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Abstract

We consider online display advertisement publishers who maximize the revenue by optimal

pricing in an oligopoly setting. Each publisher interacts with others though setting cost-per-

impression (CPM) that affects the demand for everyone. Using the pseudoconcavity of the

objective function, we prove that a unique best response Nash Equilibrium exists for each

publisher. We also consider the sensitivity of the publisher while other publishers changes their

CPM. In both cases, the best response of the publisher depends entirely on her current best

response CPM. We provide an algorithm for finding the equilibrium and illustrate by numerical

examples.
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1 Introduction

With a growing number audience, online advertisement has become an important marketing tool.

With more than 76% US households having Internet access in 2008, the Internet accounts for ap-

proximately 20% of overall media consumption (Marketing Charts, 2008). According to Interactive

Advertising Bureau (2010), online advertising yearly revenue is now nearing $25 billion with a dou-

ble digit yearly growth. The share of Internet in media consumption is expected to be more than

25% by 2011 (Marketing Charts, 2008).

Search and display are two major formats of online advertising having 83% share of the market

(Interactive Advertising Bureau, 2010). Search advertising refers to the use of search engine result

pages such as Google or Bing where user can requests search relevant to keyword(s). The search

engine responds by displaying the advertisements along with the relevant results. As a consumer

makes a search indicating interest, search has more potential in generating instantaneous revenue.

Therefore, search is preferred in many cases and has the biggest share (45%) of the market. Display

advertisement intends on creating consumer awareness or achieve memory rather than instantaneous

response. With technological innovation and creativity, display advertisement is gaining market

share (Interactive Advertising Bureau, 2010). On the other hand, the share of search advertising is
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predicted to start dropping after it reaches 50% market share (Marketing Charts, 2008). Interactive

Advertising Bureau (2010) reports that from 2009 to 2010, the market share for display increased

for 34% to 36% resulting about 5% relative gain while the market share for search remains the

same.

In this paper, we consider a publisher who hosts display advertisements only. In general, pay-

per-view (PPV) pricing mechanism is used for display. Cost-per-impression (CPM) is the pricing

unit for PPV advertisements where loading of a web-page containing intended advertisement at user

request is considered an impression or view. Though CPM is counted in increments of thousands,

we consider unit increment for simplicity. This paper considers a monopoly where the publisher

is willing to optimize advertising revenue by setting the price based on both her own parameter

settings and market demand as a function of her price. Next, an oligopoly is considered where

publishers interact by setting prices that affect the demand for each other. In fact, the current

online advertising market is an oligopoly. According to Interactive Advertising Bureau (2010), the

top 50 companies control 90% of the market share while the top 25 control 82% and the top 10

control 70% of the market share.

Though the Internet was commercially introduced in late 1990’s, Mangani (2004) is known to

be the first to propose a framework of choosing between PPV and search based pay-per-click (PPC)

pricing methods. He considered a quasi-competitive market where each publisher is too small to

influence the market. Fjell (2009) revisited the same problem and found that depending on the

relation between click-trough rate and ratio of PPV and PPC market price, either PPV or PPC

should be chosen, not both. To refine this study further, Kwon (2009) studied a capacity allocation

problem between PPV and PPC advertising and finds mixed contract might be optimal in some

cases. Recently, there have been a number of studies on display advertisements. Fjell (2010) studied

his previous problem under a imperfect competition where a web publisher is a price setter. He

assumed that number of PPV advertisements affects the page-view and hence PPV has the power

to control the market. The issue of web banner (a type of display advertisement) advertisement

scheduling was addressed by Amiri and Menon (2006). A dynamic selection and allocation of

display advertisement model has been studied by Roels and Fridgeirsdottir (2009). Araman and

Fridgeirsdottir (2011) proposed an uniform capacity allocation mechanism. They found a pricing

policy that is easy to implement. A case of impatient advertisers was studied by Fridgeirsdottir

and Asadolahi (2007). This problem was formulated as a queuing model where advertising slots

correspond to servers. Though there has been a good number game theoretic studies, Moon and

Kwon (2010) first studied a bargaining game between publisher and advertiser with option pricing

scheme. To the best knowledge of the authors, an oligopoly between publishers has not been studied

yet. Hence, we propose a monopoly and later an oligopoly where the publishers compete through

setting prices that affects the available exogenous demand for each of them.

In this paper, we begin with a review of traditional optimal contract problem (Section 2). The

publisher’s problem is monopoly settings is studied is Section 3. Section 4 proposes an oligopolistic

game between the publishers. The existence of a unique Nash equilibrium in this game is proved
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and a variational inequality formulation is provided in Section 4.1. In Section 4.2, we study an

oligopolistic game with linear demand as a special case. This is followed by Section 5 where we

propose a method to solve the oligopoly. A numerical example is provided in Section 6. In Section

7, we provide managerial insights on the results. Section 8 concludes the paper.

2 Review of Optimal Contract Problem

In display advertising, pay-per-view (PPV) is a popular pricing method. We consider price-setting

contract problems for display online advertisements with PPV pricing scheme of risk-neutral pub-

lishers in both monopoly and oligopoly settings. Payment for PPV is dependent on cost-per-

impression (CPM), hence the revenue of a publisher depends on her capacity on the number im-

pressions she can handle.

When we consider a publisher’s optimal contract problem, there are two types of display ad-

vertisements with PPV pricing: one is advertisements by direct contracts with the publisher, and

the other is so-called network advertisements (Roels and Fridgeirsdottir, 2009). The former type,

henceforth termed as PPV advertisements, specifies a number to display the advertisements within

a certain time-frame. Network advertisements are sourced through third-parties or network agen-

cies who makes the contact with the advertisers. These network advertisements are always available

for a flat rate lower price. The publisher generally tends to go for network advertisements to utilize

the unused capacity after displaying the PPV advertisements.

When the publisher makes a direct contract with an advertiser to display a PPV advertisement,

she promises a certain number of displays. For some reasons, when the publisher cannot display the

contracted number, she has two options. She may consider refund to the advertiser for un-displayed

numbers, or she may carry them over to the next time period. In the former case, the unit refund

would be greater than or equal to the marginal revenue collected at the time of contract. We call

this direct penalty. In the latter case, the publisher may lose potential contracts because of the

carried-over, which we call indirect penalty. Therefore, for any strategy the publisher may take,

there is a penalty when the contracted number of displays is not fulfilled. However, for network

advertisements, there is no such promise on the number of displays but its marginal revenue is

much smaller than PPV advertisements.

As the direct or indirect penalty is an important component of the operation of online advertising

systems, the number of page-views for the future time period is critical to the publisher. A page-

view is defined as a request to load a single page on a visitor’s screen. This number is definitely

subject to uncertainty, i.e., the publisher can only have a forecast on this value i.e., the cumulative

probability function (cdf), F (·) and probability density function (pdf), f(·) are known. We use a

random variable X to denote the uncertain number of page-views during the time period of interest.

Let v denote the aggregate number of displays to promise. The CPM and penalty are denoted

by p and h, respectively. Although CPM is the cost for a thousand impressions, we use p for one
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impression, for simplicity. Then, with the page-view X, the revenue of the publisher is:

R(v) = pv − h(v −X)+ + q(X − v)+ (1)

where x+ = max(x, 0) and q is the publisher’s revenue per page-view of network advertisement.

When there are extra page-views after fulfilling all contracts, the publisher will use those extra

capacities for network advertisement. It is reasonable to assume that q ≤ p ≤ h. The publisher

would not have any incentive to prefer PPV advertisement if q > p. Also, the publisher would

prefer unlimited PPV if p > h. When we have the distribution information of X, the optimization

problem

max
v

E[R(v)] (2)

is a simple stochastic optimization problem. Its solution is easily obtained as:

v∗ = F−1

(
p− q
h− q

)
(3)

Ahmed and Kwon (2010) has studied problem (2) and found that it has a similar structure to the

newsvendor problem and in fact, they are equivalent. The main difference between the two problems

is that demand information is uncertain in the newsvendor problem, while capacity (page-views)

is uncertain in the optimal contract problem (2).

Consider a newsvendor who has to make decision everyday about the amount of paper Q he

would be ordering before start delivering the paper and observe the realized demand D. The

purchase cost of paper is c per paper and he sells them at a rate of π per paper. The actual

demand D is an unknown a priori but characterized by cdf, G(.) and pdf, g(.) respectively. At

the end of the sales, the excess papers are returned and he receives the salvage price s per paper.

We assume π > c > s, while s can be negative. The cost of lost opportunity of selling is l per unit.

The optimum ordering quantity for the risk-neutral newsvendor can be derived as:

Q∗ = G−1

(
π + l − c
π + l − s

)
(4)

With p = π − c, h = π − s, q = −l and X = D, we find Q∗ = v∗ and thus newsvendor problem is

equivalent to publisher’s problem (2). Closing this section, we introduce the following definitions

for the rest of the paper:

Definition 1. A function f from K ⊆ R into R is said to be

1. pseudoconcave if for all x1, x2 ∈ K,

∂f(x1)

∂x
(x2 − x1) ≤ 0 =⇒ f(x2) ≤ f(x1)
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2. strictly pseudoconcave if for all x1, x2 ∈ K when x1 6= x2,

∂f(x1)

∂x
(x2 − x1) ≤ 0 =⇒ f(x2) < f(x1)

Definition 2. A mapping F from K ⊆ Rn into Rn is said to be

1. pseudomonotone if for all x, y ∈ K,

F (y)T (x− y) ≥ 0 =⇒ F (x)T (x− y) ≥ 0

2. strictly pseudomonotone if for all x, y ∈ K when x 6= y,

F (y)T (x− y) ≥ 0 =⇒ F (x)T (x− y) > 0

Definition 3. A mapping F from K ⊆ Rn into Rn is Lipschitz continuous with modulus L if there

exists a constant L ≥ 0 such that

||F (x)− F (y)|| ≤ L||x− y||

for all x, y ∈ K.

3 Monopoly Setting: Stochastic Page-View and Deterministic De-

mand

Suppose h and q are fixed. For any given price p > 0 and (random) page-view X, the revenue is:

r(v, p,X) = pv − h(v −X)+ + q(X − v)+

where x+ = max(x, 0). The optimal contract size is:

v(p) = arg max
v≥0

EX [r(v, p,X)] = F−1

(
p− q
h− q

)
(5)

where F is the cumulative distribution function of X and F−1 is its inverse. Note that the optimal

contract size in (5) does not depend on the demand which is impacted by the CPM set by the

publisher. If the demand is greater than v(p), the publisher should reject some portion of demand.

If the demand is less than v(p), the contract size is set to the demand size. As a result, the

realized size of the contract and the resultant revenue depend on demand as well. We assume that

the demand depends on the price and denote it by d(p). To avoid trivial cases, we assume that

d(q) > v(q) and v(h) > d(h). Hence, the realized contract size m(p) is:

m(p) ≡ min(v(p), d(p)) = min

(
F−1

(
p− q
h− q

)
, d(p)

)
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The expectation of the realized revenue is then:

R(p) = E[r(m(p), p,X)]

We are interested in the following optimization problem:

max
p≥0

R(p) subject to q ≤ p ≤ h (6)

where

R(p) = pm(p)− hE[(m(p)−X)+] + qE[(X −m(p))+]

= (p− q)m(p) + qµ− (h− q)m(p)F (m(p)) + (h− q)
∫ m(p)

0
xf(x)dx (7)

and µ = E[x]. Note that v(p) is an increasing function. We make the following assumptions on the

demand function d(p):

Assumption 1. The demand function d(p) satisfies following regularity properties:

1. p is defined on Ω = [q, h].

2. limp→h d(p) = ε, where ε is a small and economically meaningless value.

3. d(p) is continuous, bounded, and twice continuously differentiable in p on Ω.

4. d(p) is strictly decreasing; i.e., ∂d(p)
∂p < 0, on Ω.

5. d(p) is either convex, concave or both; i.e., ∂d(p)
∂p is monotone.

Properties 1, 2, and 3 are standard. As p→ h, d(p) becomes infinitesimally small. This rules out

the possibility that p becomes infinite. The assumption that demand function is strictly decreasing

(Property 4) refers to most general case of price elasticity of demand. Except two theoretical cases

of Veblen good and Giffen good, this assumption is almost universal.

Figure 1 shows v(p) for a gamma page-view distribution, logit demand d(p) and the correspond-

ing m(p). The corresponding revenue function is shown in Figure 2.

Since d(p) is strictly decreasing and v(p) strictly increasing, m(p) can be defined as:

m(p) =

{
v(p) if q < p < p̄

d(p) if p̄ ≤ p
(8)

where p̄ is the price such that v(p̄) = d(p̄). Since v(p) is strictly increasing and d(p) is strictly

decreasing, such p̄ is unique. When m(p) = v(p), the revenue function becomes:

Rv(p) = (p− q)v(p) + qµ− (h− q)v(p)F (v(p)) + (h− q)
∫ v(p)

0
xf(x)dx (9)
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Similarly, when m(p) = d(p), we obtain

Rd(p) = (p− q)d(p) + qµ− (h− q)d(p)F (d(p)) + (h− q)
∫ d(p)

0
xf(x)dx (10)

Note that both Rv(p) and Rd(p) are continuous. Therefore the continuity of R(p) is easily verified

as Rv(p̄) = Rd(p̄). We can also show that R(p) is continuously differentiable (see Appendix).

We observe that a solution to the problem (6) always concurs with Rd(p):

Lemma 1. With increasing v(p) and decreasing d(p), the publisher needs to consider the exogenous

demand only in setting the optimal price. That is

p∗ ≡ arg maxR(p) = arg maxRd(p)

In addition, we have p∗ ∈ [p̄, h] where p̄ is defined in (8).

Proof. The proof is found in Appendix. In the rest of this paper, all omitted proofs are also found

in Appendix.

Lemma 1 implies that instead of the problem (6), we have the following publisher’s problem:

maxRd(p) = (p− q)d(p) + qµ− (h− q)d(p)F (d(p)) + (h− q)
∫ d(p)

0
xf(x)dx (11)

subject to p ∈ Ω

In the game model we will be considering later, the shape of Rd is important.

Proposition 1. The revenue function Rd(p) is strictly pseudoconcave for p ∈ Ω under Assumption

1.

Since Rd(p) is strictly pseudoconcave, there exists a unique p∗ ∈ Ω. The optimality condition
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is provided in a variational-inequality form: p∗ ∈ Ω is a solution if and only if

∂Rd(p∗)

∂p
(p− p∗) ≤ 0 ∀p ∈ Ω (12)

This variational inequality form of the optimality condition will be used to formulate an equilibrium

problem in an oligopoly of several publishers.

4 Oligopolistic Pricing Game of Publishers

We provide a formulation for an oligopolistic competition of publishers, where each publisher’s

demand depends on own price as well as other publishers’ prices. While we maintain the same

modeling framework as in the monopoly case considered in the previous section, we need to modify

the demand function and the feasible set of each player accordingly.

Let us consider the publisher i’s revenue of the form:

ri(vi, pi, Xi) = pivi − hi(vi −Xi)
+ + qi(Xi − vi)+

where the subscript i denotes the publisher i’s parameters and variables as those are already defined

in the previous section. Without considering exogenous demand, the optimal contract size is as

follows:

vi(pi) = arg max
vi≥0

EXi [ri(vi, pi, Xi)] = F−1
i

(
pi − qi
hi − qi

)
We assume that the demand of publisher i depends on its own price pi and other publisher’s prices

as well. We denote the publisher i’s demand by di(pi, p−i), where p−i is the vector of prices of all

publishers except publisher i . Since a publisher cannot make a contract whose size is greater than

the demand, the realized contract size becomes

mi(pi, p−i) = min(vi(pi), di(pi, p−i))

The realized revenue is then

Ri(pi, p−i) = EXi [ri(mi(pi, p−i), pi, Xi)]

We have already proved that a publisher needs to consider exogenous demand in maximizing

her revenue. Denoting the optimal prices of other publishers by p∗−i, we consider the following

problem of each publisher i (best response problem):

max
pi

Ri(pi, p
∗
−i) = max

pi
Rdi (pi, p

∗
−i) = (pi − qi)di(pi, p∗−i) + qiµi

− (hi − qi)di(pi, p∗−i)Fi(di(pi, p∗−i)) + (hi − qi)
∫ di(pi,p

∗
−i)

0
xf(x)dx (13)
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subject to

pi ∈ Ωi(p
∗
−i) ≡

{
pi : qi ≤ pi ≤ hi, di(pi, p

∗
−i) ≥ 0

}
Note that the set of feasible price of publisher i depends on the other publishers’ optimal price

p∗−i. This leads to a generalized Nash equilibrium problem (Pang and Fukushima, 2005). However,

with some mild assumptions on the demand function, we can provide a regular Nash equilibrium

problem formulation; we will discuss this later in this section.

We make the following assumptions in consistent to Assumption 1:

Assumption 2. For any publisher i, i = 1, . . . , n, the demand di(pi, p−i) satisfies the following

regularity properties:

1. Each pi is defined on Ωi = [qi, hi].

2. for all p−i ∈ Ωi, limpi→hi di(pi, p−i) = ε, where ε is a small and economically meaningless

value. In other words, infpi∈Ωi di(pi, p−i) = ε.

3. di(pi, p−i) is continuous, bounded, and twice continuously differentiable on the strategy space

Ω = Ω1 × . . .× Ωn.

4. ∂di(pi, p−i)/∂pi < 0.

5. di(pi, p−i) is either convex or concave or both; i.e., ∂di(pi, p−i)/∂pi is monotone.

6. ∂di(pi, p−i)/∂pj > 0 for all j 6= i.

Succeeding the exposition of the previous section, we obtain the following result:

Lemma 2. Suppose Assumption 2 holds. For any given p−i ∈
∏n
j=1,j 6=i Ωj, the revenue function

Ri(·, p−i) of publisher i is continuously differentiable and strictly pseudoconcave on Ωi.

Let us define

p = [p1, p2, ..., pn]T (14)

H(p) =

[
−∂R

d
1(p)

∂p1
,−∂R

d
2(p)

∂p2
, ...,−∂R

d
n(p)

∂pn

]T
(15)

(16)

Then, it is easy to prove the pseudomonotonicity of H following Theorem 3.1 of Karamardian

(1976).

Lemma 3. When Rdi is a strictly pseudoconcave function of pi, the mapping H(·) is strictly pseu-

domonotone on
∏n
i=1 Ωi.

Since Ω is non-empty and compact, a solution of variational inequality problem with the map-

ping (15) exists (Crouzeix, 1997). In Section 5, we formulate the variational inequality as a fixed-

point problem and the apply extragradient method to solve (15) using Lemma 3.

In Sections 4.1 and 4.2, we will formulate variational inequality for the equilibrium problems.
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4.1 Nash Equilibrium Problem for Strictly Positive Demand

In this section, we consider demand functions that satisfy the following assumption, in addition to

Assumption 2:

Assumption 3. Each publisher’s demand is strictly positive at pi = hi for all cases, i.e., di(hi, p−i) >

0 for all p−i ∈
∏n
j=1,j 6=i Ωj.

With this assumption, each publisher’s feasible set is reduced to the set Ωi = {pi : qi ≤
pi ≤ hi} which is independent of p−i; therefore the corresponding equilibrium problem becomes a

regular Nash equilibrium problem, which is easily solved under the assumptions made in this paper.

Examples of such demand functions include the following popular functions:

• Multinomial Logit Demand: di(pi, p−i) = D exp(−λipi)∑n
j=1 exp(−λjpj)

• Exponential Demand: di(pi, p−i) = exp
(
ai − biipi +

∑n
j=1,j 6=i bijpj

)
• Constant-Elasticity Demand: di(pi, p−i) = aip

−bi1
1 pbi22 · · · p

bii
i · · · pbinn

The linear demand function is discussed in the next section, as it does not satisfy Assumption 3.

Under Assumption 3, the best response problem of publisher i is as follows:

max
pi

Rdi (pi, p
∗
−i) = (pi − qi)di(pi, p∗−i) + qiµi

− (hi − qi)di(pi, p∗−i)Fi(di(pi, p∗−i)) + (hi − qi)
∫ di(pi,p

∗
−i)

0
xf(x)dx (17)

subject to

pi ∈ Ωi = {pi : qi ≤ pi ≤ hi} (18)

With the strict pseudoconcavity of Rdi (·, p−i), we may write its optimality condition as the following

variational inequality problem: to find pi ∈ Ωi such that

∂Rdi (p
∗
i , p
∗
−i)

∂pi
(pi − p∗i ) ≤ 0 ∀pi ∈ Ωi (19)

Concatenating for all publishers, we obtain the following variational inequality formulation for the

equilibrium problem: to find p∗ ∈ Ω such that

H(p∗)T (p− p∗) ≥ 0 ∀p ∈ Ω (20)

10



where

p = [p1, p2, ..., pn]T

H(p) =

[
−∂R

d
1(p)

∂p1
,−∂R

d
2(p)

∂p2
, ...,−∂R

d
n(p)

∂pn

]T
Ω =

n∏
i=1

Ωi

The problem (20) is a n-dimensional variational inequality problem with a strictly pseudomonotone

operator and a nonempty, convex and compact feasible set. This class of problems has a well-

developed literature; see Facchinei and Pang (2003) and Harker and Pang (1990). We want to

assure that the equilibrium described by (20) exists. We provide the following result:

Proposition 2 (Existence and Uniqueness of Nash Equilibrium). Under Assumptions 2 and 3,

there exists a solution to the variational inequality problem (20); hence a Nash equilibrium exists.

Further, since H is strictly pseudomonotone, it is unique.

Proof. The set Ω obviously is a nonempty, compact and convex subset of Rn and H is a continuous

mapping from Ω into Rn. Therefore applying Browder’s fixed-point theorem (Browder, 1968),

the existence of Nash Equilibrium is proved. The uniqueness of the solution when F is strictly

pseudomonotone is assured by Lemma 3.2 of Yao (1994).

The algorithm for obtaining the equilibrium will be discussed in Section 5.

4.2 Nash Equilibrium Problem with Linear Demand

In this section, we consider linear demand functions. It is apparent that linear demand functions

does not satisfy Assumption 3; therefore we cannot directly obtain a regular Nash equilibrium

problem. We consider the set

Ωi(p−i) ≡ {pi : qi ≤ pi ≤ hi, di(pi, p−i) ≥ 0} (21)

where Ωi depends on others’ prices p−i. This general consideration will generally lead to a general-

ized Nash game and the corresponding quasi-variational inequality of the form: to find p∗ ∈ Ω(p∗)

such that

H(p∗)T (p− p∗) ≥ 0 ∀p ∈ Ω(p∗) (22)

where

Ω(p∗) =

n∏
i=1

Ωi(p
∗
−i) (23)

Quasi-variational inequalities (QVI) are relatively less studied than variational inequalities and

generally harder to solve (Pang and Fukushima, 2005). However, in this section, we will show that
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the pricing game can be described by a variational inequality, not a quasi-variational inequality.

We make the following assumption of linear demand:

Assumption 4. Each demand function di(pi, p−i) is linear in pi and each component of p−i, i.e.,

it is of the form di(pi, p−i) = ai − biipi +
∑n

j=1,j 6=i bijpj.

With this assumption, the set of feasible prices is

Ωi(p−i) =

{
pi : qi ≤ pi ≤ hi, ai − biipi −

n∑
j=1,j 6=i

bijpj ≥ 0

}
(24)

For the linear demand case, we provide the following lemma:

Lemma 4. Under Assumption 4, for all p−i, the unconstrained solution of publisher i is not

bounded by the nonnegativity constraint of demand. That is,

qi ≤ p∗i,unconstrained ≤ pmax
i (p−i) (25)

where p∗i,unconstrained = arg maxpi R
d
i (pi, p−i) and pmax

i is the smallest price at which di(p
max
i , p−i) =

0.

Lemma 4 indicates that we need to consider only the basic interval constraint qi ≤ pi ≤ hi, i.e.,

Ωi = {qi ≤ pi ≤ hi}

Consequently, the equilibrium problem is described by the following variational inequality:

H(p∗)T (p− p∗) ≥ 0 ∀p ∈ Ω (26)

Then we obtain the existence and uniqueness of the solution to (26).

Proposition 3 (Existence and Uniqueness of Nash Equilibrium). Under Assumptions 2 and 4,

there exists a unique solution to the variational inequality problem (26); hence a Nash equilibrium

exist.

From Propositions 2 and 3, the equilibrium exists and is unique under both Assumptions 3 and

4. In Section 5, we discuss how we obtain the equilibrium.

4.3 Sensitivity Study

We are now interested in the best response of player i, when other players’ strategies and own

set of feasible actions change. We first consider the case when the best response of player i is

strictly within the boundary, i.e., p∗i ∈ (qi, hi). In this case, p∗i must satisfy the following optimality

condition:

∂Rd(pi, p−i)

∂pi

∣∣∣∣
pi=p∗i

= di(p
∗
i , p−i) + {(p∗i − qi)− (hi − qi)F [di(p

∗
i , p−i)]}

∂di(pi, p−i)

∂pi

∣∣∣∣
pi=p∗i

= 0 (27)
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Let us define G(p∗i , p−i) = (p∗i − qi) − (hi − qi)F [di(p
∗
i , p−i)]. We observe that G(p∗i , p−i) ≥ 0

and ∂2di(pi,p−i)
∂pi∂pj

∣∣∣
pi=p∗i

≤ 0. Using implicit differentiations, we obtain the following results from (27):

∂pi
∂qi

∣∣∣∣
pi=p∗i

= 1− F [di(p
∗
i , p−i)] ≥ 0 (28)

∂pi
∂hi

∣∣∣∣
pi=p∗i

= F [di(p
∗
i , p−i)] ≥ 0 (29)

and

∂pi
∂pj 6=i

∣∣∣∣
pi=p∗i

=
1

di(p∗i , p−i)

[
{G(p∗i , p−i) + (hi − qi)f [di(p

∗
i , p−i)] di(p

∗
i , p−i)}

∂di(pi, p−i)

∂pj

∣∣∣∣
pi=p∗i

− ∂2di(pi, p−i)

∂pi∂pj

∣∣∣∣
pi=p∗i

G2(p∗i , p−i)

]
≥ 0 (30)

From (28), we note that p∗i may increase when qi increases. However, the rate of change of p∗i is

comparatively less than qi as the right-hand-side of (28) is less than 1. Similarly, we find that p∗i
may increase when hi increases though at a comparatively slower rate than hi as equation (29)

suggests. From equation (30), we find that p∗i would increase as pj would increase. However,

simplifying the rate of change of p∗i may be analytically difficult.

Now we consider the cases when the best response player i is at the boundary, i.e., p∗i = qi or

p∗i = hi. For p∗i = qi, we obtain the following lemma:

Lemma 5. If the best response of player i is such that p∗i = qi, we obtain the following result:

∂Rdi (pi, p
∗
−i)

∂pi

∣∣∣∣∣
pi=qi

= 0 (31)

Also, in this case we have p∗i = qi = p̄i and mi(p
∗
i ) = v(p̄i) = di(p̄i, p

∗
−i) = 0, where p̄i is defined as

similar as in (8)

While qi is a bound for feasible pi, this lemma indicates that the first-order optimality condition

(27) always holds when p∗i = qi; therefore, the same sensitivity results as before also apply.

We consider the effect of change of pj 6=i while p∗i = qi. As pj 6=i increases, di(pi, p−i) also increases

from 0. To respond to other publishers’ change in strategies, the publisher will have the same

demand for a CPM, p̃i > p̄i = qi. This would result in v(p̃i) > di(p̃i, p
∗
−i) i.e. mi(p

∗
i ) = di(p̃i, p

∗
−i).

As a result, increasing her own CPM, pi will be the best response to the increase of other publishers’

CPM.

We provide the following lemma for the case when p∗i = hi.

13



Lemma 6. If the best response of player is such that p∗i = hi, we obtain the following result:

∂Rdi (pi, p
∗
−i)

∂pi

∣∣∣∣∣
pi=hi

≥ 0 (32)

We now consider the effect of change of pj 6=i while p∗i = hi. As pj 6=i decreases di(pi, p−i) also

decreases. However, as long as
∂Rd

i (pi,p
∗
−i)

∂pi

∣∣∣∣
pi=hi

> 0, the best response of player i would remain

same, i.e. p∗i = hi. If pj 6=i decreases in way such that
∂Rd

i (pi,p
∗
−i)

∂pi

∣∣∣∣
pi=hi

= 0, further decrease would

result in decrease of di(p
∗
i , pi). In this case, as we find in equation (30), player i’s best response

CPM, p∗i decreases.

5 Fixed-Point Reformulation and Extragradient Method

In both cases, we have a finite-dimensional variational inequality problem with the pseudomonotone

operator mapping. While there are many methods are available for monotone problems in the

literature, there are limited numbers of methods for pseudomonotone problems. In this section, we

consider the Extragradient Method (Facchinei and Pang, 2003).

Most methods for solving variational inequality problems rely on the fixed-point problem refor-

mulation of the variational inequality. The variational inequality problem (20) is equivalent to the

following fixed-point problem:

p = PΩ[p− αH(p)] (33)

where PΩ[·] is the projector on Ω with a constant α > 0. In particular, PΩ[x] is the solution of the

following minimum norm projection problem:

min
y∈Ω

(y − x)T (y − x) (34)

Note that (34) is a convex quadratic minimization problem, which is usually easily solved. Based

on (33), the following is the basic projection algorithm (or fixed-point algorithm):

pk+1 = PΩ[pk − αH(pk)] (35)

at each iteration k. While the convergence of this scheme for monotone problems is assured, we

need an advanced method for solving pseudomonotone problems. The iterative scheme of the

Extragradient Method is:

pk+1 = PΩ

[
pk − αH

(
PΩ[pk − αH(pk)]

)]
(36)
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or

qk+1 = PΩ[pk − αH(pk)] (37)

pk+1 = PΩ[pk − αH(qk+1)] (38)

where we take an extra step in each iteration. The convergence is assured by the following result.

Proposition 4 (Convergence). Suppose the mapping H is Lipschitz continuous on Ω with modulus

L. The Extragradient Method converges to a solution of the variational inequality problem (20) for

all α ∈ (0, 1/L).

Proof. Since H is pseudomonotone and Ω is a closed convex set, the convergence of the Extragra-

dient Method is assured by Theorem 12.1.11 of Facchinei and Pang (2003).

6 Numerical Results

In this section, we use a numerical example of an asymmetric oligopoly to gain certain insights

about the equilibrium. We use the popular logit demand model:

Di(p) = D
exp(−aipi)

1 +
∑n

j=1 exp(−ajpj)
, where ai > 0, aj > 0

We consider an oligopoly where the publishers are asymmetric. The total market demand is assumed

to be D = 20000. The page-view is considered identical and follows gamma distribution with shape

factor α = 2 and scale factor β = 1000. To find different possible scenarios, we consider five set of

asymmetric publishers with different set of parameters chosen randomly such that qi ∈ [0.25, 1.25],

hi ∈ [1.5, 5], and ai ∈ [0.5, 1.5] for all publishers. Figure 3 shows the effect of number of publishers

(n) on optimal CPM of player 1 (p∗1). We find that p∗1 decreases as the number of competitors

n increases. The demand for publisher 1 (d1(p∗1, p
∗
−1)), in a similar manner, always decreases

as n increases (Figure 4). Similar to demand, Figure 5 shows that the revenue for publisher 1

(R1(p∗1, p
∗
−1)) decreases as n increases. As p∗1 as well as d1(p∗1, p

∗
−1) decreases with the increase of

n, the total market revenue increases with a decreasing rate with increasing number of publishers

(Figure 6).

We consider a game of five asymmetric publishers to find the effect of change of strategy space

(network CPM, q1 and the penalty, h1) of publisher 1. For logit demand (D = 5000) and identical

gamma distribution of page-view with shape factor α = 2 and scale factor β = 1000, we consider

the change of the penalty (h1) first. The parameters are chosen in similar manner mentioned above.

We consider network CPM, for publisher 1, q1 = 0.25. In this case, we find two scenarios. First, as

seen in Figure 7, p∗1 decreases as h1 decreases from the highest value, at a slower rate than h1 as we

have found in (29). With further decrease of h1, eventually we find a point hα1 such that p∗1 = h1.

This relation, p∗1 = hi remains same for any h1 ≤ hα1 . In the second case (Figure 8), we also have a

critical point hα1 such that for any h1 ≤ hα1 , we have p∗1 = h1. However, if h1 very high (h1 > hα1 ),
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we have p∗1 = q1. This indicates that when h1 is sufficiently small, the publisher will set p1 equal

to h1 as she loses very little as penalty. However, for large values of h1, the publisher should either

set p∗1 = h1 or p∗1 = q1. In case p∗1 = h1, the publisher does not have any actual penalty. She simply

loses the potential revenue. When p∗1 = q1, the possible volume of penalty becomes too high and

the publisher is rather safe to go for network advertisement only. We also study the effect of change

of network CPM, q1 for same gamma distribution. In this case, we consider penalty, for publisher

1, h1 = 5. Figure 9 shows the effect of change of q1 on p∗1. As suggested by equation (28), this

figure shows that p∗1 increases at a slower rate than q1 for q1 ≤ qα1 . For q1 > qα1 , if p∗1 reaches h1

while q1 = qα1 , p∗1 remains equal to h1 for q1 > qα1 .

We consider an asymmetric game of two publishers to study the effect of change of best response

strategy of one publisher as the other changes his CPM. We consider logit demand model again

(D = 2000) and identical gamma distribution. Again, the parameters are chosen at random such

that qi ∈ [0.25, 1.25], hi ∈ [3, 5], and ai ∈ [0.5, 1.5] for both the publishers. We find that (as equation

(30) suggests) one publisher increases her best response CPM as the other publisher increases her

CPM (Figure 10). Note that even though the other publisher makes a large change of the CPM,

the range of best response for a publisher is quite small i.e. the level of sensitivity is very low.
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Figure 3: Optimal CPM of publisher 1, p∗1 as the
number of publishers changes
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Figure 4: Change of demand of publisher 1,
d1(p∗1, p

∗
−1) as the number of publishers changes

7 Managerial Insight

As we have seen in Section 6 (Figures 3-6), a publisher’s response to the level of competition is

somewhat consistent with what we observe in other markets where players tend to lower prices in

response to more competition. The optimal pricing for a publisher decreases as the level of compe-

tition increases. Each new competitor affects demand of a publisher differently, and depending on

demand variations, a publisher may decide to make a small decrease in her CPM or a significant

16



0 10 20 30 40 50
1200

1700

2200

2700

3200

n

 R
ev

en
u

e 
o

f 
P

u
b

lis
h

er
 1

 

 

 

run 1
run 2
run 3
run 4
run 5

Figure 5: Revenue for publisher 1, R1(p∗1, p
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−1) as

the number of publishers changes
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Figure 6: Total revenue as the number of publish-
ers changes
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Figure 7: Optimal CPM, p∗1 for publisher 1 as
penalty, h1 changes (Case 1)

0 1 2 3 4
0

0.5

1

1.5

h
1

p
1*

q
1 h

1h
1
α

Figure 8: Optimal CPM, p∗1 for publisher 1 as
penalty, h1 changes (Case 2)

pricing adjustment.

In terms of pricing in the face of uncertainty, we observe (Figure 11) that as the variance

increases, the publisher increases price. With increased variance in page-view, the risk increases.

Each publisher responds to the increased risk by increasing own price. This is also common in

other markets.

However, the publisher’s optimal response to changes of the penalty parameter is not straight-

forward and not comparable to other markets (Figures 7-8). It is because the penalty is specific

to the online advertisement context. As the penalty increases, the publisher has two completely

different courses of actions, either to increase CPM proportionally or to choose network advertise-

ment only. The publisher’s sensitivity to other publisher’s change of CPM is very low (Figure 10).

Any unilateral change in CPM affects the total demand as well as respective demand of all the

publishers. However, responding to this change in demand by changing CPM may not be always

optimal for a publisher. An increase in price may result in reduction of total demand and may

even decrease own demand resulting lower expected revenue. On the other hand, the net increase
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of own demand due to lowered CPM may result in lower expected revenue.
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Figure 11: Optimal pricing for different level of competition and uncertainty (variance)

8 Conclusion

In online display advertisement, revenue is generated through impression based pricing which uses

pay-per-view (PPV) with cost-per-impression (CPM) as pricing basis. Accordingly, CPM is an

important consideration for maximizing revenue. Both page-view capacity as well as market demand

determine the actual contract size and the resultant revenue. Here, we consider a publisher who

wants to maximize her revenue by setting the CPM. She also needs to consider the corresponding

market demand and suggested contract size based on her pricing range and page-view distribution.

The optimal size for the publisher in this case is the minimum of the two mentioned above.

The publisher’s problem has been studied in both monopoly and oligopoly settings. In monopoly
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setting, the publisher’s expected revenue function is found to be strictly pseudo-concave resulting

in an unique revenue maximizing CPM. We also find that the revenue maximizing CPM lies in a

region where the market demand is less than or equal to the suggested contract size. The market

demand decreases and suggested contract size increases as the CPM increases. For every suggested

contract size for a CPM, there is an exactly same market demand at a higher CPM resulting in

more revenue. Therefore, in setting optimal CPM, the publisher needs to consider the market

demand only.

In the oligopolistic setting, we consider a game where every publisher considers her own strategy

space as well as the CPMs set by the other publishers. In this game, the publishers interact by

setting individual CPMs that determine the available demand for each of the publishers. As the

number of publishers increases, the optimal CPM of each publisher decreases as each responds to

lower demand resulting from more competition. Accordingly, revenue for each publisher decreases

as the number of competitors increases.

In general, in both monopoly and oligopoly settings, the optimal CPM increases as either

network CPM or penalty rate for unfulfilled display increases. However, these results are not

general. As network CPM increases, optimal CPM increases first and will eventually reach penalty

rate and would remain there as network CPM increases. Here, the publisher would go for PPV

advertisement if CPM is equal to the penalty rate and she gets revenue exactly for what she could

show and does not incur any penalty. While penalty rate increases, the optimal CPM increases and

remains exactly same as penalty rate. However, there exists a value of penalty rate above which

the CPM either increases at a slower rate or becomes equal to network CPM. In the last case, the

penalty is very high and the publisher should display network advertisement only.

The sensitivity of a publisher’s best response in oligopoly while other publishers are changing

respective CPM depends not only on others’ behavior but also on her own strategy space. If

optimal CPM is strictly within the strategy space i.e., between network CPM and penalty rate,

each publisher should increase price while the other publishers increase the CPM. If the publisher’s

optimal CPM is found to be equal penalty rate, the best response of the publisher remains insensitive

for a while as other publishers are decreasing the CPM. As the other publishers are decreasing their

CPM, the demand for publisher remains so high that she could still charge the same CPM. However,

if the other publishers decrease their CPM sufficiently, then the demand will be considerably low

and she has to decrease the CPM as appropriate response. On the other hand, if optimal CPM is

equal to network CPM, she increases CPM as the network CPM increases though at a slower rate.

In this paper, we find that a publisher needs to consider market demand exclusively in choosing

CPM and subsequent contact decision. This result is valid for both monopoly as well as oligopoly

settings. Future research direction could include the consideration of search based advertising, more

specifically click-through rate (CTR) and corresponding pay-per-click (PPC). In such a scenario,

the publisher might be willing to balance between this two types of advertising format considering

the demand based on pricing of them.

19



References

Ahmed, M. T. and C. Kwon (2010). Optimal Contract Problems in Online Advertising with Risk

Considerations. Working paper .

Amiri, A. and S. Menon (2006). Scheduling web banner advertisements with multiple display

frequencies. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions

on 36 (2), 245–251.

Araman, V. and K. Fridgeirsdottir (2011). A Uniform Allocation Mechanism and Cost-per-

Impression Pricing for Online Advertising. Working paper.

Browder, F. (1968). The Fixed Point Theory of Multi-valued Mappings in Topological Vector

Spaces. Mathematische Annalen 177 (4), 283–301.

Cambini, A. and L. Martein (2009). Generalized convexity and optimization: theory and applica-

tions. Number 616. Springer Verlag.

Crouzeix, J. (1997). Pseudomonotone variational inequality problems: existence of solutions. Math-

ematical Programming 78 (3), 305–314.

Facchinei, F. and J. Pang (2003). Finite-dimensional Variational Inequalities and Complementarity

Problems. Springer Verlag.

Fjell, K. (2009). Online advertising: Pay-per-view versus pay-per-click: A comment. Journal of

Revenue and Pricing Management 2 (3), 200–206.

Fjell, K. (2010). Online advertising: Pay-per-view versus pay-per-click with market power. Journal

of Revenue & Pricing Management 9 (3), 198–203.

Fridgeirsdottir, K. and S. Asadolahi (2007). Revenue management for online advertising: Impatient

advertisers. Technical report, Working paper, London Business School.

Harker, P. and J. Pang (1990). Finite-dimensional Variational Inequality and Nonlinear Comple-

mentarity Problems: A Survey of Theory, Algorithms and Applications. Mathematical Program-

ming 48 (1), 161–220.

Interactive Advertising Bureau (2010, October 12). Internet Ad Revenues Break Records, Climb

to More Than $12 Billion for First Half of 10. http://www.iab.net/about_the_iab/recent_

press_releases/press_release_archive/press_release/pr-101210. Online; accessed 10-

July-2010.

Karamardian, S. (1976). Complementarity Problems over Cones with Monotone and Pseudomono-

tone Maps. Journal of Optimization Theory and Applications 18 (4), 445–454.

20



Kwon, C. (2009). Single-period balancing of pay-per-click and pay-per-view online display adver-

tisements. Journal of Revenue & Pricing Management .

Mangani, A. (2004). Online advertising: Pay-per-view versus pay-per-click. Journal of Revenue

and Pricing Management 2 (4), 295–302.

Marketing Charts (2008, January 22). US Online Advertising Market to Reach $50B in

2011. urlhttp://www.marketingcharts.com/interactive/us-online-advertising-market-to-reach-

50b-in-2011-3128/. Online; accessed 10-February-2011.

Moon, Y. and C. Kwon (2010). Online advertisement service pricing and an option contract.

Electronic Commerce Research and Applications.

Pang, J. and M. Fukushima (2005). Quasi-variational Inequalities, Generalized Nash Equilibria,

and Multi-leader-follower Games. Computational Management Science 2 (1), 21–56.

Roels, G. and K. Fridgeirsdottir (2009). Dynamic revenue management for online display advertis-

ing. Journal of Revenue & Pricing Management 8 (5), 452–466.

Yao, J. (1994). Variational Inequalities with Generalized Monotone Operators. Mathematics of

Operations Research 19 (3), 691–705.

Appendix

Proof of Lemma 1

Proof. From (8), the revenue function could be defined as:

R(p) =

{
Rv(p) if q < p < p̄

Rd(p) if p̄ ≤ p

As v(p) is increasing and d(p) is decreasing with p, there are prices q ≤ p1 ≤ p̄ ≤ p2 such that

v(p1) = d(p2). Also, we find that

Rd(p2)−Rv(p1) = (p2 − p1)d(p2) ≥ 0

Rd(p2) ≥ Rv(p1)

Hence we prove the lemma.

Proof of Proposition 1

We first prove the following lemma:
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Lemma A.1. A continuously differentiable function f from K ⊆ R into R is strictly pseudoconcave

if f is strictly increasing and then strictly decreasing.

Proof. Let ∂f(x)
∂x

∣∣∣
x=x̂

= 0. Then we have

∂f(x)

∂x
> 0 if x < x̂

∂f(x)

∂x
< 0 if x > x̂

Pick x1, x2 ∈ K and x1 6= x2. We consider four cases:

(i) x1 < x̂ and x2 < x̂: We have

∂f(x)

∂x

∣∣∣∣
x=x1

(x2 − x1) ≤ 0 =⇒ x2 − x1 ≤ 0 =⇒ f(x2) < f(x1)

(ii) x1 < x̂ and x2 ≥ x̂: We have

∂f(x)

∂x

∣∣∣∣
x=x1

(x2 − x1) ≤ 0 =⇒ x2 − x1 ≤ 0 =⇒ Contradiction

(iii) x1 ≥ x̂ and x2 < x̂: We have

∂f(x)

∂x

∣∣∣∣
x=x1

(x2 − x1) ≤ 0 =⇒ x2 − x1 ≥ 0 =⇒ Contradiction

(iv) x1 ≥ x̂ and x2 ≥ x̂: We have

∂f(x)

∂x

∣∣∣∣
x=x1

(x2 − x1) ≤ 0 =⇒ x2 − x1 ≥ 0 =⇒ f(x2) < f(x1)

Therefore in all cases, we have ∂f(x)
∂x

∣∣∣
x=x1

(x2 − x1) ≤ 0 implies f(x2) < f(x1).

We now show that R(p) is continuously differentiable. The first order derivative of function (7)

is
∂R(p)

∂p
= m(p) +

∂m(p)

∂p

[
(p− q)− (h− q)F (m(p))

]
(A.1)

Suppose m(p) = v(p), i.e., v(p) < d(p). We have then

∂Rv(p)

∂p
= v(p) ≥ 0 (A.2)

since v(p) = F−1( p−qh−q ). In addition, Rv(p) is concave as its second order derivative is negative.

Therefore Rv(p) is a monotonically increasing concave function. Suppose m(p) = d(p), i.e., v(p) >
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d(p). We have then

∂Rd(p)

∂p
= d(p) +

∂d(p)

∂p

[
(p− q)− (h− q)F (d(p))

]
(A.3)

The continuous differentiability of R(p) can be verified by examining the expected revenue at p̄.

From (A.2) and (A.3), we can see R(p) is differentiable at p̄, since

∂Rd(p)

∂p

∣∣∣∣
p=p̄

= d(p̄) = v(p̄) =
∂Rd(p)

∂p

∣∣∣∣
p=p̄

(A.4)

Let us define

G(p) = (p− q)− (h− q)F (d(p)) (A.5)

At p = p̄, we have

G(p) = (p− q)− (h− q)F (v(p)) = (p− q)− (h− q)p− q
h− q

= 0

When p < p̄, we have

d(p) > v(p)

F (d(p)) > F (v(p))

F (d(p)) >
p− q
h− q

G(p) < 0

Similarly, for p > p̄, G(p) > 0.Also, we find that

∂G(p)

∂p
= 1− (h− q)f(d(p))

∂d(p)

∂p
≥ 0 ∀p ≥ 0 (A.6)

We make the following observations:

Lemma A.2. The revenue function Rd(p) for p ∈ (q, p̄] is strictly increasing.

Proof of Lemma A.2. Since d(p) > 0, ∂d(p)
∂p < 0 and G(p) ≤ 0 for p ≤ p̄ we have

∂Rd(p)

∂p
= d(p) +

∂d(p)

∂p
G(p) > 0

Lemma A.3. If the demand function d(p) is concave, the revenue function Rd(p) for p ∈ (p̄, h] is

strictly increasing and then strictly decreasing.

Proof of Lemma A.3. Since we have ∂d(p)
∂p < 0, ∂2d(p)

∂2p
≤ 0, G(p) > 0 and ∂G(p)

∂p > 0, the revenue
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function Rd(p) is concave as:

∂2Rd(p)

∂p2
=
∂d(p)

∂p
+
∂2d(p)

∂2p
G(p) +

∂d(p)

∂p

∂G(p)

∂p
< 0

In addition we note
∂Rd(p)

∂p

∣∣∣∣
p=p̄

= d(p̄) > 0

and
∂Rd(p)

∂p

∣∣∣∣
p=h

=
∂d(p)

∂p

∣∣∣∣
p=h

G(h) < 0

Therefore we obtain the lemma.

Lemma A.4. If the demand function d(p) is convex, the revenue function Rd(p) for p ∈ (p̄, h] is

strictly increasing and then strictly decreasing.

Proof of Lemma A.4. From the convexity of d(p), we have ∂2d(p)
∂2p

≥ 0. For any p̂, p̃ ∈ (p̄, h], we have

[d(p̂)− d(p̃)](p̂− p̃) < 0 (A.7)

[G(p̂)−G(p̃)](p̂− p̃) > 0 (A.8)

[
∂d(p̂)

∂p
− ∂d(p̃)

∂p
](p̂− p̃) ≥ 0 (A.9)

since we have ∂d(p)
∂p < 0, ∂G(p)

∂p > 0 and ∂2d(p)
∂2p

≥ 0, respectively, for all ∈ (p̄, h].

We observe ∂Rd

∂p (p̄) > 0 and ∂Rd

∂p (h) < 0, therefore there must exist a price p̂ ∈ (p̄, h] such that
∂Rd

∂p (p̂) = 0. If we can show that such a point is unique, then we obtain the desired result.

Suppose there exists p̃ ∈ (p̄, h] such that ∂Rd

∂p (p̃) = 0 and p̂ 6= p̃. That is we have

d(p̂) +
∂d(p̂)

∂p
G(p̂) = 0 (A.10)

d(p̃) +
∂d(p̃)

∂p
G(p̃) = 0 (A.11)

Then, we must have

d(p̂)− d(p̃) +
∂d(p̂)

∂p
G(p̂)− ∂d(p̃)

∂p
G(p̃) = 0 (A.12)

However, from (A.8) and the facts that ∂d(p̂)
∂p < 0 and G(p̃) > 0, we have

[d(p̂) − d(p̃)](p̂ − p̃) +
∂d(p̂)

∂p
[G(p̂) − G(p̃)](p̂ − p̃) + G(p̃)[

∂d(p̂)

∂p
− ∂d(p̃)

∂p
](p̂ − p̃) < 0 (A.13)

In consequence {
d(p̂)− d(p̃) +

∂d(p̂)

∂p
G(p̂)− ∂d(p̃)

∂p
G(p̃)

}
(p̂− p̃) < 0 (A.14)

24



which contradicts (A.12) since p̂ 6= p̃.

Proposition 1 is proved by Lemmas A.1, A.2, A.3 and A.4.

Proof of Lemma 4

Proof. We first note that the unconstrained maximum occurs either at the maximizer of Rdi or at

the price p̄i such that vi(p̄i) = di(p̄i, p−i). Let us consider the demand function di(pi, p−i) = ci−biipi
where ci = ai +

∑n
j=1,j 6=i bijpj for all i = 1, ..., n. It is obvious that

pmax
i =

ci
bii

> 0 (A.15)

Then the revenue defined by demand, Rdi , becomes

Rdi (pi, p−i) = (pi − qi)(ci − biipi) + qiµi

− (hi − qi)(ci − biipi)Fi(ci − biipi) + (hi − qi)
∫ ci−biipi

0
xf(x)dx (A.16)

and its unconstrained maximizer can be obtained by considering

∂Rdi
∂pi

= ci + biiqi − 2biipi + bii(hi − qi)F (ci − biipi) = 0 (A.17)

From the strictly pseudoconcavity of Rd, we know that before the maximum the first-order deriva-

tive is positive and after the maximum it is negative. By (A.15) into (A.17), we obtain

ci + biiqi − 2bii
ci
bii

+ bii(hi − qi)F (0) = −ci + biiqi

= −di(qi, p−i)

< 0

Therefore we obtain

pd,∗i,unconstrained < pmax
i (A.18)

The price p̄i can be obtained by considering

F−1

(
pi − qi
hi − qi

)
= ci − biipi

We observe that at pmax
i = ci

bii
, we have

F−1

(
pmax
i − qi
hi − qi

)
> ci − biipmax

i = 0
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Since vi is increasing and di is decreasing, we obtain

p̄i < pmax
i (A.19)

From (A.18) and (A.19), we obtain the desired result (25).

Proof of Lemma 5

Proof. From Lemma 1, we have

qi = p∗i ≥ p̄i ≥ qi

Hence, we obtain

p∗i = qi = p̄i (A.20)

Suppose
∂Rd

i (pi,p
∗
−i)

∂pi

∣∣∣∣
pi=qi

> 0. Since Rdi (pi, p
∗
−i) is strictly pseudoconcave, there exists p̃i > qi (and

p̃i ≤ hi ), such that Rdi (p̃i, p
∗
−i) > Rdi (p

∗
i , p
∗
−i). Therefore, we must have

∂Rdi (pi, p
∗
−i)

∂pi

∣∣∣∣∣
pi=qi

≤ 0 (A.21)

According to equation (A.2), we have

∂Rvi (pi, p
∗
−i)

∂pi
= v(pi) ≥ 0 for all pi ≥ qi (A.22)

From equation (A.4) and (A.22), at pi = p̄i, we have

∂Rvi (pi, p
∗
−i)

∂pi
= v(p̄i) = di(p̄i) =

∂Rdi (pi, p
∗
−i)

∂pi
≥ 0 (A.23)

If v(qi) > 0, we obtain

∂Rdi (pi, p
∗
−i)

∂pi

∣∣∣∣∣
pi=qi

= di(q̄i) = v(q̄i) > 0 (A.24)

which contradicts equation (A.21). Hence we proved the lemma.

Proof of Lemma 6

Proof. First, suppose
∂Rd

i (pi,p
∗
−i)

∂pi

∣∣∣∣
pi=hi

< 0. Since Rdi (pi, p
∗
−i) is strictly pseudoconcave, there exists

p̂i < hi (and p̂i ≥ qi ), such that Rdi (p̂i, p
∗
−i) > Rdi (p

∗
i , p
∗
−i). Contradiction.
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