6259.98 0

[1, 70, 45, 71, 58, 57, 56, 60, 61, 16, 17, 18, 19, 20, 84, 21, 10, 22, 11] 32081.30 0 0 2768.16 0 0 5691.23 0

[1, 2, 3, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 22, 11] 41932.56 0 0 3743.38 0 11268.99 2832.15 0

[1, 70, 45, 13, 81, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 84, 85, 22, 11] 32245.04 0 0 3743.38 0 0 1679.30 0

(13, 12) [13, 81, 72, 73, 69, 66, 67, 68, 41, 29, 30, 12] 19557.14 0 0 0 1212.48 0 0 0

[13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 11, 12] 28204.81 0 0 4109.09 5338.07 0 1266.82 0

[13, 14, 15, 55, 56, 60, 61, 62, 63, 64, 65, 54, 66, 67, 68, 41, 29, 30, 12] 26010.57 0 0 0 5338.07 3071.86 0 0

[13, 81, 14, 15, 55, 63, 52, 53, 54, 66, 67, 68, 41, 29, 30, 12] 21813.39 0 0 3743.38 1212.48 0 1266.82 0

[13, 81, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 84, 21, 10, 22, 11, 12] 28204.81 0 0 0 1391.19 0 1679.30 0

(1,22) [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 22] 28204.81 0 0 3743.38 0 0 1301.19 0

[1, 74, 75, 76, 77, 79, 23, 24, 25, 33, 39, 86, 89, 90, 85, 22] 47121.43 0 0 0 0 10395.42 4735.00 0

[1, 2, 3, 58, 59, 60, 61, 16, 17, 18, 19, 20, 84, 85, 22] 41932.56 0 0 0 0 11268.99 6279.98 0

[1, 70, 45, 71, 58, 59, 60, 61, 16, 17, 18, 19, 20, 84, 21, 10, 22] 34021.98 0 0 0 0 0 5691.23 0

[1, 2, 3, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 22] 41932.56 0 0 3743.38 0 11268.99 2608.66 0

(1, 12) [1, 70, 45, 13, 81, 72, 73, 69, 66, 67, 68, 41, 29, 30, 12] 19557.14 0 0 0 1212.48 0 0 0

[1, 70, 45, 71, 58, 57, 56, 60, 61, 62, 63, 64, 65, 54, 66, 67, 68, 41, 29, 30, 12] 28184.11 0 0 4109.09 5338.07 0 1301.19 0

[1, 70, 45, 13, 14, 15, 55, 56, 62, 63, 52, 53, 54, 66, 67, 68, 41, 29, 30, 12] 21813.39 0 0 3743.38 1212.48 0 1301.19 0

[1, 70, 45, 13, 81, 14, 15, 55, 63, 64, 65, 54, 66, 67, 68, 41, 29, 30, 12] 19557.14 0 0 0 5338.07 3071.86 0 0

[1, 70, 45, 13, 81, 72, 73, 63, 52, 53, 54, 66, 67, 68, 41, 29, 30, 12] 19557.14 0 0 0 1391.19 0 1679.30 0

(2,35) [2, 3, 58, 59, 60, 61, 16, 17, 18, 19, 20, 35] 40329.17 0 0 0 0 0 6259.98 0

[2, 44, 43, 42, 25, 26, 34, 7, 8, 20, 35] 161098.39 0 0 0 0 0 28901.87 0

[2, 3, 4, 5, 6, 7, 8, 20, 35] 145132.47 0 0 0 0 0 0 0

[2, 44, 59, 4, 5, 17, 18, 19, 20, 35] 156873.21 0 0 0 0 0 0 0

Continued on next page
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Table A.2 — continued from previous page

O-D

Pair

Dissimilar Path Path VaR Zone VaR

Z1 Z2 Z3 Z4 Z5 Z6 Z7

[2, 44, 43, 42, 82, 27, 5, 6, 18, 19, 20, 35] 161098.39 0 0 3743.38 0 0 2832.15 0

(3, 11) [3, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10, 11] 28204.81 0 0 3743.38 0 0 0 0

[3, 58, 59, 4, 5, 17, 18, 19, 20, 84, 85, 22, 11] 122214.17 0 0 0 0 0 0 0

[3, 58, 57, 56, 60, 61, 16, 17, 18, 19, 20, 84, 21, 10, 22, 11] 34021.97 0 0 2768.16 0 0 0 0

[3, 4, 5, 17, 18, 19, 20, 84, 21, 10, 11] 122214.17 0 0 0 0 0 0 0

[3, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 84, 85, 22, 11] 32245.03 0 0 3743.38 0 0 0 0

(2,11) [2, 3, 58, 59, 60, 61, 16, 17, 18, 19, 20, 21, 10, 11] 40329.18 0 0 0 0 0 6259.98 0

[2, 3, 4, 5, 17, 18, 19, 20, 84, 85, 22, 11] 122214.17 0 0 0 0 0 0 0

[2, 3, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 84, 21, 10, 22, 11] 40329.18 0 0 3743.38 0 0 2832.15 0

[2, 3, 58, 59, 4, 5, 17, 18, 19, 20, 21, 10, 22, 11] 122214.17 0 0 0 0 0 0 0

[2, 3, 58, 57, 56, 60, 61, 16, 17, 18, 19, 20, 84, 85, 22, 11] 40329.18 0 0 2768.16 0 0 0 0

(75, 21) [75, 76, 77, 79, 23, 24, 25, 33, 39, 86, 87, 9, 84, 21] 47121.44 0 0 0 0 0 4735.00 0

[75, 76, 80, 23, 24, 32, 33, 34, 7, 8, 20, 21] 61921.22 0 6608.76 0 0 0 0 0

[75, 76, 80, 23, 24, 32, 37, 38, 39, 86, 87, 9, 84, 21] 51582.29 0 0 0 0 0 0 0

[75, 76, 77, 79, 23, 24, 32, 33, 34, 7, 19, 20, 21] 61921.22 0 0 0 0 0 0 0

[75, 76, 77, 79, 23, 24, 32, 37, 8, 9, 84, 21] 55937.04 0 0 0 0 0 4735.00 0

(1,10) [1, 70, 45, 13, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10] 28204.81 0 0 3743.38 0 0 1301.19 0

[1, 74, 75, 76, 77, 79, 23, 24, 25, 33, 39, 86, 87, 9, 10] 47121.44 0 0 0 0 10395.42 4735.00 0

[1, 2, 3, 58, 59, 60, 61, 16, 17, 18, 19, 20, 84, 21, 10] 41932.55 0 0 0 0 11268.99 6259.98 0

[1, 70, 45, 71, 58, 57, 56, 60, 61, 16, 17, 18, 19, 20, 84, 21, 10] 32081.30 0 0 2768.16 0 0 5691.23 0

[1, 2, 3, 14, 15, 55, 56, 60, 61, 16, 17, 18, 19, 20, 21, 10] 41932.56 0 0 3743.38 0 11268.99 2832.15 0

(76, 28) [76, 77, 79, 23, 24, 25, 33, 34, 7, 19, 36, 28] 47255.46 0 0 0 0 0 4735.00 0

[76, 80, 23, 24, 25, 26, 83, 82, 16, 17, 28] 65590.51 0 6608.76 0 0 0 0 0

[76, 80, 23, 24, 32, 33, 34, 7, 8, 20, 35, 36, 28] 51582.29 0 0 0 0 0 0 0

[76, 77, 79, 23, 24, 25, 26, 83, 82, 27, 5, 17, 28] 62971.22 0 6608.76 0 0 0 4735.00 0

Continued on next page
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Table A.2 — continued from previous page

O-D

Pair

Dissimilar Path Path VaR Zone VaR

Z1 Z2 Z3 Z4 Z5 Z6 Z7

[76, 80, 23, 24, 25, 26, 83, 82, 27, 5, 6, 18, 19, 36, 28] 65590.51 0 0 0 0 0 4735.00 0
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