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Often network users are not perfectly rational, especially when they are satisficing—rather than optimizing—

decision makers and each individual’s perception of the decision environment reflects personal preferences or

perception errors due to lack of information. While the assumption of satisficing drivers has been used in

modeling route choice behavior, this research uses a link-based perception error model to describe driver’s

uncertain behavior, without assuming stochasticity. In congestion-free networks, we show that the perception

error model is more general than the existing bounded rationality models with satisficing drivers with

special cases when the two approaches yield the same results; that is, satisficing under accurate perception

is equivalent to optimizing under inaccurate perception. This motivates us to define generalized bounded

rationality in route choice behavior modeling. The proposed modeling framework is general enough to capture

link-specific cost-perception of drivers. We use a Monte Carlo method to estimate modeling parameter values

to guarantee a certain coverage probability in comparison with the random utility model. We demonstrate

how the notion of generalized bounded rationality can be used in robust multicommodity network design

problems and devise a cutting plane algorithm. We illustrate our approaches in the context of hazardous

materials transportation.
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1. Introduction

An economic, or (perfectly) rational, person needs to have a clear system of preferences and

knowledge of the decision environment (Simon 1955). This rationality assumption has been widely

used in many decision-making process modeling contexts. Due to various reasons, such as the lack of

full information about environments surrounding decision-making and strong personal preferences

that are difficult to measure and rarely taken into account, people often make decisions that cannot

be justified by the rationality assumption. Instead, decision makers have limited information about

surrounding environments and themselves, and hence are boundedly rational, instead of being

perfectly rational. As opposed to the definition of a rational person by Simon (1955), the main

two sources of boundedness of rationality may be: (1) satisficing rather than optimizing, and

(2) errors in each individual’s perception of the decision environment. Satisficing decision makers

choose an alternative whose reward is above a certain threshold, called an aspiration level, or close

enough to the best possible reward (Simon 1955). In the context of path finding in transportation

networks, this paper shows that satisficing under accurate perception is equivalent to optimizing

under inaccurate perception; hence the two sources may be modeled in a unified framework.

Since Simon (1955, 1956, 1959) tried to simplify the rationality assumption and understand

human behavior in decision making, the notion of bounded rationality, especially satisficing behavior,

has been used in modeling decision-making processes. Charnes and Cooper (1963) model satisficing

behavior by maximizing the probability of achieving a certain reference profit value in the framework

of chance-constraint stochastic optimization, and further show that such modeling is closely related

to minimizing the deviation from the reference profit value. Cassidy et al. (1972) consider a similar

modeling approach in random payoff games. In the context of risk management, Brown and Sim

(2009) introduce the notion of satisficing measures and connect with other risk measures.

In the context of route choice, there is evidence that drivers are not perfectly rational (Nakayama

et al. 2001, Zhu and Levinson 2010); hence they do not always choose the shortest path. To model

such behavior of drivers, Mahmassani and Chang (1987) first used the assumption of boundedly
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rational drivers: drivers choose any path whose travel time is within a certain threshold, even if

the path is sub-optimal. This assumption is related to the first source—satisficing behavior—of

boundedness in rationality. Many other researchers followed such an assumption of satisficing drivers:

in boundedly rational user equilibrium (BRUE) (Guo and Liu 2011, Di et al. 2013, 2014), in BRUE

in dynamic settings (Wu et al. 2013, Szeto and Lo 2006, Han et al. 2015), and in congestion pricing

(Lou et al. 2010, Di et al. 2016). See also review papers by Zhang (2011) and Sun et al. (2016b).

Another, more traditional stream of modeling route-choice behavior is based on random utility

theory and discrete choice models (Sheffi 1985, Ben-Akiva and Lerman 1985). Travelers are assumed

to maximize their utility and we assume that we as the modeler have some limited information

on their utility function. As a result, drivers’ utility involves a random error term, which is called

a random unobservable utility component as opposed to the observable utility component that is

known to the modeler. Assuming the random error terms follow certain distributions (for example,

Gumbel distribution), we can determine the choice probability of each path over all other paths,

with the assumption that a path is chosen if its utility is the maximum among all paths. While

the random utility model (RUM) is somewhat related to the second source, note that the random

component is not a perception error of the driver’s utility, but his personal utility that is unknown

to the modeler. It may, however, be interpreted as the driver’s perception error from the modeler’s

perspective. Whether it is perception error or unobservable utility, RUM assumes that drivers are

optimizing.

Although RUM and our perception error model are related, there exist fundamental differences.

Instead of the unobservable utility components as in RUM, we use the notion of perception error. We

assume that drivers perceive link travel time differently from the actual travel time, whatever the

reason is. Based on their own perceived link travel times, drivers are assumed to make an optimal

decision in our perception-error models. A major difference between the perception error and the

unobservable random utility component is that the perception error belongs to a bounded set

instead of being a random variable with a probability distribution. As we will see in this paper, the
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perception error model produces satisficing paths. We know that the resulting paths are candidate

paths that may be chosen; but we neither know nor assume with what probability each path would

be chosen, while we know the probability distribution of path choices in RUM.

We note that the relation between RUM and our perception error model resembles the relation

between stochastic programming and robust optimization. In the theory of robust optimization

(Ben-Tal and Nemirovski 2002, Bertsimas et al. 2011, Gabrel et al. 2014), one typically addresses

uncertainty—as opposed to stochasticity—without assuming probabilistic distributions (Bertsimas

and Sim 2004, 2003, Ben-Tal and Nemirovski 1998), or with partial distributional information

(Jaillet et al. 2016, Delage and Ye 2010, Goh and Sim 2010, Wiesemann et al. 2014). In our

perception error model, we follow the approach without probabilistic distribution information.

In multicommodity networks without congestion effects, this paper aims to connect these two

seemingly different modeling paradigms and shows that optimizing drivers with perception error

and satisficing drivers without perception error make the same route decisions. With this finding,

we propose the notion of generalized bounded rationality using the perception-error models. The

generalization comes in two ways. First, our perception-error model provides a unified modeling

framework that covers both sources of boundedness in rationality. Second, we show that our

perception-error models are equivalent to some special cases of and more general than the existing

bounded rationality models that assume satisficing behavior.

We emphasize that in the current literature, especially in transportation science and engineering,

the consideration of bounded rationality is limited to the first source of bounded rationality—

satisficing behavior. This paper first proposes a model that considers the second source—perception

error—only and shows that the perception error model is more general than the satisficing models. In

this paper, we clearly distinguish satisficing behavior from bounded rationality: satisficing behavior

as a sub-concept of bounded rationality. This paper provides a framework that can model both

satisficing behavior and perception error in bounded rationality, as opposed to the notion of a

‘rational man’ defined by Simon (1955).
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We also elaborate various types of bounded rationality assumptions in the process. We first define

satisficing paths, instead of the shortest path, and then distinguish multiplicative satisficing from

additive satisficing. We also consider a new notion of subpath satisficing, in analogy to the subpath

optimality property of the shortest path. We also demonstrate how one can define a generalized

bounded rationality model using an ellipsoidal set of uncertain perception errors. To determine

parameter values in the perception-error model that determine the size of the rationality bound, we

investigate how the lengths of available paths between an origin-destination pair are distributed. To

avoid full path enumeration, which is a numerically challenging task, we use a Monte Carlo method

to estimate the path length distribution.

In this paper, we relate drivers’ route choice behaviors to a particular uncertainty parametric

set, using a set of uncertain perception errors. The notion of an uncertainty set originates from the

literature of robust optimization (Bertsimas et al. 2011). It seeks to find a solution that satisfies

the realization of all the scenarios represented by the uncertainty set, that is, it optimizes the worst

case scenario. The uncertainty set can be represented by an ellipsoidal set (Ben-Tal and Nemirovski

2002, El Ghaoui et al. 1998), a cardinality constrained uncertainty set (Bertsimas and Sim 2003,

2004, Kwon et al. 2013), or a norm uncertainty set (Bertsimas et al. 2004). In this research, we

show that a similar modeling approach is possible in studying uncertain route-decision making of

drivers with bounded rationality.

We emphasize that our generalized bounded rationality model based on perception-error is

link-based, while many existing satisficing or bounded rationality models are path-based with one

exception (Lou et al. 2010). Although we are uncertain about each driver’s overall preferences, we

may be certain for some road links. For example, all drivers perceive the travel time very precisely

in some road links, but drivers perceive the travel time with a greater difference in some other road

links. Existing satisficing models have little flexibility to fully capture these link specific preferences,

or perception errors.

Models of route-decisions are most useful in network design problems, where a central authority

predicts drivers’ behavior according to network policy changes. We illustrate how perception-error
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models can be used in robust multicommodity network design problems and propose a cutting plane

algorithm. Numerical examples are provided in the context of hazardous materials transportation.

While the findings in this paper are limited to path finding behavior in transportation networks,

it seems that our main result—satisficing under accurate perception is equivalent to optimizing

under inaccurate perception—has potential to generalize the bounded rationality approaches in

other areas of decision-making modeling.

2. Bounded Rationality: Satisficing Behavior and Perception Error

We consider a directed graph G(N ,A) where N is the set of nodes and A is the set of links. We

consider a single origin-destination pair o and d, and we define the set of path vectors from o to d:

X=

{
x :

∑
(i,j)∈A

xij −
∑

(j,i)∈A

xji = bi ∀i∈N , xij ∈ {0,1} ∀(i, j)∈A
}

(1)

where bi = 1 for i= o, bi =−1 for i= d, and bi = 0 for all other nodes i∈N . For each link (i, j)∈A,

the link travel cost is cij.

In the context of shortest-path finding, a driver with (perfect) rationality chooses the shortest path

based on the exact value of travel cost vector c. That is, rationality corresponds to both optimizing

behavior and full information on the network. Let us denote the length of the shortest-path by c0

and a vector of the shortest-path by x0, so that

c0 =
∑

(i,j)∈A

cijx
0
ij = min

x∈X
cijxij (2)

We call the shortest-path represented by x0 the perfectly-rational shortest-path.

On the other hand, a driver with bounded rationality may fail to either optimize, have full

information, or both. Instead, boundedly rational drivers choose a path if its length is short enough

compared to a reference length, if it is perceived as the shortest path based on the limited information

of the driver, or if its length is short enough based on the limited information. Boundedly rational

drivers satisfice instead of optimize, and have perception error about the network environment,

hence limited information instead of full information.

To further describe paths that may be chosen by boundedly rational drivers, we first introduce

two definitions for the first source—satisficing behavior—of boundedness in rationality:
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Definition 1 (Additive Satisficing). A path is called an additive satisficing (A-Sat) path, if

the path can be represented by a vector x∈X such that

(A-Sat)
∑

(i,j)∈A

cijxij ≤ c0 +E (3)

where E is a nonnegative constant for the additive indifference band.

Definition 2 (Multiplicative Satisficing). A path is called a multiplicative satisficing (M-

Sat) path, if the path can be represented by a vector x∈X such that

(M-Sat)
∑

(i,j)∈A

cijxij ≤ (1 +κ)c0 (4)

where κ∈ [0,1) is a constant for the multiplicative indifference band.

We then consider the second source—perception error—separately. For modeling a driver who

optimizes under perception error, we propose the following problem of x

(PE) min
x∈X

∑
(i,j)∈A

(cij − εij)xij (5)

for some constant cost vector ε ∈ E . The vector ε denotes the network user’s perception error of

link cost, and the set E is the set of uncertain perception error. We will refer to problem (5) as the

perception error model. When we predict the route-choice behavior of network users, we assume

that their perception error is restricted to an uncertainty set E . Note that the sign of εij in (5) can

be either positive or negative, although we will first focus on nonnegative values then extend our

discussion for general cases including negative values later.

In the satisficing models, a key underlying assumption is that network users recognize the link

costs precisely, but they determine their routes within indifference bands, i.e., they are satisficing

and their decision-making is sub-optimal. However, in the above perception error model, we assume

that network users are optimizing in route-choice—seeking the shortest path—based upon their

perceived link cost cij − εij for some ε∈ EA.
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The perception error model (5) can be used to produce many different behavioral models of

network users depending on the definition of the set E . Instances of E are

EA =

{
ε :

∑
(i,j)∈A

εij ≤E, εij ≥ 0 ∀(i, j)∈A
}

(6)

EM =

{
ε :

∑
(i,j)∈A

εij ≤ κc0, εij ≥ 0 ∀(i, j)∈A
}

(7)

EL =

{
ε : 0≤ εij ≤

κ

1 +κ
cij ∀(i, j)∈A

}
(8)

for positive constants E and κ. We will show that the PE model (5) with EA and EM are equivalent

to the A-Sat and M-Sat models, respectively, and EL is related to the M-Sat model. With the

freedom of choice on the set E , the perception error model (5) provides a notion of ‘generalized’

bounded rationality.

2.1. Additive Satisficing with EA

We first consider EA and show that the perception error model (5) is equivalent to additive satisficing.

Theorem 1 (PE + EA =⇒ A-Sat). Let x be an optimal solution to (5) for some ε ∈ EA. Then x

represents an A-Sat path with indifference band E, i.e.,
∑

(i,j)∈A cijxij ≤ c0 +E.

Proof of Theorem 1. We adopt the idea of Lou et al. (2010, Theorem 2.1). Since x is an optimal

solution to (5) for some ε∈ EA and ε≥ 0, we have

∑
(i,j)∈A

(cij − εij)xij = min
x∈X

(cij − εij)xij ≤min
x∈X

cijxij = c0.

Therefore, ∑
(i,j)∈A

cijxij −
∑

(i,j)∈A

εijxij ≤ c0. (9)

Since
∑

(i,j)∈A εij ≤E, we have
∑

(i,j)∈A εijxij ≤E. Using (9), we obtain

∑
(i,j)∈A

cijxij ≤ c0 +
∑

(i,j)∈A

εijxij ≤ c0 +E,

which completes the proof. �
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Theorem 1 provides a sufficient condition for a certain path to be an A-Sat path. We can also show

that the same conditions provide necessary conditions. The procedure investigates the existence of

a solution to an inverse optimization problem. Motivated by the road-pricing literature (Yang and

Huang 2004, Marcotte et al. 2009), we first consider the following auxiliary problem:

min
x,u

∑
(i,j)∈A

cijxij +Eu (10)

subject to

−
∑

(i,j)∈A

xij +
∑

(j,i)∈A

xji =−bi ∀i∈N (πi) (11)

xij ≥ xij −u ∀(i, j)∈A (λij) (12)

xij ≥ 0 ∀(i, j)∈A (13)

u≥ 0 (14)

where πi and λij are dual variables.

Lemma 1. Suppose x ∈ X is an A-Sat path with indifference band E such that
∑

(i,j)∈A cijxij ≤∑
(i,j)∈A cijx

0
ij +E. Then x with u= 0 is an optimal solution to the auxiliary problem (10).

Proof of Lemma 1. First observe that an optimal u is no greater than 1. Then we consider a

change of variables:

xij = (1−u)xij + yij

for all (i, j)∈A. Then constraints (12) and (13) require

yij ≥ uxij −u,

yij ≥−(1−u)xij,

which leads to yij ≥ 0 given that xij is either 0 or 1.

Therefore we can rewrite the auxiliary problem (10) as follows:

min
y,u

w(y,u) = (1−u)
∑

(i,j)∈A

cijxij +
∑

(i,j)∈A

cijyij +Eu



Sun, Karwan and Kwon: Generalized Bounded Rationality and Robust Multicommodity Network Design
10

subject to

−
∑

(i,j)∈A

yij +
∑

(j,i)∈A

yji =−ubi ∀i∈N

yij ≥ 0 ∀(i, j)∈A

u≥ 0

When u= 0, we observe that y = 0 and w(0,0) =
∑

(i,j)∈A cijxij . For any feasible pair (y,u), we have

the following bounds on w(y,u):

w(y,u)≥ (1−u)
∑

(i,j)∈A

cijxij +u
∑

(i,j)∈A

cijx
0
ij +Eu

≥ (1−u)
∑

(i,j)∈A

cijxij +u

( ∑
(i,j)∈A

cijx
0
ij +E

)

≥ (1−u)
∑

(i,j)∈A

cijxij +u
∑

(i,j)∈A

cijxij

=
∑

(i,j)∈A

cijxij

=w(0,0)

Therefore, u = 0, y = 0, and the corresponding flow x = x provides an optimal solution to the

auxiliary problem (10). This completes the proof. �

The above auxiliary problem (10) plays a key role to derive the necessary conditions. We use the

existence of dual variables π and λ of the auxiliary problem (10) to prove the following result and

that the dual variable λ is equal to the perception error vector ε.

Theorem 2 (PE + EA ⇐= A-Sat). Suppose x ∈ X is an A-Sat path within indifference band E.

Then there exists a vector ε∈ EA such that x is an optimal solution to

min
x∈X

∑
(i,j)∈A

(cij − εij)xij (15)

Proof of Theorem 2. The optimality conditions for the auxiliary problem (10) are:

xij(cij +πi−πj −λij) = 0 ∀(i, j)∈A (16)
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cij +πi−πj −λij ≥ 0 ∀(i, j)∈A (17)

(xij +u−xij)λij = 0 ∀(i, j)∈A (18)

u
(
E−

∑
λij
)

= 0 ∀(i, j)∈A (19)

E−
∑

λij ≥ 0 (20)

λij ≥ 0 ∀(i, j)∈A. (21)

From Lemma 1, we know the pair of vectors u= 0 and x= x is an optimal solution. Then constraints

(18) and (19) hold. Constraints (20) and (21) are equivalent to λ∈ EA.

On the other hand, after relaxing X to X, defined

X =

{
x :

∑
(i,j)∈A

xij −
∑

(j,i)∈A

xji = bi ∀i∈N , xij ≥ 0 ∀(i, j)∈A
}
,

the optimality conditions for problem (15) are:

xij(cij − εij +µi−µj) = 0 ∀(i, j)∈A (22)

cij − εij +µi−µj ≥ 0 ∀(i, j)∈A (23)

x∈X (24)

Thus using (16), (17), (20) and (21), we can show that there exist vectors π and ε such that

(22)–(24) hold; in particular x= x, µ= π, and ε= λ. Note that x∈X, since x∈X. �

Note that Definition 1 for additive satisficing allows cycles in paths. In the perception-error model

(5) with EA, it is also possible to generate paths with cycles by making cij − εij = 0. When it is

desirable to avoid cyclic paths in the perception-error model, one must add certain cycle-elimination

constraints (see, for example, Taccari 2016); then, of course, the exact equivalence, particularly

Theorem 2, no longer holds.

For the traffic equilibrium problem with satisficing drivers, called the boundedly rational user

equilibrium (BRUE) problem in the literature, Lou et al. (2010) provide link-based conditions

similar to the optimality conditions of (15) that produce only acyclic paths. Di et al. (2013) provide
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an equivalence for certain indifference function between BRUE and a nonlinear complementarity

problem (NCP). These two models discussed are both in the setting of equilibrium analysis

considering congestion. The link-based model by Lou et al. (2010) produces only a subset of the

paths defined in the original path-based bounded rationality. The NCP proposed by Di et al.

(2013) obtains a BRUE solution based on a path-based formulation. Note that our the perception-

error model is link-based and provides the equivalence between additive satisfying paths and a

minimization problem in congestion-free networks.

We will observe a similar relationship between the perception-error model and the multiplicative

satisficing models.

2.2. Multiplicative Satisficing with EM

Noting that EM is identical to EA with E = κc0, we immediately obtain the following results:

Theorem 3 (PE + EM =⇒ M-Sat). Let x be an optimal solution to (5) for some ε∈ EM . Then x

represents an M-Sat path with indifference band κ, i.e.,
∑

(i,j)∈A cijxij ≤ (1 +κ)c0.

Theorem 4 (PE + EM ⇐= M-Sat). Suppose x∈X is an M-Sat path with indifference band κ. Then

there exists a vector ε∈ EM such that x is an optimal solution to

min
x∈X

∑
(i,j)∈A

(cij − εij)xij. (25)

The additive and multiplicative satisficing models can exhibit significantly different behavior,

when they are applied to a network design problem in which the network operator can open or close

certain links. The available shortest path can change depending on the network design variables;

then the meaning of additive and multiplicative indifference bands can vary within the network

design problem. While the additive indifference band E is always constant, the multiplicative

indifference band κc0 will change according to the length of the available shortest path c0.



Sun, Karwan and Kwon: Generalized Bounded Rationality and Robust Multicommodity Network Design
13

1 2 3

4

c12 = 20 c23 = 4
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c 4
3
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3

path 1 = {1,2,3}, path length = 24

path 2 = {1,2,4,3}, path length = 25

Figure 1 An example where the PE model with EL cannot produce a particular M-Sat path. When κ= 0.1, path

2 is an M-Sat path, but is not a solution to the PE model for any ε∈ EL.

2.3. Subpath Multiplicative Satisficing with EL

We will observe that EL is another perception-error set that is related to the multiplicative

indifference band. In EL, the perception error is specified for each link instead of restrictions on its

sum: 0≤ εij ≤ κ
1+κ

cij. We first note that not all M-Sat paths can be produced by the PE model

with EL. Figure 1 illustrates an example. From node 1 to node 3, path 1 is the perfectly rational

shortest path with length 24. With κ= 0.1, path 2 is an M-Sat path with length 25 which is less

than (1 + 0.1)24 = 26.4. Let us now try to make path 2 a shortest path in the PE model using a

perception-error vector ε∈ EL. First note that increasing ε12 will not help, since it will also reduce

the length of path 1. The only possibility is when we increase ε24 and ε43 as much as we can. That

is, we set ε24 = κ
1+κ

c24 = 0.182 and similarly ε43 = 0.273. Then the perceived length of path 2 will

become 24.545, which is still greater than the length of path 1; i.e., path 2 cannot be produced by

the PE model with EL.

We now introduce the notion of subpath multiplicative satisficing.

Definition 3 (Subpath Multiplicative Satisficing). A path is called a subpath multiplicative

satisficing (SM-Sat) path with a constant κ, if every subpath of the path is an M-Sat path with the

same constant κ between the corresponding origin and destination nodes.

The above definition of ‘subpath satisficing’ is analogous to the ‘subpath optimality’ property

of the shortest path. We can interpret the underlying behavioral assumption in Definition 3 as

follows. After determining the route to take at the origin, drivers may re-evaluate their route to
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the destination. This interpretation is also related to the sequential selection process modeled in

the Markovian traffic equilibrium (Baillon and Cominetti 2008) and the link-based logit model

(Fosgerau et al. 2013), both based on RUM, wherein drivers make a choice of links at each node

with the probabilities described by RUM.

For example, drivers may like to stop by some mid-points on the way, for example, to visit a gas

station, a coffee house, or a grocery store, or to pick someone up. Drivers may also re-evaluate while

they are stopping at a traffic signal and decide to change their route. When they resume their trip,

we assume that they again consider the multiplicative indifference band, while we are uncertain

about their reasoning. In the example in Figure 1, if a driver would have stopped at node 2, he or

she would not consider subpath {2,4,3} since it is not an M-Sat path from node 2 to node 4.

Mathematically, Definition 3 can be written as follows. Consider a path p that is an ordered set

of nodes and a flow vector x∈X that represents path p. To consider a subpath, pick a pair of nodes

r and s from p such that ordp(r)< ordp(s), where ordp(r) denotes the order of node r in path p.

That is, the flow is directed from r to s. We define the set of path vectors from r to s:

Xrs =

{
x :

∑
(i,j)∈A

xij −
∑

(j,i)∈A

xji = brsi ∀i∈N , xij ∈ {0,1} ∀(i, j)∈A
}

where brsi has value 1 if i= r, −1 if i= s, and 0 otherwise. We let xrs ∈Xrs be a flow vector from r

to s along x. Then p is an M-Sat path if

∑
(i,j)∈A

cijx
rs
ij ≤ (1 +κ) min

xrs∈Xrs

∑
(i,j)∈A

cijx
rs
ij (26)

for all (r, s) pairs for subpaths. By letting r= o and s= d, we observe that an SM-Sat path is also

an M-Sat path. Hence, the set of SM-Sat paths is a subset of the set of M-Sat paths.

We first show that the PE model with EL produces an SM-Sat path.

Theorem 5 (PE + EL =⇒ SM-Sat =⇒ M-Sat). Let x be an optimal solution to (5) for some ε∈

EL. Then x represents an SM-Sat—hence also M-Sat—path.
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Proof of Theorem 5. When x is an optimal solution to the PE problem (5) for some ε∈ EL, it

is well known that any subpath xrs is also optimal for (r, s) with the same ε (Cormen et al. 2009,

Lemma 24.1). Therefore, we have∑
(i,j)∈A

(cij − εij)xrsij = min
xrs∈Xrs

∑
(i,j)∈A

(cij − εij)xrsij ≤ min
xrs∈Xrs

∑
(i,j)∈A

cijx
rs
ij . (27)

Since 0≤ εij ≤ κ
1+κ

cij, we have∑
(i,j)∈A

(
cij −

κ

1 +κ
cij

)
xrsij ≤

∑
(i,j)∈A

(cij − εij)xrsij . (28)

Based on (27) and (28), we obtain∑
(i,j)∈A

(
cij −

κ

1 +κ
cij

)
xrsij ≤ min

xrs∈Xrs

∑
(i,j)∈A

cijx
rs
ij ,

which is identical to (26). Since the choice of (r, s) was arbitrary, this proves the theorem. �

While an M-Sat path may not be represented by a solution to the PE model with EL, an SM-Sat

path can always be, as proved in the following theorem.

Theorem 6 (PE + EL ⇐= SM-Sat). Suppose x∈X is an SM-Sat path with multiplicative indiffer-

ence band κ. Then there exists a vector ε∈ EL so that x is an optimal solution to

min
x∈X

∑
(i,j)∈A

(cij − εij)xij (29)

In particular, the following ε is such an ε∈ EL:

εij =


κ

1+κ
cij if xij = 1

0 if xij = 0.

(30)

Proof of Theorem 6. Let us first consider the cases when x has no common links with another

path x̂∈X. We obtain ∑
(i,j)∈A

(cij − εij)xij =
∑

(i,j)∈A

(
cij −

κ

1 +κ
cij

)
xij

=
1

1 +κ

∑
(i,j)∈A

cijxij

≤
∑

(i,j)∈A

cijx̂ij

=
∑

(i,j)∈A

(cij − εij)x̂ij (31)
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where we used the property of M-Sat paths. Therefore, x̂ is no better than x to the PE problem

(29).

Now suppose x has some common links with another path x̂. The two paths will share some

subpaths and will have some own subpaths. Suppose there is only one unique subpath for each of x

and x̂. Let us define:

A= {(i, j)∈A : xij = 1}

Â= {(i, j)∈A : x̂ij = 1}

Links in the unique subpaths of x and x̂ are A \ Â and Â \ A, respectively. Note εij = 0 for all

(i, j)∈ Â \A. We have

∑
(i,j)∈A

(cij − εij)xij =
∑

(i,j)∈A

(cij − εij)

=
∑

(i,j)∈A∩Â

(cij − εij) +
∑

(i,j)∈A\Â

(cij − εij)

≤
∑

(i,j)∈A∩Â

(cij − εij) +
∑

(i,j)∈Â\A

(cij − εij)

=
∑

(i,j)∈A

(cij − εij)x̂ij

where we used (31) for comparing perceived lengths of the subpaths. Therefore x̂ is no better than

x. When there is more than one unique subpath, we can repeatedly apply this procedure to show

that there exist no other flow vectors better than x to the PE problem (29). �

We have observed so far that the PE model with EL is equivalent with the SM-Sat assumption,

which is a subset of the set of all M-Sat paths. Path 2 in Figure 1 is an M-Sat path, but not an

SM-Sat path.

Furthermore, we observe the following:

Lemma 2. Consider a flow vector x∈X. The following statements are equivalent:

(i) A path represented by x is an SM-Sat path.

(ii) x is an optimal solution to (5) for ε in (30).
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(iii) x is an optimal solution to (5) for some ε∈ EL.

Proof of Lemma 2. We observe that (i) =⇒ (ii) by Theorem 6; (ii) =⇒ (iii) by definition; and

(iii) =⇒ (i) by Theorem 5. �

Lemma 2, particularly (i)⇐⇒ (ii), provides an easy way to check if any given flow vector x

represents an SM-Sat path or not. After constructing ε as in (30), we use (ii) as a test. With ε, we

solve (5), and compare the optimal objective function value with the objective function value at x.

If x is not an optimal solution to (5) with ε, then x does not represent an SM-Sat path. If it is an

optimal solution, then it represents an SM-Sat path.

We also note that an SM-Sat path, or equivalently a path by PE with EL, cannot have a cycle,

unless there exists a subpath with zero travel cost. This is a unique feature of SM-Sat paths,

compared to A-Sat and M-Sat paths.

3. Generalized Bounded Rationality

As we have observed, for the additive and multiplicative satisficing cases, we can use the general

framework (5) with EA and EM , respectively. The notion of ‘perception error’ is more general than

additive and multiplicative satisficing, and we can consider various sets of uncertain perception

errors E . For example, one may consider:

EH =

{
ε :

∑
(i,j)∈A

εij ≤E,
∑

(i,j)∈A

εij ≤ κc0
}

(32)

EB =

{
ε : lij ≤ εij ≤ uij ∀(i, j)∈A

}
(33)

EE =

{
ε : ||Q−1/2ε||2 ≤ ξ

}
(34)

To provide a hybrid definition of additive and multiplicative satisficing, one may consider EH . It will

generate paths whose lengths are less than min{c0 +E, (1 +κ)c0}. Certainly, EL is a special case of

the box set EB. With the choice of EB when lij can be negative, we assume that the perception of

network users can not only decrease link costs but also increase. We note that EH ∩EB is related to

the polyhedral uncertainty set considered in the robust optimization literature (Bertsimas and Sim

2003, 2004, Kwon et al. 2013).
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In the ellipsoidal set EE, note that Q is the covariance matrix of link perception errors and its size

is |A|× |A|. We assume that Q is symmetric and positive semi-definite, and ξ is a positive constant.

The ellipsoidal set EE is also popularly considered in the robust optimization literature (Ben-Tal

and Nemirovski 1998, 2002, El Ghaoui et al. 1998). Other possibilities of E found in the robust

optimization literature are cardinality constrained sets and norm sets (Bertsimas et al. 2011).

In the following theorem, we show that the perception-error model with the ellipsoidal set EE

provides a certain bound on the rationality of network users.

Theorem 7. Let x be an optimal solution to (5) for some ε∈ EE. Then,∑
(i,j)∈A

cijxij ≤ c0 + ξ
√
xTQx (35)

Furthermore, the following bound holds∑
(i,j)∈A

cijxij ≤ c0 +
ξ2

2
+ ξ

√
c0 +

ξ2

4
(36)

in a special case when Q= diag(..., cij, ...).

Proof of Theorem 7. From the proof of Theorem 1, we know that∑
(i,j)∈A

cijxij −
∑

(i,j)∈A

εijxij ≤ c0.

Since maxε∈EE ε
Tx= ξ

√
xTQx, we obtain

c0 ≥
∑

(i,j)∈A

cijxij −
∑

(i,j)∈A

εijxij ≥
∑

(i,j)∈A

cijxij − ξ
√
xTQx

When Q= diag(..., cij, ...), we have∑
(i,j)∈A

cijxij ≤ c0 + ξ

√ ∑
(i,j)∈A

cij(xij)2 = c0 + ξ

√ ∑
(i,j)∈A

cijxij

since xij is binary. Let σ=
√∑

(i,j)∈A cijxij, then

σ2− ξσ≤ c0

=⇒ (σ− ξ/2)2 ≤ c0 + ξ2/4

=⇒ σ≤
√
c0 + ξ2/4 + ξ/2

=⇒ σ2 ≤ c0 + ξ2/2 + ξ
√
c0 + ξ2/4

Therefore, we obtain the theorem. �
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Figure 2 Comparing the indifference bands among the cases of EA, EM , and EE . The parameter values E, κ,

and ξ are chosen so that the indifference bands are identical at c0 = 1. We consider the special case of

Q= diag(..., cij , ...).

While interpreting the right-hand sides of (35) and (36) is not as clear as in the additive or

multiplicative satisficing cases, they certainly demonstrate that the ellipsoidal set of perception

errors leads to some boundedness in the rationality of network users.

In Figure 2, we compare the size of the indifference band. For each of EA, EM , and EE with

Q= diag(..., cij, ...), the indifference band is defined as E, κc0, and ξ2

2
+ ξ
√
c0 + ξ2

4
, respectively.

While the size of the indifference band is constant with additive satisficing, it increases with respect

to the length of the shortest path with multiplicative satisficing. In the case of ellipsoidal set EE,

the size of the indifference band falls between the additive and multiplicative satisficing cases. If the

shortest path is fixed, all three bounded rationalities in Figure 2 can be made equivalent. However,

the shortest path can change if the network topology changes, as in network design problems, where

the above three bounded rationalities imply distinct modeling of user behavior.

Observations so far motivate us to define the notion of generalized bounded rationality :

Definition 4 (Generalized Bounded Rationality). A network user possesses generalized

bounded rationality if the user’s route-choice decision-making can be justified by the perception

error model (5) for some closed and bounded set E .
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We consider the closedness and boundedness of the set E to guarantee that a solution to the

perception error model exists and the length of the resulting route is bounded.

Definition 4 based on the perception-error model is general in two perspectives, one of which

comes obviously from the generality of E choices. The other comes from the observation that,

with some choices of E , the perception-error model becomes equivalent to one of the existing

bounded rationality models that assume satisficing drivers. In addition, we can model both sources

of boundedness in rationality, namely, satisficing drivers and an individual’s perception of decision

environments, in the framework of the perception-error model (5). Let us consider a driver who

satisfices rather than optimizes, with their own perception on link travel costs. This driver can be

modeled by the following optimization problem:

min
x∈X

∑
(i,j)∈A

(cij − εij − δij)xij (37)

for some ε∈ E1 and δ ∈ E2 where ε and E1 are related to the driver’s perception error, and δ and E2

are related to the driver’s satisficing criterion.

Consideration of generalized bounded rationality in the form of the perception-error model with

a choice of the perception-error set E brings a significant advantage. While the existing notions

of bounded rationality are defined on paths, we can have link-based preference control in the

perception-error model. That is, if network users are known to prefer to use a certain link (i, j)

despite its higher link cost, we can enforce a large perception-error εij. This opens an opportunity

for generalized bounded rationality to be applied to the cases with an available network user survey.

Under a choice of E , one can find boundedly rational shortest paths with the following conditions:

xij(cij − εij +πi−πj) = 0 ∀(i, j)∈A (38)

cij − εij +πi−πj ≥ 0 ∀(i, j)∈A (39)

x∈X (40)

ε∈ E (41)
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where conditions (38) and (39) are the complementary slackness and dual feasibility conditions

of the LP form of problem (5), respectively. Alternatively, condition (38) can be replaced by the

strong duality condition ∑
(i,j)∈A

(cij − εij)xij = πd−πo (42)

where o and d are the origin and destination nodes, respectively. Note that both approaches involve

bi-product terms εijxij.

4. Choosing Indifference Bands

There are parameter values that define the set of perception errors, which we call indifference bands ;

for example, E for EA as in additive satisficing, κ for EM and EL as in (subpath) multiplicative

satisficing, and ξ for the ellipsoidal set EE. One may conduct a survey among drivers to determine

an appropriate indifference band value. When a survey report is unavailable, one may use the

random utility model (RUM) as a reference. Although it is more desirable to have an independent

modeling and data collection approach for the perception error model, benchmarking with widely

used RUM parameter estimations would make the transition to a new modeling paradigm easier.

This section compares the bounded rationality models with RUM and estimates the path length

distribution by a Monte Carlo method to suggest a method to determine the indifference band

values. While this section is written for κ in EM and EL, we can use a similar approach for E in EA

and ξ in EE.

4.1. Comparison with the Random Utility Model

For RUM, a random error term is associated with the utility function to capture perception error

of travelers and attributes that are unobservable to analysts. The utility of using the k-th path, Uk

is given by

Uk =−ck
θ

+ ξk, ∀ k,

where ck is the generalized cost of all the observed attributes, θ is the scale parameter, and ξk is a

random term. Travel time is usually used for ck when only one attribute is considered. If the random
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terms ξk are independently and identically distributed Gumbel variates, according to McFadden

(1978), the choice probability for path k is

Pk = Pr[k is chosen from R] =
exp(−ck/θ)∑
l∈R exp(−cl/θ)

,

where R is the set of all paths between one OD pair. Note that Pk > 0 for any path k ∈R, regardless

how long it is.

We are interested in what probability a satisficing path is chosen according to RUM. In case of

multiplicative satisficing with the indifference band κ, we define the coverage probability as follows:

Pcov(κ) =
∑
k∈R

I[ck ≤ (1 +κ)c0] Pk =

∑
k∈R I[ck ≤ (1 +κ)c0] exp(−ck/θ)∑

l∈R exp(−cl/θ)
(43)

where I[·] is an indicator function whose value is 1 if the specified condition within the brackets is

true and zero otherwise.

To use (43) to determine κ, we need two items of information: the value of θ and the fully

enumerated set of paths R. If we include paths with cycles, the size of R can be made arbitrarily

large. We restrict our discussion to simple paths only. To determine θ, we need to correlate it to

how sensitive it is to the error term. In order for at least a fraction M of the errors not to exceed a

certain percentage κ′ of the c0 , θ can be obtained as

θ= min

 κ′c0

γ− ln
(

ln( 1
q
)
) ,

−κ′c0

γ− ln
(

ln( 1
1−q )

)
 , (44)

and q= M+1
2

and γ ≈ 0.57721566, which denotes the Euler-Mascheroni constant (Bergomi 2009).

For example, we do a numerical analysis on the Buffalo network (Toumazis and Kwon 2013) of

OD pair (1,84) with the paths generated shown in Figure 3. The Buffalo network has 90 nodes and

149 arcs. By choosing κ′ = 0.1 and M = 90%, we obtain the probability of choosing each path in

Figure 4. For the multiplicative satisfying model with κ= 0.15, we are able to cover 89.0% of the

probability of choosing paths using RUM.
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Figure 3 PDF of path set generated on Buffalo network of OD pair (1,84)

Figure 4 Probability of choosing each path of OD pair (1,84) on Buffalo network

4.2. Monte-Carlo Method for Estimating the Indifference Band

In most realistic road networks, enumerating all paths between an OD pair is a numerically expensive

way to compute Pcov. Instead, we try to estimate the distribution without full enumeration, using

a Monte Carlo method. We restrict our discussion in this section to simple paths. That is, let R

denote the set of all simple paths between the OD pair of interest. We define the set of all simple

paths whose length is no greater than (1 +κ)c0:

Rκ = {l ∈R : cl ≤ (1 +κ)c0},

where cl is the length of path l. We can write

Pcov(κ) =
Ncov(κ)

Dcov

(45)
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Ncov(κ) =
∑
l∈Rκ

exp(−cl/θ) (46)

Dcov =
∑
l∈R

exp(−cl/θ) (47)

where Ncov and Dcov denote the numerator and denominator, respectively.

We use the length-distribution method of Roberts and Kroese (2007) to estimate path cost

distribution. Roberts and Kroese (2007) originally used the method to estimate the number of

simple paths available between an OD pair. The method involves easy sampling of simple paths

and uses a sequential Monte Carlo method to construct an unbiased estimator for the number of

available paths. The method randomly generates simple paths that begin at the origin and may or

may not end at the destination. By sampling from a larger set of paths, the method estimates the

smaller set—the set of paths that ends at the destination of interest.

Let l(1), ..., l(N) be N sample paths generated by the length-distribution method as described in

Roberts and Kroese (2007), with the probability function g(·). When sample path l(i) is indeed

a valid path from the origin and the destination, we say l(i) ∈R, and when it does not reach the

destination, it is invalid and l(i) /∈R. We have g(l)> 0 for all l ∈R. We can estimate the function

value Pcov(κ) by the following estimator for any κ∈ [0,1]:

P̂cov(κ) =
N̂cov(κ)

D̂cov

(48)

N̂cov(κ) =
1

N

N∑
i=1

I[l(i) ∈Rκ] exp(−cl(i)/θ)
g(l(i))

(49)

D̂cov =
1

N

N∑
i=1

I[l(i) ∈R] exp(−cl(i)/θ)
g(l(i))

(50)

Given the approximation form of P̂cov(κ) in (48), we can select κ that guarantees a certain

preset level of coverage probability Pcov. That is, we desire P̂cov(κ)≥ Pcov. Since P̂cov(·) is a strictly

increasing function, we can use a simple line search to find κ such that

0≤ P̂cov(κ)−Pcov < η

for sufficiently small η > 0.
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Table 1 Comparing the true and estimated κ values for OD pair (1,84) of Buffalo network

Pcov True Estimated Difference

95% 0.18603 0.18830 1.22%
90% 0.15437 0.15437 0.00%
85% 0.13656 0.13458 1.45%
80% 0.12327 0.12044 2.29%
75% 0.11196 0.10927 2.40%
70% 0.10178 0.09853 3.19%

We sampled 20,000 paths on the Buffalo network for OD pair (1,84). The results are recorded

in Table 1. We can see that the bounds we estimated are close to the real values, with the largest

difference as 3.19%. More numerical tests and some insights in SM-Sat paths are provided in

Electronic Companion EC.1.

5. Robust Multicommodity Network Design Problems

In this section, we formulate and discuss how to incorporate generalized bounded rationality into

robust network design problems. When designing a certain network, due to the uncertainty caused

by the perception errors of the travelers, it is beneficial to use a robust approach.

For the single origin-destination (OD) case, application could include the shortest path interdiction

problem (Israeli and Wood 2002). We can also generalize to network design problems involving

multiple ODs when there is no congestion effect such as the shortest path interdiction problem with

multiple ODs and hazardous materials network design problem (Kara and Verter 2004). Here we

introduce the robust hazmat network design problem as an example. However it will be similar for

other applications. The formulation is given as follows:

min
y

α
∑

(i,j)∈A

(1− yij) + max
ε

∑
(i,j)∈A

∑
s∈S

nsrijsxijs (51)

yij ∈ {0,1} ∀(i, j)∈A (52)

εs ∈ Es ∀s∈ S (53)

min
x

∑
(i,j)∈A

(cij − εijs)xijs (54)

s.t.
∑

(i,j)∈A

xijs−
∑

(j,i)∈A

xjis = bsi ∀i∈N (55)
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xijs ≤ yij ∀(i, j)∈A, s∈ S (56)

xijs ∈ {0,1} ∀(i, j)∈A, s∈ S (57)

Decision variables yij denote whether one link is open (yij = 1) or closed (yij = 0). The constraints

(54)–(57) model the behaviors of travelers taking the shortest path for shipment s ∈ S between

certain origin and destination, based on the realization of perception error εijs and closed links yij.

Constraints (53) make sure the perception uncertainty is within the chosen bounded rationality set.

The perception-error set Es is different for various models. But generally for EA, EM and EB, it can

be represented as

∑
(i,j)∈A

εijs ≤ (1 +κs)c
0 ∀s∈ S (58)

∑
(i,j)∈A

εijs ≤ c0 +Es ∀s∈ S (59)

lijs ≤ εijs ≤ uijs ∀(i, j)∈A, s∈ S (60)

c0 = min
z

∑
(i,j)∈A

cijzijs (61)

s.t.
∑

(i,j)∈A

zijs−
∑

(j,i)∈A

zjis = bsi ∀i∈N (62)

zijs ≤ yij ∀(i, j)∈A, s∈ S (63)

zijs ∈ {0,1} ∀(i, j)∈A, s∈ S (64)

where constraints (61)–(64) obtain the shortest path length based on the decision of yij, and

constraints (58)–(60) defines EA, EM and EB for each shipment s. For objective (51), it seeks to

minimize the worst total risk while considering the number of closed links, similar to the approach

in Sun et al. (2016a).

6. Solving Robust Network Design Problems

The robust network design problem is a tri-level mixed integer optimization problem. The lowest

level problem, which is a shortest path problem, has the integrality property. Thus we can transform
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it with its KKT optimality conditions and reduce the robust network design problem to a bilevel

integer problem (Labbé et al. 1998, Kara and Verter 2004). However, the problem is still a bilevel

integer programming problem, which remains hard to solve. In order to solve the problem, we

propose a cutting plane algorithm based on the cuts designed by Gzara (2013). First we define

the master problem (MP) and worst case problem (WCP), which will be utilized by the proposed

cutting plane algorithm.

6.1. Master Problem

The master problem is the same as the minimum risk network flow problem defined in Gzara (2013).

It can be written as follows:

(MP) min
y,ε

∑
(i,j)∈A

∑
s∈S

nsrijsxijs +α
∑

(i,j)∈A

(1− yij),

s.t. yij ∈ {0,1}, ∀(i, j)∈A,∑
(i,j)∈A

xijs−
∑

(j,i)∈A

xjis = bsi , ∀i∈N ,

xijs ≤ yij, ∀(i, j)∈A, s∈ S,

xijs ∈ {0,1}, ∀(i, j)∈A, s∈ S,

{Cuts that are added iteratively}.

The master problem obtains the minimum risk paths while not violating the cuts that are added

iteratively The cuts that are added are supposed to restrict the master problem from taking certain

paths, which will be further discussed.

6.2. Worst Case Problem

By solving the master problem, we obtain a solution y, x. Then the worst case problem (WCP) can

be formulated as:

(WCP) max
ε

∑
(i,j)∈A

rijsxijs, ∀s∈ S
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s.t. εs ∈ Es,

min
x

∑
(i,j)∈A

(cijs− εijs)xijs,

s.t.
∑

(i,j)∈A

xijs−
∑

(j,i)∈A

xjis = bsi , ∀i∈N ,

xijs ≤ yij, ∀(i, j)∈A,

xijs ∈ {0,1}, ∀(i, j)∈A.

The WCP finds the maximum risk path among all the available paths that could be perceived as

shortest under the realization of the perception error set. The lower level problem is a shortest path

problem with arc cost as cijs− εijs for each shipment s; hence we can replace the lower level by its

KKT conditions and obtain a single level MILP for the worst case problem.

However, the problem could be ill-defined for sets that have no upper bound enforced on each

link such as EM or EA. In these cases, the cost for the link cijs− εijs can be negative, which makes

the problem much harder to solve. The WCP will accept solutions with cycles as optimal. Actually

since WCP is a risk maximization problem, it will prefer solutions with cycles. Thus constraints

for eliminating cycles (Taccari 2016) should be incorporated in the lower level problem. These

constraints will make the lower problem lose the integrality property and the WCP becomes a

bilevel mixed integer programming problem.

Instead of solving a bilevel mixed integer programming problem, we could make a simple search

on the available paths that could be perceived as shortest. For a set with upper bound on the sum

such as EM and EA, we can utilize a K loopless shortest path algorithm to generate the paths that

have cost lower than (1 +κ)c0 and c0 +E with the realization of y. After obtaining the path set,

we can choose the maximum risk path as the optimal solution of WCP. In case of EE, a similar

procedure may be used. In generating the path set, instead of having a fixed bound, for each path

xij, we can test whether it has lower cost than c0 + ξ
√
xTQx or not.

For EL, even though we could solve WCP as an MILP, a search algorithm is still applicable and

could be faster. We can easily test if a path is an optimal solution to the lower-level problem of
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(WCP) using Lemma 2. For EB, we can similarly show that a path p with flow vector x is a solution

to the lower-level problem for some ε∈ EB, if and only if x is a solution to the lower-level problem

for ε∈ EL, where

εij =


uij if xij = 1,

lij if xij = 0.

6.3. Cutting Plane Algorithm

After defining the two problems, the cutting plane algorithm to solve the robust network design

problem can be summarized as follows:

Step 1 Set the iteration number k= 1.

Step 2 Solve the MP and obtain solution xk and yk.

Step 3 Using the obtained yk from the MP solve the WCP and obtain solution x̂k

Step 4 Compare x̂k and xk. If the two routes solutions are the same, stop. Otherwise, generate

valid cuts and add them to the MP. Let k= k+ 1 and go to Step 2.

The essence of the algorithm is to compare the minimum risk path and the worst risk path which

could be perceived as shortest and make the them the same for both MP and WCP. By adding cuts

iteratively, we will be able to change the network design variables to enforce the routes chosen by

WCP unavailable for travelers. The WCP obtains a worst path for the first level problem depending

on the bounded rationality set. For the algorithm, we use the same cuts as in Gzara (2013), as

described in Electronic Companion EC.2.

7. An Application in Hazardous Materials Transportation and Numerical
Experiments

In this section, we show an application of the proposed concept of generalized bounded rationality

in the hazmat network design problem (HNDP). The current literature in HNDP assumes carriers

always choose the shortest path. However, due to the unobservable attributes of the carriers and lack

of knowledge of how they make route decisions, this assumption is questionable. With the notation

of generalized bounded rationality, we are able to assign route and link preferences for carriers,
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which could better capture how carriers make their route decisions. We test the models using the

Ravenna (Bonvicini and Spadoni 2008, Erkut and Gzara 2008) network data set transporting four

kinds of hazardous materials: chlorine, LPG, gasoline and methanol. The Ravenna network has

105 nodes and 134 undirected arcs. The algorithms are coded in C++ and the CPLEX solver is

used. The experiments are run on a high performance computer with 32GB of RAM and a Xeon

processor. We illustrate the process of the algorithm in Electronic Companion EC.3 and present

the efficiency and computational time of the algorithm in Electronic Companion EC.4.

Now we show the effectiveness of considering generalized bounded rationality in network design

problems. We examine cases of HNDP considering M-Sat (HNDP-M-Sat) and HNDP considering

SM-Sat (HNDP-SM-Sat). We first compare the results with that of the Deterministic HNDP

(DHNDP) on one OD pair (106,71). The results can be found in Figure 5. For the DHNDP, it

assumes the carriers choose the shortest path without any perception error, leading to a solution

with risk of 761.0 as shown in Figure 5a. However, due to the bounded rationality of the carriers, a

set of paths is possible to be chosen. Suppose carriers are SM-Sat with κ= 0.05, under the decision

of DHNDP, another route with higher risk value of 1240.8 (shown in Figure 5b) is probably chosen.

In the cases of considering generalized bounded rationality, we could avoid such worst risk

scenarios. We consider a κ value of 0.05. The worst possible risk value is the same with the

optimal risk value of the DHNDP. Considering that carriers are SM-Sat, as shown in Figure 5c,

we close the same number of road segments as the DHNDP. However, by considering a set of

paths which are possible to be chosen by the carriers, we are able to identify a more critical arc to

close so that it will block more paths. For the case of HNDP-M-Sat, we close one additional arc

compared to HNDP-SM-Sat, even though the resulting route chosen by the carrier is the same,

which is p : {106,1,2,4,17,19,23,40,47,61,67,71} with risk of 767.0 and cost of 28898. As shown

in Figure 5d, the additional closed arc is {59,64}, and restricts the carrier from choosing path

p̂ : {106,1,2,4,17,19,23,40,59,64,61,67,71} with risk of 812.0 and cost of 29669. The shortest path

without perception error is the path p and clearly the path p̂ cost 29669< (1+0.05) ·28898 = 30342.9.
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(a) DHNDP network,
R= 767.0, C = 28898

(b) DHNDP worst scenario,
R= 1240.8, C = 29099

(c) HNDP-SM-Sat network,
R= 767.0, C = 28898

106

40

47
61

71

59

64

(d) HNDP-M-Sat network,
R= 767.0, C = 28898

Figure 5 Solution network comparison of different models

Thus path p̂ is M-Sat and HNDP-M-Sat blocks this path. In the case of HNDP-SM-Sat, path p̂ is

evaluated differently. The difference between paths p and p̂ is the supaths {40,47,61} with cost 4511

and {40,59,64,61} with cost 5281> 4511 · (1 + 0.05) = 4736.6. Based on the definition of SM-Sat,

path p̂ is not SM-Sat. Thus HNDP-SM-Sat need not block path p̂. However, if we are assuming

carriers are SM-Sat while they are M-Sat in reality, we could end up with a higher risk of 812.0.

But it is still better compared to the worst case scenario of the DHNDP. On the contrary, if we

assume carriers are M-Sat and they act as SM-Sat, we achieve the same objective value as planned.

We also make a comparison of the models on 25 test cases we generated as explained in Electronic

Companion EC.4. We set α= 0.025 and κ= 0.05. The results are obtained in Table 2. We record

the number of closed links and risk values for both HNDP-M-Sat and HNDP-SM-Sat. We find that

HNDP-M-Sat always has a larger number of closed links compared to the HNDP-SM-Sat case,

closing 3.72 (17.36% ) more links on average. HNDP-M-Sat always has higher risk values as well.
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Due to the flexibility of closing links, the risk percentage difference is not much, only 0.5%. The

reason behind the higher number of closed links and risk values for M-Sat is that SM-Sat is a subset

of M-Sat if we use the same κ value. Then HNDP-M-Sat needs to close more links compared to

HNDP-SM-Sat. In some cases, it is not efficient to close more links, HNDP-M-Sat would allow more

paths to be chosen, leading to higher risk values.

Furthermore, the “M-Sat/D” column in Table 2 demonstrates the risk values of the DHNDP

solution assuming M-Sat carrier behaviors and compares that with the HNDP-M-Sat case. Similarly

the “SM-Sat/D” column shows the risk values of DHNDP solutions assuming SM-Sat carrier

behaviors and compares that with the HNDP-SM-Sat case. Consistent with the results shown

in Figure 5, the DHNDP solution would lead to higher risk values. For M-Sat, there is a risk

increase of 15.37% on average while only 5.94% for SM-Sat. For the SM-Sat solution, if assuming

carriers are M-Sat and could choose more routes, the risk values of DHNDP could be even larger.

Thus without considering carriers’ bounded rational behaviors, DHNDP could lead to less effective

solutions. Additionally, we mark the risk values of HNDP-SM-Sat solution assuming M-Sat carrier

behaviors. We observe that there is high risk increase. Thus the HNDP-M-Sat solution is more

robust while being more conservative. HNDP-SM-Sat solutions are more effective assuming SM-Sat

carrier behavior.

To sum up, by utilizing the notion of generalized bounded rationality in HNDP, we are able to

achieve a better worst case scenario, even without any additional cost in some cases. We illustrate

this result in the context of hazardous material transportation. However, it could be generalized in

similar network design problems as discussed previously.

8. Concluding Remarks

We conclude this paper by suggesting potential future research directions. Providing path-based

formulations for robust network design with generalized bounded rationality is an interesting

and important future research topic, especially for the cases when a small number of paths

are available in the network. While this paper considers road networks without congestion in
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Table 2 Comparison of different network design models

OD Runs
HNDP-M-Sat HNDP-SM-Sat M-Sat/D SM-Sat/D M-Sat/SM-Sat

# closed Risk #closed Risk Risk Diff% Risk Diff% Risk Diff%

1 17 253.0 13 253.0 348.9 37.91 312.7 23.60 308.1 21.78
2 16 292.3 14 292.3 500.1 71.09 348.2 19.12 302.2 3.39

5 3 15 281.1 13 281.1 386.8 37.60 308.6 9.78 365.2 29.92
4 10 269.3 7 267.6 409.6 52.10 316.0 18.09 361.2 34.98
5 7 125.0 6 125.0 137.6 10.08 134.3 7.44 131.5 5.20

1 15 434.6 14 434.5 564.7 29.94 434.5 0 564.7 29.97
2 20 489.5 14 489.5 554.9 13.36 489.5 0 554.9 13.36

10 3 18 691.4 17 691.4 738.1 6.75 691.4 0 738.1 6.75
4 18 434.9 17 433.1 593.5 36.47 461.4 6.53 552.8 27.64
5 19 763.8 17 759.5 810.9 6.17 759.5 0.00 810.9 6.77

1 26 895.9 24 892.3 1066.4 19.03 962.2 7.83 996.4 11.67
2 26 810.8 20 809.5 1098.8 35.52 816.1 0.82 1062.5 31.25

15 3 17 645.7 16 641.2 654.5 1.36 641.2 0 654.5 2.07
4 27 798.6 24 793.8 869.3 8.85 830.9 4.67 832.2 4.84
5 22 747.3 17 746.7 901.1 20.58 782.3 4.77 841.2 12.66

1 25 999.6 19 997.7 1420.3 42.09 997.7 0 1420.3 42.36
2 26 1177.8 17 1164.0 1359.0 15.38 1273.6 9.42 1262.9 8.50

20 3 23 948.9 19 942.6 1060.8 11.79 1021.6 8.38 1058.0 12.24
4 23 1109.1 19 1109.1 1258.9 13.51 1173.6 5.82 1160.7 4.65
5 26 1102.4 23 1091.2 1335.8 21.17 1139.1 4.39 1287.9 18.03

1 26 1557.8 19 1539.3 1718.4 10.31 1601.2 4.02 1723.6 11.97
2 22 1537.8 20 1537.8 1592.2 3.54 1582.5 2.91 1646.7 7.08

25 3 22 1426.2 19 1416.1 1608.4 12.78 1484.0 4.79 1534.2 8.34
4 26 1425.5 16 1375.3 1626.5 14.10 1375.3 0 1640.6 19.29
5 27 1299.0 22 1292.7 1464.6 12.75 1372.3 6.16 1416.6 9.58

multicommodity transportation networks, there is a stream of literature studying boundedly rational

user equilibria that considers congestion effects in urban commuting networks. Considering the

generalized bounded rationality in user equilibria is certainly a promising future research direction.

One more interesting extension would be the consideration of the generalized bounded rationality

framework in a noncooperative or cooperative game with satisificing players either with perfect or

imperfect information.

Another direction is for solving the robust network design problem. The cutting plane algorithm

presented in this paper restricts certain selective paths from being chosen by adding valid cuts

iteratively. While the cutting plane algorithm performs well for small and medium size networks,

a more efficient algorithm should be developed for large networks (with thousands of nodes and

links).
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Electronic Companion

This Electronic Companion provides additional details of the numerical experiments and sup-

porting materials.

EC.1. Numerical Tests of the Monte-Carlo method and Insights in SM-Sat

We make a comparison of M-Sat and SM-Sat on the Sioux Falls network (shown in Figure EC.1).

Let M = 80% and κ′ = 0.1, κ= 0.1 and we obtain the following result in Figure EC.2 with OD

pair (3,19). The Sioux Falls network is used since it is easier to analyze the specific paths in detail

and computationally efficient to enumerate paths. For M-Sat, Pcov is obtained as 95.3% covering

paths 1–9 as shown in Table EC.1. For SM-Sat, paths 6–9 are eliminated from M-Sat, resulting

in a probability of 84.1%. For path 6, it is an M-Sat path but not an SM-Sat path since it is

dominated by paths 1 and 2. Comparing paths 6 and 1, path 1 has subpath {5,6,8,16,17,19} with

cost 15 while path 6 has subpath {5,9,10,15,19} with cost 17. Comparing paths 2 and 6, path
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Figure EC.2 Comparison of M-Sat and SM-Sat for OD pair (3,19) of Sioux Falls network

Table EC.1 10 shortest paths from Sioux Falls network of OD pair (3,19)

Number Path Links Cost Probability M-Sat? SM-Sat?

1 {3, 4, 5, 6, 8, 16, 17, 19} 21 41.24% X X
2 {3, 4, 5, 9, 10, 16, 17, 19} 22 10.73% X X
3 {3, 4, 11, 14, 15, 19} 22 10.73% X X
4 {3, 12, 11, 14, 15, 19} 22 10.73% X X
5 {3, 12, 13, 24, 21, 22, 15, 19} 22 10.73% X X
6 {3, 4, 5, 9, 10, 15, 19} 23 2.79% X
7 {3, 4, 11, 10, 16, 17, 19} 23 2.79% X
8 {3, 12, 11, 10, 16, 17, 19} 23 2.79% X
9 {3, 12, 13, 24, 23, 22, 15, 19} 23 2.79% X

10 {3, 4, 5, 6, 8, 7, 18, 16, 17, 19} 24 0.73%

2 has subpath {10,16,17,19} with cost 8 while path 6 has subpath {10,15,19} with cost 9. By

enforcing a κ= 10% multiplicative indifference band, path 6 violates the definition of SM-Sat. We

could achieve similar analysis and results on paths 7–9.

We also randomly generate diverse OD pairs on the Sioux Falls network. We only keep the OD

pairs with connected paths and the number of links in the shortest path is no less than 3 for

comparison purpose. We record the percentage covered by the M-Sat paths set and the SM-Sat

paths set with the probability obtained by RUM considering all paths can be chosen. The results

are shown in Table EC.2. The “#links” and “c0” columns record the number of link and cost of the

shortest path without perception error separately. The “Diff %” column records the percentage
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difference between M-Sat and SM-Sat. The differences are all non-negative since SM-Sat is a

subset of M-Sat with the same κ value. We see that with the increase of the bound κ, the covered

percentage gets higher. However, the increased probability for M-Sat and SM-Sat could be different,

which leads to more diverse covered percentages between M-Sat and SM-Sat. We could also find

that with some small κ value (e.g. the values we listed), we are able to cover mostly over 90%.

Furthermore, for many OD pairs and κ values, the SM-Sat and M-Sat set is the same for the Sioux

Falls network and the average percentage difference is very small. Thus the faster method described

for M-Sat still provides a good bound for the SM-Sat.

EC.2. Generating Valid Cuts

Suppose for a certain shipment s, the route solutions of the master problem and the worst case

problem are different. Figure EC.3 illustrates this case. The path containing subpath p is the path

obtained by the master problem while the path containing subpath p̂ is the path obtained by the

worst case problem. p and p̂ are the subpaths that are different. Then we can generate cuts as

follows:

∑
(i,j)∈p

xijs ≤ |p| − 1 + zp, (EC.1)

zp ≤ xijs ∀(i, j)∈ p, (EC.2)∑
(i,j)∈p̂

yij ≤ |p̂| − zp, (EC.3)

zp ∈ {0,1} (EC.4)

where | · | denotes the number of arcs in the path. The binary variable zp = 1 if the path generated by

the master problem contains subpath p. Constraints (EC.1) force zp to take value 1 if
∑

(i,j)∈p xijs =

|p|. Constraints (EC.2) ensure zp = 0 if any of its arcs are not used. Constraints (EC.3) make sure

to close at least one of the arcs of subpath p̂ if the path generated by the master problem contains

subpath p.
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Table EC.2 Comparing SM-Sat and M-Sat

O D #links c0
κ= 5% κ= 10% κ= 15% κ= 20%

M-BR% Diff% M-BR% Diff% M-BR% Diff% M-BR% Diff%

19 18 3 7 98.27 0 98.27 0 100 0 100 0
19 10 3 8 97.09 0 97.09 0 99.92 0 99.92 0
20 8 3 9 100 0 100 0 100 0 100 0
12 5 3 10 100 0 100 0 100 0 100 0
6 3 3 10 100 0 100 0 100 0 100 0
1 13 3 11 100 0 100 0 100 0 100 0

17 11 3 11 99.37 0 99.37 0 99.37 0 99.96 0.58
11 19 3 12 90.53 0 99.11 0 99.11 0 99.92 0.81
14 5 3 12 100 0 100 0 100 0 100 0
5 14 3 12 100 0 100 0 100 0 100 0
9 14 3 12 99.11 0 99.11 0 99.11 0 100 0.89

23 10 3 13 99.29 0 99.29 0 99.29 0 99.93 0.64
12 9 3 14 88.28 0 100 0 100 0 100 0

19 24 4 11 92.31 0 99.37 7.06 99.37 7.06 99.91 0.54
19 24 4 11 92.31 0 99.37 7.06 99.37 7.06 99.91 0.54
5 18 4 11 99.95 0 99.95 0 99.95 0 99.95 0

19 6 4 11 99.95 0 99.95 0 99.95 0 99.95 0
5 18 4 11 99.95 0 99.95 0 99.95 0 99.95 0

13 15 4 12 91.27 0 99.92 8.65 99.92 8.65 99.92 0
8 3 4 12 100 0 100 0 100 0 100 0
5 17 4 13 89.56 0 99.74 0 99.74 0 99.74 0

23 3 4 13 100 0 100 0 100 0 100 0
21 9 4 14 100 0 100 0 100 0 100 0
22 8 4 14 87.85 0 99.50 0 99.50 0 99.50 0
3 21 4 14 100 0 100 0 100 0 100 0
7 11 4 14 99.53 0 99.53 0 99.53 0 99.53 0

11 7 4 14 99.53 0 99.53 0 99.53 0 99.53 0
3 10 4 14 79.03 0 100 0 100 0 100 0
7 1 4 16 99.50 0 99.50 0 99.50 0 100 0.50
7 1 4 16 99.50 0 99.50 0 99.50 0 100 0.50

13 9 4 17 83.92 0 99.83 0 99.83 0 99.83 0
22 5 4 17 97.78 0 97.78 0 97.78 0 99.78 0.67
16 13 4 18 75.69 0 91.43 0 97.97 3.27 99.33 0.68
3 15 4 19 84.13 0 96.79 6.33 99.65 9.19 99.97 3.18

18 4 5 13 99.84 0 99.84 0 99.84 0 99.84 0
19 5 5 15 84.57 0 97.41 0 99.36 0 99.36 0
7 3 5 15 100 0 100 0 100 0 100 0
5 19 5 15 84.57 0 97.41 0 99.36 0 99.36 0
3 22 5 16 85.40 0 100 14.59 100 14.59 100 0

19 2 5 16 99.42 0 99.42 0 99.42 0 99.91 0.50
8 23 5 18 76.95 0 92.94 0 96.27 3.32 99.03 6.09

23 6 5 20 83.44 0 93.59 0 96.06 2.47 99.06 5.47
14 2 5 21 94.35 0 94.35 0 99.34 4.98 99.77 2.09

24 16 6 15 73.24 0 95.48 11.12 98.86 14.50 98.86 1.69
8 13 6 19 97.90 0 97.90 0 97.90 0 99.02 0

23 2 6 23 81.77 0 95.76 0 97.81 0 98.41 0.60

3 19 7 21 84.15 21.46 95.31 11.16 98.94 9.21 99.89 4.57



e-companion to Sun, Karwan and Kwon: Generalized Bounded Rationality and Robust Multicommodity Network Design ec5

1 2 6 7

5

3 4

Origin Destination

Subpath p= 2− 3− 4− 6

Subpath p̂= 2− 5− 6

Figure EC.3 A network case when paths are different

EC.3. Algorithmic Process

We show the algorithmic process using an illustrative example with 1 OD pair (106, 71) solving

the HNDP considering SM-Sat (HNDP-SM-Sat). The WCP is solved by a search algorithm to

choose the path having the highest risk value within the SM-Sat path set. The red thicker solid

links denote the road segments that are closed. The blue solid links denote the chosen route. For

this case, the algorithm takes 27 iterations. Figure EC.4 shows step 24 and the last iteration of the

algorithm. Rm and Cm denote the risk and cost of the MP while Rw and Cw denote the risk and

cost of the WCP. In iteration 24, five road segments are closed, resulting a minimum risk route with

risk value of 767.0. However assuming carriers are subpath multiplicative satisficing, it is possible a

worst case route with risk value 1240.8 is chosen. Since the master problem route and worst case

route are different, the algorithm compares these two routes and generates cuts. Then it proceeds

to the next iteration until the route chosen by the master problem is the same with the worst case

problem, as shown in iteration 27 in Figure EC.4c and EC.4d. For all 27 iterations, we find that 16

of them close 5 arcs. The effort of these 15 iterations is to find the critical arcs that could block all

the SM-Sat paths. We also record the risk values of MP and WCP for all 27 iterations in Figure

EC.5a. We see the MP provides a lower bound while WCP provides an upper bound on the risk.

For this particular case, the MP risk value remains the same since there is much flexibility in closing

arcs to achieve minimum risk. Based on the closed arcs by MP, WCP obtains a worst case risk.

The algorithm stops when MP and WCP achieve the same risk value. More generally, the lower

bound risk value becomes larger with more iteration, providing a better lower bound. We provide

an example solving a case with 20 OD pairs in Figure EC.5b.
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(a) MP network in iteration 24, Rm = 767.0,

Cm = 28898

(b) WCP network in iteration 24,

Rw = 1240.8, Cw = 29099

(c) MP network in iteration 27, Rm = 767.0,

Cm = 28898

(d) WCP network in iteration 27,

Rw = 767.0, Cw = 28898

Figure EC.4 MP and WCP network at iterations 24 and 27 of the cutting plane algorithm for HNDP-SM-Sat

EC.4. Efficiency of the Algorithm

When we solve both MP and WCP optimally and use the cutting plane algorithm, we are able

to obtain an optimal solution. However, we could still solve the robust network design problem

heuristically by simple modifications for cases taking too much time. In order to do that, we could

set a limit on the MP and WCP solving times and the total algorithm time. WCP provides a

solution chosen by the carriers and thus gives a feasible solution to the robust network design

problem. Then the best solution among all the ones generated by the WCPs will provide a lowest
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(a) Example 1 with one OD pair
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(b) Example 2 with 20 OD pairs

Figure EC.5 Risk values of MP and WCP of all iterations for HNDP-SM-Sat

upper bound. MP gives a solution that is most desired by the upper level and the solution of the

robust network design problem is no better than this solution. Thus MP provides a lower bound

on the solution. By obtaining the highest value among all the MP solutions, we could achieve a

best lower bound. Then by comparing the best lower and upper bounds we have, we could obtain a

solution with a quantified optimality gap.

We record the time of solving various OD pairs for both the HNDP considering M-Sat (HNDP-

M-Sat) and HNDP considering SM-Sat (HNDP-SM-Sat) cases in Table EC.3. We test 5 runs for

diverse number of OD pairs: 5, 10, 15, 20 and 25. The test cases are randomly generated such that

the number of links between each OD pair is no smaller than 10 and the distance is higher than

15,000. The demand between each OD pair is uniformly generated from the interval [10,100] and is

rounded to the nearest integer. In obtaining the results, we set α= 0.025 and κ= 0.05. The columns

“MP Time”, “WCP Time” and “Total Time” record the solution time in seconds. The time limit for

solving the master problem is set as 1 hour and the total time limit is set as 5 hours. Column “#

Iter” shows the number of iterations used for solving each instance.

By observing the “MP Time”, “WCP Time” and “Total Time” columns in Table EC.3, we can

see that MP accounts for most of the algorithmic effort. WCP is solved by the search algorithm

described in Section 6.2 and is easy to solve. For HNDP-SM-Sat, all instances are solved to optimality.
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Table EC.3 Time of the algorithm

OD Runs
HNDP-M-Sat HNDP-SM-Sat

MP Time WCP Time Total Time # Iter MP Time WCP Time Total Time # Iter

1 58.2 24.6 83.3 37 41.0 24.3 66.1 31
2 62.2 29.2 92.0 35 83.8 27.7 113.2 30

5 3 37.3 13.2 50.8 21 48.4 22.1 72.0 26
4 10.3 4.2 14.5 7 8.0 4.4 13.6 6
5 33.8 15.3 49.7 22 17.2 10.0 28.4 12

1 84.2 32.9 117.5 18 57.3 30.7 89.7 13
2 175.3 84.1 240.7 40 97.5 51.3 151.7 28

10 3 42.6 22.4 65.3 13 41.0 26.3 69.0 13
4 182.3 64.3 248 40 137.1 65.4 205.2 33
5 56.5 25.7 82.8 17 45.7 25.4 73.6 15

1 153.9 49.2 204.3 20 162.8 59.7 225.3 20
2 160.7 51.5 213.4 20 153.6 59.8 216.3 20

15 3 222.9 63.5 287.8 25 102.9 47.9 153.8 15
4 179.2 47.7 228.1 18 183.9 63.1 250.2 20
5 540.9 78.2 621.3 31 762.2 142.4 909.3 39

1 227.0 69.4 297.7 17 176.8 81.0 261.3 14
2 401.5 84.4 487.8 22 275.9 104.9 385.2 18

20 3 4999.9 162.7 5267.6 44 1864 165.5 2036.1 32
4 514.6 108.0 628.2 27 383.9 111.4 500.8 21
5 2088.1 139.3 2231.9 38 694.3 144.9 845.6 29

1 17933.9 136.3 18075.3 31 1369.9 113.4 1488.5 19
2 1119.5 115.7 1239.0 25 1406.0 165.6 1579.1 30

25 3 3760.4 127.6 3893.9 30 2271.5 156.7 2434.6 24

4 18243.2 141.1 18389.4* 28 4690.1 136.6 4832.7 22
5 4379.5 183.5 4570.9 39 1567.1 163.3 1738.6 25

* This instance is not solved optimally within time limit and the gap is 2.66%.

For HNDP-M-Sat, one test run (run 4 for OD pair number 25) obtains a sub-optimal solution with

a gap between lower and upper bounds of 2.66%. Looking at the column “Total Time”, we find

that for 17 out of the 25 runs, HNDP-M-Sat takes more time to solve, especially when the instances

are harder to solve (OD number of 20 and 25). In some case, obtaining an optimal solution could

be too excessive for HNDP-M-Sat. On average, HNDP-M-Sat takes 1593.8 seconds more to solve

compared to HNDP-SM-Sat. Additionally, by looking at column “# Iter”, we find the M-Sat case

tends to have more iterations than the SM-Sat. For 20 out of the 25 runs, HNDP-M-Sat takes

more iterations. This is since M-Sat only bounds the sum of the perception error instead of the

link specific ones. Thus M-Sat has more flexibility in assigning the perception error and generally

results in more iterations.


