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Abstract

We consider a robust shortest path problem when the cost coefficient is the product of two

uncertain factors. We first show that the robust problem can be solved in polynomial time by

a dual variable enumeration with shortest path problems as subproblems. We also propose a

path enumeration approach using a K-shortest paths finding algorithm that may be efficient

in many real cases. An application in hazardous materials transportation is discussed and the

solution methods are illustrated by numerical examples.
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1 Introduction

For a directed and weighted graph G(N ,A) we are interested in the following shortest path problem:

min
x∈Ω

∑
(i,j)∈A

pijcijxij (1)

where

Ω ≡
{
x :

∑
(i,j)∈A

xij −
∑

(j,i)∈A

xji = bi ∀i ∈ N , and xij ∈ {0, 1} ∀(i, j) ∈ A
}

The parameter bi has the following values:

bi =


1 if i =origin

−1 if i =destination

0 otherwise

When pij and cij are known, problem (1) can be solved as a regular shortest path problem. The arc

costs often arise as the product of two factors as in (1). For example, in hazardous materials trans-

portation, pij and cij represent the accident probability and the accident consequence, respectively.

We will discuss this application to hazardous materials transportation in Section 6.

In many realistic cases, accurate estimates for the parameters pij and cij may be unavailable.

When only one of the factors pij or cij is unknown and its values are confined to a set of uncertainty,

a general type of robust shortest path algorithm [14] minimizes the worst case cost as follows:

min
x∈Ω

max
c̃∈C

c̃Tx (2)

where C is the set of possible realizations of the uncertain cost parameter c̃. When C is a box-

constrained set or a budgeted box-constrained set, problem (2) can be solved in polynomial time

[7]. On the other hand, when C is an ellipsoid [6, 9] or a set of scenarios [14], problem (2) becomes

NP-hard, in general.

In this paper, we consider the more general problem where both p and c vectors are uncertain

and each resides in its own uncertainty set. In particular, we consider the uncertain parameters p̃ij

and c̃ij as represented by the following budgeted box-constrained uncertainty sets:

p̃ij = pij + qijuij

c̃ij = cij + dijvij
(3)

where pij , qij , cij , and dij are all nonnegative, and

uij ∈ U =

{
u : 0 ≤ uij ≤ 1 ∀(i, j),

∑
(i,j)

uij ≤ Γu

}
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vij ∈ V =

{
v : 0 ≤ vij ≤ 1 ∀(i, j),

∑
(i,j)

vij ≤ Γv

}

and Γu and Γv are positive integers. This structure extends Bertsimas and Sim [7]. The parameters

Γu and Γv are called the budgets of uncertainty and reflect the risk attitude of the decision makers:

the larger the budget of uncertainty, the more risk-averse the decision maker is.

In Section 2, we study properties of the robust shortest problem with the parameter model (3),

and, in Section 3, we show that the robust problem of interest can be solved in polynomial time by

a method based on dual variable enumeration and regular shortest path problems. In Section 4,

we provide another algorithm based on enumeration that uses a K-shortest path finding algorithm

whose worst-case complexity is exponential, but may be efficient in real cases. In Section 5, we

compare our formulation with the approach of Bertsimas and Sim [7]. In Section 6, we motivate

the parameter model (3) and illustrate the algorithms with an application in hazardous materials

transportation.

2 The Robust Problem

In this paper, we consider a robust optimization model of the form:

min
x∈Ω

max
u∈U ,v∈V

∑
(i,j)

(pij + qijuij)(cij + dijvij)xij (4)

= min
x∈Ω

∑
(i,j)

pijcijxij + max
u∈U ,v∈V

∑
(i,j)

(qijcijxijuij + pijdijxijvij + qijdijxijuijvij)

 (5)

We note that the inner maximization problem is a disjoint bilinear program (DBP) for any given

x. Although the problem is not a convex optimization problem, an optimal solution exists at an

extreme point [10]. While DBP is NP-hard in general [17], this special case can be solved efficiently

with transformation to a linear program.

The inner problem is equivalent to: for any x

max
u,v,w

∑
(i,j)

(qijcijxijuij + pijdijxijvij + qijdijxijwij) (6)

subject to uij ≤ 1 (ρij)

vij ≤ 1 (µij)

− uij + wij ≤ 0 (ηij)

− vij + wij ≤ 0 (πij)∑
(i,j)

uij ≤ Γu (θu)

∑
(i,j)

vij ≤ Γv (θv)
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uij , vij ,wij ≥ 0

When Γu and Γv are positive integers, we can easily show that the polytope defined by the

constraints of problem (6) is integral; therefore, the optimal u, v and w are binary.

Lemma 1. When Γu and Γv are integers, a solution to problem (6) is integral for any given x.

Proof. We may express the constraint of (6) in a matrix-vector notation:

(Row Group 1)

(Row Group 2)

(Row Group 3)

(Row Group 4)

(Row 5)

(Row 6)



I|A|

I|A|

−I|A| I|A|

−I|A| I|A|

1>|A|

1>|A|



uv
w

 ≤



1|A|

1|A|

0|A|

0|A|

Γu

Γv


(7)

where I|A| is a |A| × |A| identity matrix, 1|A| is a |A| × 1 vector with all elements being unity, and

u = [u1,u2, . . . ,u|A|]
>, v = [v1, v2, . . . , v|A|]

>, w = [w1,w2, . . . ,w|A|]
>

Empty partitions are all zero.

For any collection of rows of the constraint matrix in (7), we can construct two partitions

such that the sum of rows in one partition minus the sum of rows in the other partition has only

−1, 0, +1 in each column; then it is totally unimodular [8, 11]. That is, for any collection of rows,

if we multiply +1 or −1 to each row then the sum of rows will have only −1, 0, +1 in each column.

In any collection of rows, we first multiply +1 to rows from Row Group 3 and −1 to rows from

Row Group 4. If Row 5 is present in the collection, we multiply +1 to Row 5; if Row 6 is present,

we multiply −1 to Row 6. Then, the current sum of rows has only −1, 0, +1 in each column. We

can multiply ±1 to rows from Row Groups 1 and 2 appropriately to keep −1, 0, +1 in each column

of the sum of rows. Therefore, the constraint matrix is totally unimodular.

Given that Γu and Γv are integers and the constraint matrix is totally unimodular, a solution

of (6) is integral.

Lemma 2. Problem (6) is equivalent to the inner problem of (4).

Proof. We need to prove that wij = uijvij at any optimum. For any (i, j),

• If uij = 1, vij = 1, then wij ≤ 1. Because we maximizes qijdijxijwij with all coefficients

nonnegative, wij = 1 at any optimum.

• If uij = 0, vij = 1, then wij ≤ 0, and therefore wij = 0.

• If uij = 1, vij = 0, then wij ≤ 0, and therefore wij = 0.
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• If uij = 0, vij = 0, then wij ≤ 0, and therefore wij = 0.

Because any solution of (6) is integral by Lemma 1, this completes the proof of wij = uijvij .

Let us consider the dual problem of (6) with the corresponding dual variables in parentheses:

min
θu,θv ,ρij ,µij ,ηij ,πij

Γuθu + Γvθv +
∑
(i,j)

(ρij + µij) (8)

subject to ρij − ηij + θu ≥ qijcijxij (9)

µij − πij + θv ≥ pijdijxij (10)

ηij + πij ≥ qijdijxij (11)

ρij ,µij , ηij ,πij , θu, θv ≥ 0 (12)

Using strong duality, we can write the robust optimization problem (4) as:

min Γuθu + Γvθv +
∑
(i,j)

(pijcijxij + ρij + µij) (13)

subject to x ∈ Ω (14)

ρij − ηij + θu ≥ qijcijxij (15)

µij − πij + θv ≥ pijdijxij (16)

ηij + πij ≥ qijdijxij (17)

ρij ,µij , ηij ,πij , θu, θv ≥ 0 (18)

which is a mixed integer linear program (MILP). Problem (3) can be solved by solving a finite

number of shortest path problems when either Γu or Γv is zero [7].

3 A Dual Variable Enumeration Approach

In this section, we present a dual variable enumeration method, in which we search a finite number

of (θu, θv) pairs to solve problem (13). We will first represent ρij + µij as a function of θu, θv and

x and eliminate the constraints (15)–(17). Then, we show that, in each sub-space of the whole

(θu, θv)-space, we can find a solution at an extreme point; consequently, we can examine all such

extreme points of sub-spaces to find an optimal (θu, θv) pair. We will need to solve a (nominal)

shortest-path problem for each extreme-point examination. Some improvements follow in Sections

3.1 and 3.2.

The following theorem represents πij , ηij , ρij , and µij using θu, θv, and x.

Theorem 1. For any given θu and θv, there exists an optimal solution to (8)–(12) such that:

πij = min
(
qijdijxij , max(θv − pijdijxij , 0)

)
(19)

ηij = qijdijxij −min
(
qijdijxij , max(θv − pijdijxij , 0)

)
(20)
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ρij = max
(
qijcijxij + qijdijxij −min

(
qijdijxij , max(θv − pijdijxij , 0)

)
− θu, 0

)
(21)

µij = max
(
pijdijxij + min

(
qijdijxij , max(θv − pijdijxij , 0)

)
− θv, 0

)
(22)

for all (i, j) ∈ A.

Proof. First, we will represent the solution of (8)–(12) in terms of θv and x. We observe that there

exists an optimal solution such that

ηij + πij = qijdijxij ∀(i, j) ∈ A (23)

for any given x. This is because minimizing ηij and πij as much as possible may lead to smaller

values of θu, ρij and µij which decrease the objective function value, and ηij and πij are not present

in the objective function. Therefore there exists an optimal solution such that

0 ≤ ηij ≤ qijdijxij
0 ≤ πij ≤ qijdijxij

for all (i, j) ∈ A and we can determine ηij and πij by some allocation of qijdijxij between ηij and

πij such that other constraints are satisfied.

Now suppose that θu and θv are fixed. Then we can write the constraints (9) and (10) as

ρij = max(qijcijxij − θu + ηij , 0)

µij = max(pijdijxij − θv + πij , 0)

Increasing ηij and πij may increase ρij and µij and consequently increase the objective function

value. Therefore, we need to find a way to allocate qijdijxij to ηij and πij without increasing the

objective function value. We observe that, if qijcijxij − θu < 0 for some (i, j) ∈ A, we can increase

ηij without increasing ρij . Therefore, an optimal solution in this case is to allocate qijdijxij to ηij

as much as we can, that is, until qijcijxij − θu + ηij = 0. We can apply a similar argument to µij

and πij . On the other hand, if qijcijxij − θu ≥ 0 and pijdijxij − θv ≥ 0, then any allocation to ηij

and πij will have the same impact to the objective function value, since the cost coefficients of ρij

and µij are identical.

From the above observations, we can consider the following optimal allocation rules for ηij and

πij when θu and θv are fixed:

Case 1. For (i, j) ∈ A such that

qijcijxij − θu ≥ 0

pijdijxij − θv ≥ 0

any combination of ηij ≥ 0 and πij ≥ 0 such that ηij + πij = qijdijxij is optimal.
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Case 2. For (i, j) ∈ A such that

qijcijxij − θu < 0

pijdijxij − θv ≥ 0

we can first allocate some of qijdijxij to ηij until qijcijxij − θu + ηij = 0 in advance, and

then allocate any remaining amount to ηij and πij by any combination. For example, we can

consider ηij = qijdijxij and πij = 0.

Case 3. For (i, j) ∈ A such that

qijcijxij − θu ≥ 0

pijdijxij − θv < 0

we can first allocate some of qijdijxij to πij until pijdijxij − θv + πij = 0 in advance, and

then allocate any remaining amount to ηij and πij by any combination. For example, we can

consider πij = qijdijxij and ηij = 0.

Case 4. For (i, j) ∈ A such that

qijcijxij − θu < 0

pijdijxij − θv < 0

we can first allocate some of qijdijxij to ηij until qijcijxij − θu + ηij = 0, and then allocate

any remaining amount to πij until pijdijxij − θv + πij = 0. If there is any remaining amount,

we can allocate additionally to ηij and πij by any combination.

Using the above optimal allocation rules, we can obtain an optimal solution for given θu and θv.

From Cases 3 and 4, when pijdijxij−θv < 0, we can consider allocating min(qijdijxij , θv−pijdijxij)
to πij without worrying about ηij . From Cases 1 and 2, when pijdijxij − θv ≥ 0, we can simply put

πij = 0. Therefore, an optimal allocation to πij is

πij = min
(
qijdijxij , max(θv − pijdijxij , 0)

)
for all (i, j) ∈ A and any given θv ≥ 0. Using the condition (23), we have the corresponding

allocation to ηij as

ηij = qijdijxij −min
(
qijdijxij , max(θv − pijdijxij , 0)

)
(24)

for all (i, j) ∈ A and any given θv ≥ 0. Note that the expression (20) is not dependent on θu.

From (19) and (24), we can now determine ρij and µij as follows:

ρij = max(qijcijxij − θu + ηij , 0)
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= max
(
qijcijxij + qijdijxij −min

(
qijdijxij , max(θv − pijdijxij , 0)

)
− θu, 0

)
µij = max(pijdijxij − θv + πij , 0)

= max
(
pijdijxij + min

(
qijdijxij , max(θv − pijdijxij , 0)

)
− θv, 0

)
We obtain the theorem.

We can now express ρij +µij as a function of xij with cost coefficients dependent on θu and θv.

Lemma 3. For any given θu and θv, suppose a solution to (8)–(12) is given as in (19)–(22). The

sum ρij + µij can be expressed as follows:

ρij + µij =



0 · xij if Condition 1 or Condition 4 holds,

(qijcij − θu)xij if Condition 2 holds,

(pijdij + qijcij + qijdij − θu − θv)xij if Condition 3 or Condition 5 holds,

(pijdij − θv)xij if Condition 6 holds.

(25)

for each (i, j) ∈ A and all θu ≥ 0 and θv ≥ 0, where

Condition 1 : θu ≥ qijcij , and θv ≥ pijdij + qijdij

Condition 2 : θu ≤ qijcij , and θv ≥ pijdij + qijdij

Condition 3 : pijdij ≤ θv ≤ pijdij + qijdij , and θu + θv ≤ pijdij + qijcij + qijdij

Condition 4 : pijdij ≤ θv ≤ pijdij + qijdij , and θu + θv ≥ pijdij + qijcij + qijdij

Condition 5 : θu ≤ qijcij + qijdij , and θv ≤ pijdij
Condition 6 : θu ≥ qijcij + qijdij , and θv ≤ pijdij

Proof. For the simplicity of notation, we drop the subscript ij and let c0 = pc, c1 = pd, c2 = qc,

c3 = qd. We obtain

µ = max
(
c1x− θv + min

(
c3x, max(θv − c1x, 0)

)
, 0
)

= max
(

min
(
(c1 + c3)x− θv, max(c1x− θv, 0)

)
,
)

=

max
(

max(c1x− θv, 0), 0
)

if (c1 + c3)x− θv ≥ 0

max
(
(c1 + c3)x− θv, 0

)
if (c1 + c3)x− θv ≤ 0

=

max(c1x− θv, 0) if (c1 + c3)x− θv ≥ 0

0 if (c1 + c3)x− θv ≤ 0

=


c1x− θv if c1x− θv ≥ 0

0 if − c3x ≤ c1x− θv ≤ 0

0 if c1x− θv ≤ −c3x
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= max(c1x− θv, 0)

= max(c1 − θv, 0)x

where the last equality is due to the binarity of x. Again using the binarity of x, we can express ρ

as follows:

ρ = max
(

(c2 + c3)x− θu −min
(
c3x, max(θv − c1x, 0)

)
, 0
)

= max
(

(c2 + c3)− θu −min
(
c3, max(θv − c1, 0)

)
, 0
)
x

For three intervals of θv, we obtain the following expressions of ρ:

ρ =


max(c2 − θu, 0)x if θv ≥ c1 + c3

max(c1 + c2 + c3 − θu − θv, 0)x if c1 ≤ θv ≤ c1 + c3

max(c2 + c3 − θu, 0)x if θv ≤ c1

Therefore, we obtain the lemma.

Lemma 3 means that we can obtain an optimal solution to (13) by solving a nominal shortest

path problem when θu and θv are given.

Figure 1 illustrates how the value of ρij + µij varies according to Lemma 3 in each region of

(θu, θv) for each (i, j) ∈ A. We observe that in each shaded region of (θu, θv), the cost coefficient

of xij in ρij + µij becomes a linear function of θu and θv. We extend this observation to all links

in A.

Let {ak} be the ordered sequence of qijcij +qijdij and qijcij for all (i, j) ∈ A and 0, which is the

set of θu-values where nonlinearlity occurs in ρij + µij . Similarly, let {bl} be the ordered sequence

of pijdij and pijdij + qijdij for all (i, j) ∈ A and 0 , for such θv-values. Let {fm} be the ordered

sequence of pijdij + qijcij + qijdij for all (i, j) ∈ A and 0 , for such (θu + θv)-values.

We consider the following problem:

Zklm = min
x,θu,θv

Γuθu + Γvθv +
∑
(i,j)

(pijcijxij + ρij + µij) (26)

subject to x ∈ Ω (27)

ak ≤ θu ≤ ak+1 (28)

bl ≤ θv ≤ bl+1 (29)

fm ≤ θu + θv if fm ∈ [ak + bl, ak+1 + bl+1] (30)

fm+1 ≥ θu + θv if fm+1 ∈ [ak + bl, ak+1 + bl+1] (31)

We note that within the (θu, θv)-space defined by (28)–(31) for each tuple (k, l,m), the cost coeffi-
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θu

θv

qijcij qijcij + qijdij pijdij + qijcij
+qijdij

pijdij

pijdij + qijdij

pijdij + qijcij
+qijdij

(pijdij + qijcij + qijdij

−θu − θv)xij

0 · xij

(pijdij − θv)xij

(qijcij − θu)xij

Figure 1: The value of ρij + µij for each interval of (θu, θv) for each link (i, j) ∈ A

cient of x becomes linear in θu and θv for all links (i, j) ∈ A and for all x. Therefore, for problem

Zklm, we always obtain a solution at an extreme point of the feasible space defined by (28)–(31).

This idea is represented in Figure 2. For the feasible region Aklm defined by (28)–(31) in Figure

2, we know one of the six extreme points is a solution of problem (26). Therefore, we can solve

problem (26) by examining those six points; for each point, the problem is a regular shortest-path

problem.

If we extend this idea to the entire (θu, θv)-space, we know that we can solve the robust shortest

path problem by examining the following points:

• intersections of θu = {ak} and θv = {bl}

• intersections of θu = {ak} and θu + θv = {fm}

• intersections of θv = {bl} and θu + θv = {fm}

Accordingly, we define the following three sets of (θu, θv):

Θ1 =

{
(θu, θv) : θu ∈ {0} ∪ {qijcij + qijdij , qijcij : (i, j) ∈ A},

θv ∈ {0} ∪ {pijdij , pijdij + qijdij : (i, j) ∈ A}
}
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θu

θv

ak ak+1fm fm+1

bl

bl+1

fm

fm+1

Aklm

Akl(m+1)

Akl(m−1)

Figure 2: An illustration of decomposed feasible (θu, θv)-space on the mesh

Θ2 =

{
(θu, θv) : θu ∈ {0} ∪ {qijcij + qijdij , qijcij : (i, j) ∈ A},

θu + θv ∈ {0} ∪ {pijdij + qijcij + qijdij : (i, j) ∈ A}, θv ≥ 0

}

Θ3 =

{
(θu, θv) : θv ∈ {0} ∪ {pijdij , pijdij + qijdij : (i, j) ∈ A},

θu + θv ∈ {0} ∪ {pijdij + qijcij + qijdij : (i, j) ∈ A}, θu ≥ 0

}
We obtain the following theorem:

Theorem 2. Let us define the following problem with an arbitrary constraint set Θ:

Z(Θ) = min
x∈Ω,(θu,θv)∈Θ

Γuθu + Γvθv +
∑
(i,j)

(pijcijxij + ρij + µij) (32)

Then the robust shortest path problem (3) is equivalent to the following problem:

Z∗ = min{Z(Θ1),Z(Θ2),Z(Θ3)} (33)

Now we obtain the computational complexity of (33).

Theorem 3. The computational complexity of (33) is O(|N |6) and the number of shortest-path

problems to be solved is O(|N |4).
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Proof. First we note that the sizes of feasible sets are

|Θ1| = O(|A|2), |Θ2| = O(|A|2), |Θ3| = O(|A|2)

When we consider |A| = O(N 2), the number of shortest path problems we need solve to obtain Z∗

is O(|N |4). Since the complexity of Dijkstra’s algorithm is O(|N |2), the computational complexity

of (33) is O(|N |6). Since there are other algorithms with better worst-case complexity [2], this

provides an upper bound.

Obviously, the number of shortest-path problems to be solved in this method is significantly less

than in the full primal variable (u and v) enumeration. When the full primal variable enumeration

is used, we need to solve
(|A|

Γu

)
×
(|A|

Γv

)
number of shortest-path problems, which is 1.0651 × 1020

when |A| = 150, Γu = 4, and Γv = 8. In the same network, the dual variable enumeration method

solves 151,148 shortest path problems (see Section 6.1).

3.1 An Improvement of the Dual-Variable Enumeration Approach

In this section, we improve the dual-variable enumeration approach by reducing the number of

(θu, θv) pairs to examine, therefore reducing the number of shortest path sub-problems to solve. In

particular, we will examine a subset of Θ1 ∪Θ2 ∪Θ3.

In Figure 2, the extreme points of the area Aklm are created by joining the interval diagrams

like Figure 1 of two or three arcs. We observe that there are some elements of Θ1, Θ2, and Θ3 that

are not created by joining the interval diagrams—they are just interior points—depending on the

coefficients pij , qij , cij , and dij .

An example diagram for two arcs (i, j) and (k, l) is provided in Figure 3. Without loss of

generality, we assume that qijcij + pijdij + qijdij ≥ qklckl + pkldkl + qkldkl. For arc (i, j), we need

to consider the following (θu, θv) pairs (denoted by square dots on the thinner solid line):

(0, pijdij + qijdij)

(qijcij , pijdij + qijdij)

(qijcij + qijdij , pijdij)

(qijcij + qijdij , 0)

Note that we do not need to consider (qijcij + qijdij , pijdij + qijdij) and the two points at which the

diagonal line meet the axes. Similarly, for arc (k, l), we need to consider the four points denoted

by square dots on the thicker solid line.

Two new points are created as extreme points, i.e. candidate points for the (θu, θv) enumeration.

In Figure 3, the two new points are denoted by circle dots. In this case, they are

(qklckl, pijdij + qijdij)

(qijcij + qijdij , pkldkl)
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θu

θv

qklckl qklckl + qkldkl pkldkl + qklckl
+qkldkl

pkldkl

pkldkl + qkldkl

pkldkl + qklckl
+qkldkl

qijcij qijcij + qijdij pijdij + qijcij
+qijdij

pijdij

pijdij + qijdij

pijdij + qijcij
+qijdij

Figure 3: Joining the interval diagrams for arcs (i, j) and (k, l). The thinner solid line represents
arc (i, j), and the thicker solid line represents arc (k, l). Two intersection points (denoted by circle
dots) represent new extreme points to be considered in the dual-variable enumeration.

When there is no overlap between the interval diagrams of any pair of arcs, they intersect at

two points, creating two extreme points to consider. When there is some overlap, it creates only

one or no new extreme point.

We observe that there are 11 possible cases of intersection patterns between two interval dia-

grams. Figure 4 represents a case of intersection patterns. Figure 4a is for an arc, and Figure 4b is

for another arc. Each line segment of the interval diagram in Figure 4a is referred by A,B, . . . ,E,

respectively, and similarly in Figure 4b by A′,B′, . . . ,E′. Without loss of generality, we assume

that C is above C ′, i.e., the intercept of the line extending the segment C is greater than C ′; we

denote this assumption by Cxy > C ′xy (see Table 1).

Each line segment of the first arc can intersect with the following line segments of the second

arc:

A with B′,C ′,D′
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A

B

C

D

E

(a) A first arc

A′

B′

C ′

D′

E′

(b) A second arc (c) A possible intersecting pattern

Figure 4: An intersecting pattern of the two interval diagrams of two arcs.

B with E′

C with B′,E′

D with A′,C ′,E′

E with B′

Given the above possible intersecting pairs, we can enumerate the following 11 distinct intersecting

patterns depending on the data values:

A⊕B′ and C ⊕ E′ (Pattern 1)

A⊕B′ and D ⊕ E′ (Pattern 2)

A⊕B′ and D ⊕ C ′ (Pattern 3)

A⊕ C ′ and C ⊕ E′ (Pattern 4)

A⊕ C ′ and D ⊕ E′ (Pattern 5)

A⊕ C ′ and D ⊕ C ′ (Pattern 6)

A⊕D′ and B ⊕ E′ (Pattern 7)

C ⊕B′ and C ⊕ E′ (Pattern 8)

C ⊕B′ and D ⊕ E′ (Pattern 9)

C ⊕B′ and D ⊕ C ′ (Pattern 10)

D ⊕A′ and E ⊕B′ (Pattern 11)

where ⊕ means ‘intersects with’. Note that both Patterns 7 and 11 should be considered, because

they are not impacted by the values of Cxy and C ′xy. Figure 4c shows an example of Pattern 1, and

Figure 3 shows Pattern 2. Each pattern provides only 2 new extreme points to be considered and

they are provided in Table 1 with conditions.

We construct the set of candidate (θu, θv) pairs as following (as opposed to Θ1 ∪Θ2 ∪Θ3):

14



Table 1: The coordinate of the new extreme points to consider for each pattern, when the first arc is (i, j)(segments A, B, C, D, and
E) and the second arc is (k, l) (segments A′, B′, C ′, D′, and E′). Ay denotes the vertical coordinate (θv-axis) of the line segment A, Bx
denotes the horizontal coordinate (θu-axis) of the line segment B, Cxy denotes the intercept—both intercepts are same—of the line that
extends the segment C, and so on. Without loss of generality, we assume Cxy > C ′xy, or pijdij + qijcij + qijdij > pkldkl + qklckl + qkldkl.

Patterns Intersections Conditions New Extreme Points to Consider, (θu, θv)

Pattern1 A⊕B′ and C ⊕ E′ Ay > A′y, Bx > B′x, Ey < E′y (B′x,Ay), (Cxy − E′y,E′y)

Pattern2 A⊕B′ and D ⊕ E′ Ay > A′y, Bx > B′x, Ey > E′y, Dx > D′x (B′x,Ay), (Dx,E′y)

Pattern3 A⊕B′ and D ⊕ C ′ Ay > A′y, Bx > B′x, Dx < D′x, Ey > E′y (B′x,Ay), (Dx,C ′xy −Dx)

Pattern4 A⊕ C ′ and C ⊕ E′ E′y < Ay < A′y, Bx > B′x, Ey < E′y (C ′xy −Ay,Ay), (Cxy − E′y,E′y)

Pattern5 A⊕ C ′ and D ⊕ E′ E′y < Ay < A′y, Bx > B′x, Ey > E′y, Dx > D′x (C ′xy −Ay,Ay), (Dx,E′y)

Pattern6 A⊕ C ′ and D ⊕ C ′ E′y < Ay < A′y, Bx > B′x, Dx < D′x, Ey > E′y (C ′xy −Ay,Ay), (Dx,C ′xy −Dx)

Pattern7 A⊕D′ and B ⊕ E′ Bx > D′x, Ay < E′y (D′x,Ay), (Bx,E′y)

Pattern8 C ⊕B′ and C ⊕ E′ Bx < B′x, Ey < E′y (B′x,Cxy −B′x), (Cxy − E′y,E′y)

Pattern9 C ⊕B′ and D ⊕ E′ Bx < B′x, Ey > E′y, Dx > D′x (B′x,Cxy −B′x), (Dx,E′y)

Pattern10 C ⊕B′ and D ⊕ C ′ Bx < B′x, Dx < D′x, Ey > E′y (B′x,Cxy −B′x), (Dx,C ′xy −Dx)

Pattern11 D ⊕A′ and E ⊕B′ Ey > A′y, Dx < B′x (Dx,A′y), (B′x,Ey)

Ay = pijdij + qijdij , Bx = qijcij , Cxy = pijdij + qijcij + qijdij
Dx = qijcij + qijdij , Ey = pijdij

A′y = pkldkl + qkldkl, B′x = qklckl, C ′xy = pkldkl + qklckl + qkldkl
D′x = qklckl + qkldkl, E′y = pkldkl
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Step 0. Order the set of arcs in the descending order of pijdij+qijcij+qijdij : |A| = {a1, a2, ..., a|A|},
where an denotes n-th arc. Set Θ← {(0, 0)}, and t← 1.

Step 1. Denoting the t-th arc by (i, j), add the following pairs to the set Θ:

(0, pijdij + qijdij)

(qijcij , pijdij + qijdij)

(qijcij + qijdij , pijdij)

(qijcij + qijdij , 0)

Step 2. Consider each arc as in {at+1, ..., a|A|}, denoting it by (k, l). Examine the intersecting

pattern between (i, j) and (k, l) according to the conditions provided in Table 1, and add the

corresponding two new extreme points to the set Θ. If equality holds for conditions, ignore;

the corresponding point is already added, or will be added later.

Note that, in Step 2, we always have Cxy > C ′xy, because of the ordering in Step 0.

Theorem 4. The maximum size of the resulting set Θ in the improvement proposed in Steps 0 to

2 as above is

|A|2 + 3|A|+ 1 (34)

which is also the maximum number of shortest path sub-problems to solve.

Proof. In Step 0, we add one element, (0, 0). For each arc in A, we add four elements in Step 1;

therefore we add 4|A| elemtents. For each pair from A, we add two elements in Step 2, that is, we

add 2 elements for |A|(|A|−1)
2 pairs. Therefore, we obtain

1 + 4|A|+ 2
|A|(|A| − 1)

2
= |A|2 + 3|A|+ 1

If there are some extreme points that coincide with others, the total number is less than (34).

Once the set Θ is determined, the optimal value is determined by:

Z∗ = min
(θu,θv)∈Θ

min
x∈Ω

Γuθu + Γvθv +
∑
(i,j)

(pijcijxij + ρij + µij) (35)

where ρij + µij values are determined as in (25).

Although the order of computational complexity of the improved dual variable enumeration ap-

proach is same as the original—still O(|A|2) or O(|N |4)—the improved approach solves significantly

smaller number of sub problems. We demonstrate this point with examples later.
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3.2 Another Improvement of the Dual-Variable Enumeration Approach

While searching the sets of Θ1, Θ2, and Θ3, we shall record the current minimum value, z], of the

objective function value

Γuθu + Γvθv +
∑
(i,j)

(pijcijxij + ρij + µij)

When we encounter a next (θu, θv) pair, we first examine if we need to solve the corresponding

shortest path sub-problem. If

Γuθu + Γvθv ≥ z] (36)

then we do not need to solve the shortest path sub-problem for the current (θu, θv) dual variable

pair. All coefficients p,q,c and d are nonnegative—recall that we assumed so—therefore the optimal

objective function value of the shortest path sub-problem is nonnegative. Consequently, if the

condition (36) is met, the current (θu, θv) cannot yield a better objective function value than the

objective function value z].

With this improvement, we can save computing time by missing many shortest path sub-

problems to solve, but we cannot generally quantify how many shortest path sub-problems we

can skip. In an application in Section 6, this technique is shown to be very effective in saving

computing time.

In summary, an improved form of the dual-variable enumeration approach can be stated as

follows:

Step 0. Determine the set Θ as in Section 3.1. Set z] ←∞ and k ← 1.

Step 1. Let (θku, θkv ) be the k-th element of Θ. If

Γuθ
k
u + Γvθ

k
v ≥ z]

go to Step 3.

Step 2 For (θku, θkv ), by solving a shortest-path problem, compute the following:

zk = Γuθ
k
u + Γvθ

k
v +

∑
(i,j)

(pijcijxij + ρkij + µkij)

where ρkij + µkij is determined as in (25) for (θku, θkv ). If zk < z], set z] ← zk.

Step 3. Update k ← k + 1, and repeat Steps 1 and 2 until k = |A|.

4 A Path Enumeration Approach

In this section, we provide another algorithm whose worst-case complexity is exponential, but may

be efficient in many real cases. Let us denote the nominal shortest path by l1 and its corresponding
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objective function value and x-value by z1 and x1, respectively. That is,

z1 = min
x∈Ω

∑
pijcijxij =

∑
pijcijx

1
ij (37)

The corresponding maximum possible path cost is obtained by

zR1 = max
u∈U ,v∈V

∑
(pij + qijuij)(cij + dijvij)x

1
ij

which can be solved as a linear program; see (6). Similarly, we define zk and zRk for any path lk.

Then, we note that the following relationship holds:

zk ≤ zRk ∀lk

The objective of the robust problem is to find a path l∗ that attains zR∗ = minlk∈P z
R
k . After solving

the nominal shortest path problem (37), we know

zR∗ ≤ zR1

Therefore, any path lk whose nominal path cost is greater than zRk is not a solution to the robust

problem, because for such path lk, we have zR∗ ≤ zR1 < zk ≤ zRk .

Let us now define the set of all paths whose nominal objective function value (zk) is less than

or equals to zR1
Pc = {l1, l2, . . . , l|Pc|}

We know that the set Pc contains the robust path. Therefore, once we have the set Pc, computing

zRk for all paths in the set requires solving |Pc| linear programs, whose dimension is as small as

three times the number of arcs contained in each path lk.

To determine the set Pc, we can use any K-shortest paths finding algorithm that provides paths

in the ascending order of path length and allows termination at any point when the path length

exceeds a certain value. Therefore the complexity of finding the set Pc depends on the size of

the set and the complexity of finding K-shortest paths. For example, we can use Yen’s algorithm

[18] whose complexity is O(K|N |(|A|+ |N | log |N |)). However, the number K for our algorithm is

unknown a priori, and in the worst case K is equal to the number of all available paths; therefore

the worst case complexity becomes exponential.

We can further reduce the computational effort by stopping the algorithm as soon as the nominal

path cost exceeds the minimum value of zRk among the paths found so far. That is, when we

construct the set Pc, we update the reference cost value by the current value of minlj∈Pc z
R
j . The

algorithm is summarized as follows:

Step 0. Find the nominal shortest path l1 by solving a shortest path problem, and obtain the

worst-case path cost zR1 by solving the 3|l1|-dimensional linear program of the form (6). Set

k = 1, zR = zR1 and l∗ = l1.
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Step 1. Find the next best nominal shortest path lk+1 with zk+1 ≤ zR. If no such path exists,

stop. l∗ is the optimal robust path.

Step 2. Obtain the worst-path cost zRk+1 by solving the 3|lk+1|-dimensional linear program of the

form (6). If zRk+1 ≤ zR then set zR = zRk+1 and l∗ = lk+1. Set k = k + 1. Go to Step 1 and

repeat.

This path enumeration algorithm is shown to be more efficient than the dual variable enumer-

ation method when the level of uncertainty is small in Table 8.

5 Comparison with the Existing Approach

We can compare our robust problem (4) with the “regular” approach of Bertsimas and Sim [7]

considering a single uncertain cost vector. Let us define the single uncertain cost vector m̃ij = p̃ij c̃ij

so that

m̃ij ∈ [pijcij , (pij + qij)(cij + dij)] ≡ [mij ,mij + nij ] (38)

In addition we define zUV (Γu, Γv) to denote the optimal objective function value of the proposed

approach in (4) with budgets of uncertainty Γu and Γv, and zW (Γw) to denote the optimal objective

function value of the regular approach with the single uncertain cost vector in (38) with the single

budget of uncertainty Γw. That is,

zUV (Γu, Γv) = min
x∈Ω

max
u∈U ,v∈V

∑
(i,j)

(pij + qijuij)(cij + dijvij)xij

zW (Γw) = min
x∈Ω

max
w∈W

∑
(i,j)

(mij + nijwij)xij

where

W =

{
w : 0 ≤ wij ≤ 1 ∀(i, j),

∑
(i,j)

wij ≤ Γw

}
When the regular approach is used, a challenge is how to determine the budget Γw. Determining

Γu and Γv is easier, because we could directly observe the data source for each data type to determine

the budgets of uncertainty. On the other hand, the new single parameterm is manipulated after data

collection. Therefore, it is not obvious how we should determine how uncertain the new manipulated

data is. We may determine Γw = Γu = Γv; then we always have zW (Γw) ≤ zUV (Γu, Γv). That

is, the worst-case may not be captured by the regular approach; therefore, we need the proposed

approach to consider the real worst-case even in the special case. We further provide the following

results without proof:

Lemma 4. Depending on the budgets of uncertainty, we can compare the proposed approach with

the regular approach [7] as follows:

1. If Γw ≤ min(Γu, Γv), we always have zW (Γw) ≤ zUV (Γu, Γv).
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2. If Γw = Γu = Γv, we always have zW (Γw) ≤ zUV (Γu, Γv).

3. If Γw = Γu + Γv, we always have zW (Γw) ≥ zUV (Γu, Γv).

Proof. Let f(x,u, v) =
∑

(i,j)(pij + qijuij)(cij + dijvij)xij and g(x,w) =
∑

(i,j)(mij + nijwij)xij ,

then

zUV (Γu, Γv) = min
x∈Ω

max
u∈U ,v∈V

f(x,u, v) (39)

zW (Γw) = min
x∈Ω

max
w∈W

g(x,w) (40)

1. (Γw ≤ min(Γu, Γv)) For a certain x ∈ Ω, let w̌ = arg maxw∈W g(x,w). Let ǔ = w̌ and v̌ = w̌.

Then ǔ ∈ U and v̌ ∈ V with Γw ≤ min(Γu, Γv). Therefore we obtain

max
w∈W

g(x,w) ≤ max
u∈U ,v∈V

f(x,u, v) ∀x ∈ Ω (41)

Let (x̄, w̄) be a solution to (40), i.e. zW (Γw) = g(x̄, w̄). Then

zW (Γw) ≤ max
w∈W

g(x,w) ≤ max
u∈U ,v∈V

f(x,u, v) ∀x ∈ Ω (42)

and consequently,

zW (Γw) ≤ min
x∈Ω

max
u∈U ,v∈V

f(x,u, v) = zUV (Γu, Γv) (43)

which completes proof for the case Γw = Γu = Γv.

2. (Γw = Γu = Γv) This is a special case of Γw ≤ min(Γu, Γv).

3. (Γw = Γu + Γv) This case can be similarly proved. For a certain x ∈ Ω, let (ǔ, v̌) =

arg maxu∈U ,v∈V f(x,u, v). Let w̌ = max(ǔ, v̌) where ‘max’ operation is taken for each el-

ement, then w̌ ∈W with Γw = Γu + Γv. Therefore we obtain

max
w∈W

g(x,w) ≥ max
u∈U ,v∈V

f(x,u, v) ∀x ∈ Ω (44)

Let (x̄, ū, v̄) be a solution to (39), i.e. zUV (Γu, Γv) = f(x̄, ū, v̄). Then

zUV (Γu, Γv) ≤ max
u∈U ,v∈V

f(x,u, v) ≤ max
w∈W

g(x,w) ∀x ∈ Ω (45)

Thus,

zUV (Γu, Γv) ≤ min
x∈Ω

max
w∈W

g(x,w) = zW (Γw) (46)

This completes the proof.
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Figure 5: An abstract test network with 15 nodes and 33 links.

In the first and second cases of Lemma 4, one would determine Γw at the minimum budget

of Γu and Γv, but the worst-case cannot be captured with the regular approach. Setting Γw =

Γu+ Γv as in the third case would capture the worst-case with the regular approach, but in general

it leads to unnecessarily conservative results. Therefore, one may choose Γw in the interval of

[min(Γu, Γv), Γu + Γv], but a proper choice is ambiguous to make.

5.1 Abstract Example

We also show, using an example, that the model of Bertsimas and Sim [7] may not be proper

when the two cost coefficients are uncertain independently. We use an abstract network presented

in Figure 5. The test network consists of 15 nodes and 33 links with randomly generated cost

coefficients in Table 2. We used Node 1 and Node 15 as origin and destination, respectively.

We intend to compare the performance of the nominal shortest path, the robust shortest path by

the Bertsimas-Sim (B-S) model [7] with a single cost vector, and the robust shortest path proposed

in this paper. We used Γu = 2 and Γv = 3 for the proposed model, and we tested Γ = 1, 2, . . . , 9

for the B-S model. The obtained paths are presented in Table 3.

Note that the B-S model cannot provide the path l∗, as seen in Table 3. The path l∗ is the

solution of the model proposed in this paper. Therefore, if the uncertainty of two costs coefficients

acts indeed independently, the B-S model cannot provide an optimal robust path with any budget

of uncertainty, Γ, although the worst-case cost of l1, . . . , l3 is not significantly larger than the

worst-case cost of l∗ in this example.

However, we cannot directly compare the performances of the B-S model and our model, since

they are just different models for different settings. We also cannot directly compare the perfor-

mances of the B-S paths with different budgets of uncertainty. For example, the path l5 is optimally

robust with Γ = 5, while the path l4 is with Γ = 4. Although l4 seems more robust to smaller

uncertainties than l5, it is not true. When Γ = 2, the worst-case costs of l4 and l5 are 24,521 and

22,897, respectively (Table 4).

We do not intend to conclude which is a better robust model; rather, we want to point out

that an optimal, robust path is specific to the network structure, the cost coefficient values, and
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Table 2: Cost coefficients used for the test network

(i, j) pij qij cij dij (i, j) pij qij cij dij

(1, 4) 79 31 66 28 (7, 11) 79 54 23 3
(1, 2) 59 97 41 93 (7, 12) 10 37 35 43
(2, 4) 31 21 50 40 (8, 7) 95 71 85 56
(2, 3) 90 52 95 38 (8, 10) 0 95 16 64
(2, 5) 9 23 95 59 (8, 12) 30 38 16 3
(2, 6) 32 57 73 7 (9, 10) 5 69 51 71
(3, 9) 89 100 38 21 (9, 11) 44 60 60 17
(3, 8) 66 13 4 72 (10, 13) 79 78 16 59
(3, 6) 68 95 58 58 (10, 14) 91 59 64 61
(3, 7) 47 12 56 20 (11, 14) 53 38 84 77
(4, 3) 14 19 36 84 (11, 15) 80 85 78 6
(4, 9) 95 65 88 42 (11, 13) 56 23 26 85
(4, 8) 88 13 62 54 (12, 15) 75 80 31 38
(5, 3) 44 8 62 53 (12, 14) 1 100 18 40
(5, 6) 83 66 30 19 (13, 14) 48 28 45 33
(6, 7) 33 3 7 8 (14, 15) 25 71 33 56
(6, 8) 37 99 29 46

Table 3: Comparison of Various Paths

Description Path Name Setting Path Worst-Case Cost b

Nominal l0 Γ = 0 {1, 2, 4, 3, 8, 12, 14, 15} 37,016

l1 Γ = 1 {1, 4, 3, 8, 12, 14, 15} 25,616
l2 Γ = 2 {1, 4, 3, 8, 12, 14, 15} 25,616

B-Sa l3 Γ = 3 {1, 4, 3, 8, 12, 14, 15} 25,616
l4 Γ = 4 {1, 4, 3, 7, 12, 15} 25,697
l5 Γ = 5 {1, 4, 3, 8, 12, 15} 27,035
l6 Γ = 6 {1, 4, 3, 8, 12, 15} 27,035

This Paper l∗ Γu = 2, Γv = 3 {1, 4, 3, 7, 12, 14, 15} 25,314

a Bertsimas and Sim [7]
b The worst-case cost measured with the uncertainty set with Γu = 2 and Γv = 3.
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Table 4: Comparison of Worst-Case Costs in Various Settings for
Paths in Table 3

l0 l1, l2, l3 l4 l5, l6 l∗

Γ = 0a 6,060 7,305 11,025 8,787 9,543

Γ = 1b 24,545 15,024c 19,395 17,157 17,262
Γ = 2 32,264 20,864 24,521 22,897 23,102
Γ = 3 38,104 26,604 27,977 28,023 28,228
Γ = 4 43,844 31,730 31,293 31,479 31,684
Γ = 5 47,300 35,186 33,145 32,291 35,000

Γu = 1, Γv = 1d 24,545 15,024 19,395 17,157 17,262

Γu = 1, Γv = 2 29,297 19,776 21,607 21,909 19,474
Γu = 2, Γv = 1 26,888 17,070 21,441 19,203 19,308

Γu = 1, Γv = 3 30,697 21,988 22,783 24,121 20,650
Γu = 2, Γv = 2 32,264 21,822 24,521 23,955 23,102
Γu = 3, Γv = 1 28,688 18,870 22,736 19,887 21,108

Γu = 1, Γv = 4 31,937 23,164 23,723 25,297 21,590
Γu = 2, Γv = 3 37,016 25,616 25,697 27,035 25,314
Γu = 3, Γv = 2 34,064 23,622 25,816 24,943 25,148
Γu = 4, Γv = 1 29,738 19,554 23,420 20,495 22,403

Γu = 1, Γv = 5 33,113 23,254 24,153 25,387 22,020
Γu = 2, Γv = 4 38,256 27,828 26,637 28,211 26,490
Γu = 3, Γv = 3 38,816 27,662 27,977 28,023 28,228
Γu = 4, Γv = 2 35,114 24,610 26,500 25,627 26,443
Γu = 5, Γv = 1 30,422 20,162 24,092 20,547 23,087

Γu = 2, Γv = 5 39,432 29,004 27,067 28,301 27,430
Γu = 3, Γv = 4 42,856 30,742 29,013 30,491 29,404
Γu = 4, Γv = 3 39,866 28,650 29,272 28,707 29,523
Γu = 5, Γv = 2 35,798 25,294 27,172 26,235 27,127

Γu = 3, Γv = 5 44,096 31,918 29,953 30,581 30,344
Γu = 4, Γv = 4 43,906 31,730 31,293 31,479 31,684
Γu = 5, Γv = 3 40,854 29,334 29,944 29,315 30,207

Γu = 4, Γv = 5 46,312 34,198 32,233 31,569 32,720
Γu = 5, Γv = 4 44,894 32,414 31,965 32,087 32,979

Γu = 5, Γv = 5 47,362 35,186 33,145 32,291 35,000

a Deterministic (nominal) cost.
b Worst-case costs are computed with the uncertainty set of

Bertsimas and Sim [7] with the corresponding Γ.
c The minimum value in each row is bold faced.
d Worst-case costs are computed with the uncertainty set of this

paper with the corresponding Γu and Γv.
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Table 5: Comparison of computing times for the abstract example

Nominal B-S Dual-0a Dual-1b Dual-2c Path-Enumd

Computing Time (sec) 0.008 0.019 1.787 0.290 0.230 4.759
No. of Shortest-Path Problems 1 34 7850 1189 916 –
No. of Paths – – – – – 188

a The dual variable enumeration approach, without any improvement
b The dual variable enumeration approach, with the first improvement
c The dual variable enumeration approach, with the first and second improvements
d The path enumeration approach

the choice of the budget of uncertainty. However, in some applications, it may be unclear how to

choose a combined, single budget of uncertainty (Γ) for the multiplication of two cost coefficients,

as opposed to two separated budgets of uncertainty (Γu and Γv). We will discuss this point in

depth later in this paper. In addition, the performance also depends on what measure we use.

A performance test may lead to a different result with a different measure, for example, mean,

variance, value-at-risk, etc.

For this test network, the computation times are provided in Table 5. We note that the two

improvements in the dual variable enumeration approach reduce the number of shortest-path sub-

problems from 7,850 to 915. Algorithms were implemented with MATLAB and executed in a

generic PC.

6 An Application to Hazardous Materials Transportation

Accidents involving hazardous materials (hazmat) are low-probability, high-consequence incidents.

While the probability of hazmat accidents is very low, the consequences can be catastrophic. The

U.S. had about 15,000 hazmat accidents in the year 1998 only 429 of which were classified as serious

accidents [13]. There are two important facts that make hazmat problems a proper application of

the proposed robust optimization approach. First, historical data sufficient to construct a stochastic

distribution are rarely available in realistic problems. Hazmat accident probabilities are hard to

obtain because hazmat accidents, especially serious ones, are rare events. In real routing decision-

making, the accident probabilities of general traffic are used to estimate the accident probabilities

of hazmat trucks, but the two kinds of probabilities might be very different. We cannot know if

they are different or the same, due to the lack of available data. In addition, the consequences of

hazmat accidents depend on weather conditions like wind speed and direction, the number of people

present at the time of an accident, the effectiveness of evacuation, the seriousness of the accident,

etc. Therefore, the impacted number of people at a hazmat accident is very difficult to estimate

and subject to uncertainty. Again, historical data is not usually available for consequences.

Second, the sources of the two types of data—probabilities and consequences—are different.

Accident probabilities are obtained from organizations like the U.S. Department of Transportation
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and its sub-divisions including the Pipeline and Hazardous Materials Safety Administration and the

Federal Emergency Management Agency. Accident consequence data may be computed based on

population information and travel pattern information available through the U.S. Census Bureau

and the U.S. Commodity Flow Survey by the U.S. Bureau of Transportation Statistics. Therefore it

is hard to determine a single budget of uncertainty for the regular approach with a single uncertain

cost vector [7] as described in Section 5.

In addition, it is unclear if the two data are correlated. One might think that the congestion

level would be high in the links with high consequence level, and the accident probability is an

increasing function of the congestion level; hence, there exists positive correlation between the

accident probability and the accident. However, Martin [16] observed that accident rates are

highest when traffic is lightest and lowest when traffic level is modest. It is found that the accident

rate decreases and then increases as the traffic volume increases. In light traffic, the accident rate is

higher on weekends, while it is higher on weekdays in heavy traffic. Lord et al. [15] observed that the

relationship between accident rates and traffic flow cannot be described fully without considering

vehicle density, level of service, vehicle occupancy, volume/capacity ratio, and speed distribution.

In addition, these studies are for all vehicles, not exclusively for hazmat vehicles. The relationship

between the accident probability of hazmat vehicles and the hazmat accident consequence is hard

to study, because of lack of historical data. This indicates that it is unclear how the uncertainty of

the accident probability and the accident consequence can be modeled as a single data type.

Although we used population data as the measure of the accident consequence for illustration

purpose in the subsequent section, depending on how the consequence is measured, the relationship

varies. In an uncongested road with low population, the accident consequence by the population

measure is small. However, if a nuclear power plant is located nearby, a hazmat accident would

bring unwanted catastrophe. Therefore, the relationship between the accident probability and the

accident consequence also depends on the measure of consequence and it is unclear what the nature

of correlation between two data is, if it exists.

Suppose that we have some estimates of hazmat accident probability and accident consequence,

denoted by pij and cij , respectively, in each road segment (i, j). The expected consequence of a

hazmat truck traveling along path l is as follows [4]:

Rl =
∑

(ik,jk)∈Al

∏
(ih,jh)∈Al,h<k

(1− pihjh)pikjkcikjk (47)

where Al is the set of all arcs in path l, and (ik, jk) is the k-th arc in path l. The expression (47)

assumes that the shipment terminates once an accident happens in any road segment. It is noted

that accident probabilities pij are extremely small, usually in the range of 10−8 to 10−6 per mile

traveled [1]. Therefore we can approximate as∏
(ih,jh)∈Al,h<k

(1− pihjh) ≈ 1
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Consequently, we obtain the following approximation [12]:

Rl ≈
∑

(i,j)∈Al

pijcij (48)

The resulting nominal problem to minimize the expected consequence is a shortest path of the form

(1).

Due to lack of data, the accident probability pij is subject to uncertainty. In addition, the

accident consequence cij is also hard to estimate. In many hazmat accidents, especially those

involving explosives or poisonous gas, the weather conditions are important factors [3]. One needs

to consider uncertain factors involving weather conditions to determine the safest path in hazmat

transportation. However, accurate weather conditions can be difficult to obtain and the resulting

accident consequences may be computed as interval data at best. Therefore, the robust optimization

model (4) is a natural approach to minimize the expected consequence in the worst-case scenario

in hazmat transportation.

6.1 Numerical Results

We provide numerical results of the proposed algorithms based on Albany, New York, USA and

its nearby highway network. The transportation network considered consists of 90 nodes and 150

links as presented in Figure 6.

The nominal accident probabilities are computed by pij = 10−6× (length of link (i, j)) as

in Abkowitz and Cheng [1]. The nominal accident consequences cij are computed using the λ-

neighborhood concept developed by Batta and Chiu [5]. The road length and population statistics

are obtained from Department of Transportation and Department of Commerce websites. We

generated qij and dij randomly, but in the same order as the nominal coefficients, pij and cij . We

used Γu = 4 and Γv = 8. While the randomly generated uncertain intervals do not represent any

real scenario, our intention is to show that considering two multiplicative uncertain cost coefficients

as a single coefficient may not capture the worst-case properly, and the robustness may not be

proportional to the single budget of uncertainty with such consideration.

We find paths from origin node 1 to destination node 12. The nominal shortest path is

NSP = {1, 70, 45, 13, 81, 72, 73, 69, 66, 67, 68, 41, 29, 30, 12}

the B-S robust shortest path with Γ = 4 is

BS4 = {1, 70, 45, 13, 14, 15, 81, 72, 73, 63, 52, 51, 50, 49, 48, 47, 40, 41, 29, 30, 12}

the B-S robust shortest path with Γ = 8 is

BS8 = {1, 70, 45, 13, 14, 15, 81, 72, 73, 69, 66, 67, 68, 41, 29, 30, 12}
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Figure 6: Albany Area Highway Network (90 nodes, 150 links)
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Table 6: Comparison of computing times for the Albany network

Nominal B-S Dual-0 Dual-1 Dual-2 Path-Enum

Computing Time (sec) 0.013 0.106 95.737 13.923 3.769 150.389
No. of Shortest Path Problems 1 151 151,148 22,951 6,056 –
No. of Paths – – – – – 1,323
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Figure 7: Histogram of the Realized Path Costs (1,000,000 samples)

and the proposed robust shortest path with Γu = 4 and Γv = 8 is

KLB48 = {1, 70, 45, 13, 81, 72, 73, 63, 52, 51, 50, 49, 48, 47, 40, 41, 29, 30, 12}

(KLB is from the initials of the authors’ last names.) The Dijkstra’s algorithm for the nomi-

nal shortest path took 0.013 seconds, and the B-S robust shortest paths with the corresponding

algorithm [7] were obtained after 0.106 seconds of computing time. For the proposed robust short-

est path computation, the dual variable enumeration method (with the two improvements) took

3.769 seconds after solving 6,056 shortest path problems, and the path enumeration method took

150.389 seconds after finding 1,323 paths. The computing time is summarized in Table 6. We used

MATLAB at a generic PC running Windows 7.

To test the path performances of the above four paths, we randomly allocate the budget of

uncertainty (Γu = 4, Γv = 8), to {uij} and {vij}, independently from each other. Although the

worst-case happens when {uij} and {vij} are binary, we allowed any value between 0 and 1 in the

simulation. We generated 1,000,000 samples and the histograms of path-costs are presented for all
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Figure 8: Closer look to histogram of the realized path costs

four paths in Figure 7. In the simulation, we assumed the link costs are distributed uniformly within

the uncertain intervals, p̃ij ∈ [pij , pij + qij ] and c̃ij ∈ [cij , cij + dij ]. Since the budget of uncertainty

was allocated to links that are not included in the above four paths in many realizations, the far

left path-costs in the histogram represent the nominal path-costs in the four paths. The NSP and

BS8 paths show better nominal performances than the BS4 and KLB48 paths. However, higher

path-costs, which are of interest in the robust optimization framework, show different patterns.

To observe path performances in the long tail, we provide a closer look to the histograms in

Figure 8. The KLB48 path shows the best performance in the long-tail, which should not be a

surprise since the KLB48 path is supposed so. One interesting observation in Figure 8 is that the

BS8 path is weak to uncertainty and its performance is even worse than the NSP and BS4 paths.

Using dashed lines, we also provide the theoretical worst-case path-costs, which the KLB48 path

minimizes. The BS4 path is close to the KLB48 path in terms of the theoretical worst-case cost

(the path selections are similar), and is better than the BS8 path.

A detailed summary is provided in Table 7. To compare the worst-case performances in other

scenarios, we provide the theoretical worst-case path-costs in three cases: (1) treating two coef-

ficients as a single coefficient with Γ = 4, denoted by one(Γ = 4), (2) same treatment but with

Γ = 8, denoted by one(Γ = 8), (3) two coefficients separately as proposed in this paper, denoted by

two(Γu = 4, Γv = 8). While the theoretical worst-case path-costs do not differ very much among

the four paths in the first two cases, the third case exhibits significant differences. This indicates

that when more accurate robust path selection is necessary, considering two coefficients as a single

coefficient may lead to non-robust path selection. In the later part in Table 7, we provide the worst-
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case, mean, and variance from the simulation results, which are consistent with the observations

already explained.

Table 7: Summary of theoretical worst-case path-costs and the simulation results

Nominal Path B-S Path B-S Path Proposed Path
(Γ = 4) (Γ = 8) (Γu = 4, Γv = 8)

NSP BS4 BS8 KLB48

Theoretical worst-case path-cost

(Γ = 4)a 0.2443 0.2380 0.2428 0.2386
(Γ = 8) 0.2843 0.2828 0.2821 0.2849

(Γu = 4, Γv = 8)b 0.4451 0.4190 0.4457 0.4185

Summary of realized path-costs (1,000,000 samples); (Γu = 4, Γv = 8)

worst-case 0.3379 0.2793 0.3475 0.2697
mean 0.0714 0.1323 0.0817 0.1220

variance (×10−4) 6.2520 2.4310 6.2840 2.4000

a (Γ) means when two cost coefficients are treated as a single cost coefficient
as in the B-S model.

b (Γu,Γv) means when two cost coefficients are treated as proposed in this
paper.

We also compare the computing performance of the dual variable enumeration (with improve-

ments) and the path enumeration methods. For the test purpose, we set

Γu = Γv = τ

qij = 0.1× τ × pij
dij = 0.1× τ × cij

 for τ = 1, 2, . . . , 25

in the Albany network. As τ increases, the intervals of uncertainty become bigger, and therefore

the number of paths to be found in the path enumeration method increases. Until τ is 6, the path

enumeration method outperforms the dual variable enumeration method, but for τ bigger than 6,

the dual variable enumeration method finds the optimal solution faster. The computation time and

the number of paths found are reported in Table 8 and Figure 9. We also note that the computation

time save is significant with the two improvements for the dual variable enumeration approach.

7 Conclusions

The robust shortest path problem considered in this paper has the cost coefficients as multiplications

of two uncertain parameters. We have shown that the problem can be solved by a dual variable

enumeration method and a path enumeration method, both of which are exact algorithms. The

dual variable enumeration method requires solving a finite number of shortest path sub-problems.

The path enumeration method generates paths using a K-shortest paths algorithm, and it may be
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Table 8: Comparison of Dual Variable Enumeration Approaches and Path Enumeration Approach

Dual-0 Dual-1 Dual-2 Path-Enum
τ Timea No. SPPb Time No. SPP Time No. SPP Time No. Pathc

1 108.952 147,493 16.936 22,951 16.999 22,951 0.112 1
2 109.408 147,545 17.017 22,951 15.766 21,313 0.214 2
3 110.256 147,607 16.956 22,951 13.980 18,803 0.674 7
4 109.978 147,691 17.045 22,951 11.563 15,511 1.965 20
5 110.108 147,761 17.042 22,951 9.893 13,111 3.634 35
6 110.517 147,867 17.227 22,951 8.546 11,319 8.047 69
7 110.406 147,931 17.047 22,951 7.365 9,755 13.552 112
8 110.423 148,051 17.135 22,951 6.294 8,315 22.131 168
9 110.025 148,129 17.092 22,951 5.320 7,033 29.117 226

10 109.803 148,211 17.110 22,951 4.457 5,903 38.039 326

a computation time measure in seconds
b number of shortest path problems solved
c number of paths found
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Figure 9: Computation Time for the Two Solution Methods
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useful when the network size and the level of uncertainty are small. While we found an application

in hazardous materials transportation, we may apply our results to any risk mitigation problems

involving network-structured decision processes.
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