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Abstract

The evasive flow capturing problem (EFCP) is to locate a set of law enforcement facilities

to intercept unlawful flows. One application of the EFCP is the location problem of weigh-in-

motion systems deployed by authorities to detect overloaded vehicles characterized by evasive

behavior. In contrast to the existing literature, this study focuses on the bounded-rationality of

drivers and represents the most generic form of the EFCP. We present two pessimistic formula-

tions of the problem to capture various degrees of ambiguity in the route choice of drivers. In

particular, we look at the worst-case scenario, when drivers select roads with the highest damage

costs. The resulting formulations yield a robust network design and represent the realistic behav-

ior of drivers. The pessimistic formulations introduce another level in the optimization problem,

for which we propose a cutting plane algorithm. The proposed solution methods demonstrate

their effectiveness on real and randomly generated networks. We also provide numerical analysis

to measure the value of considering pessimistic formulations and demonstrate the vulnerability

of optimizing and optimistic assumptions on the behavior of drivers.

Keywords: transportation; bilevel optimization; pessimistic formulation; mixed-integer pro-

gram; cutting plane algorithm

1 Introduction

In this study we consider the pessimistic formulations for the Evasive Flow Capturing Problem

(EFCP), defined as to locate law enforcement facilities to intercept unlawful flows. One application

of the EFCP is the location of weigh-in-motion systems deployed by authorities to detect overloaded

vehicles. Due to considerable risks associated with overloaded vehicles to the road network including

threats to traffic safety and damage to infrastructure (Dey et al., 2014), weigh-in-motion (WIM)

systems have been employed across the globe and have shown effectiveness in detecting unlawful

travelers (Martin et al., 2014; Lu et al., 2002). However, high costs of the WIM stations, which may

range between $30–$70 thousands per year-lane including installation, maintenance and calibration
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costs (Szary et al., 2009), prevent them from covering the entire network. At the same time,

empirical studies show that truck drivers quickly learn the locations of WIM stations and try to

bypass them (Cottrell et al., 1992; Cunagin et al., 1997), highlighting the evasive behavior. Even

though it is particularly difficult to eliminate such non-cooperative behavior of drivers, the EFCP

aims to locate law enforcement facilities considering these practices. Other applications of the

EFCP include the location of safety checkpoints, inspection stations, and tollbooths (Marković

et al., 2017).

As a class of Flow Capturing Problems (Hodgson, 1990; Berman et al., 1992), the EFCP is

formulated to capture flows of travelers between origin-destination pairs by locating law enforcement

facilities (Marković et al., 2015). While in classical flow capturing problems, travelers are assumed

to be indifferent to locations of facilities (Yang and Zhou, 1998; Hodgson et al., 1996), in the EFCP,

travelers try to bypass them. Therefore, classical assumptions such as the shortest path between

origin-destination pairs (Song and Shen, 2016) or fixed paths used to model route choice of travelers

are no longer applicable. Indeed, the EFCP is modeled using a deviation tolerance, that accounts for

travelers’ willingness to deviate from the shortest path so as not to be captured by authorities. First

introduced in Berman et al. (1995), deviation paths capture more realistic behavior of drivers (Kim

and Kuby, 2012), especially when they are equipped with mobile applications such as Drivewize to

advise circumventing routes.

The EFCP is typically studied as a leader-follower game using the corresponding bilevel op-

timization formulations (Arslan et al., 2018; Hooshmand and MirHassani, 2018; Lu et al., 2017).

In this setting, the government is a leader determining the location of law enforcement facilities,

and travelers are followers selecting their choices of paths based on the decision of the government,

which is typically assumed to be the shortest unintercepted path within a deviation tolerance. In

this sense, the EFCP is related to the network design problem in hazardous materials (hazmat)

transportation, where the government prohibits hazmat carriers from traveling on certain road

segments and hazmat carriers detour accordingly (Kara and Verter, 2004; Gzara, 2013; Sun et al.,

2015; Fontaine and Minner, 2018; Fontaine et al., 2020; Su and Kwon, 2020). The main difference

is that followers in the EFCP have an option to cancel the travel if there is no path within the

deviation tolerance, while followers in the hazmat network design problem always travel regardless

of the path length increase.

In the literature of the EFCP, when there are multiple optimal solutions for followers in the

lower-level, friendly or optimistic behavior of followers are assumed. Such assumptions on the opti-

mizing behavior of travelers and the optimistic approach in deriving solutions may be appropriate

in certain circumstances; however, it does not represent the most general case of the EFCP. More-

over, such an optimistic approach may lead to less desirable solutions, especially when followers are

not optimizing decision-makers as we show in our numerical experiments.

In this study, we present the pessimistic formulations of the EFCP to represent the most general

case by considering two different perspectives. First, we relax the optimizing behavior by letting

travelers select any unintercepted path within a deviation tolerance. This approach is to consider

2



boundedly rational or satisficing travelers, who select any path whose distance is within a certain

threshold of the shortest path (Mahmassani and Chang, 1987; Sun et al., 2018). In fact, empirical

studies focused on drivers’ choice of routes and network behavior show limitations of the assump-

tions regarding the rationality of drivers (Nakayama et al., 2001; Zhu and Levinson, 2015). Drivers

may be interested in minimizing their travel times, which vary with congestion along routes. In

addition, fuel-consumption-aware drivers may have different travel cost evaluations in each route,

depending on their exact vehicle type, load weight, and fuel efficiency as well as road types and

slopes. For these various reasons, drivers may take different routes on different occasions. Second,

while the exact path choice of followers among many possible choices remains ambiguous, we con-

sider the worst-case in terms of the damage costs to the leader and formulate pessimistic bilevel

optimization problems. This is in accordance with the current practices in installations of WIM

stations, which are typically located in the most damaged road links (Martin et al., 2014; Reagor,

2002).

Accordingly, we present two pessimistic formulations. In the first pessimistic formulation, we

consider the maximum degree of ambiguity in the route choice of unlawful travelers. While the

first pessimistic formulation yields the most robust design of facility locations, the attitude can

be overly pessimistic. To overcome this limitation, we provide the second pessimistic formulation,

which can flexibly control the level of pessimism on the behavior of unlawful travelers between

optimistic and overly pessimistic assumptions. Resulting pessimistic formulations yield trilevel

optimization problems (Sinha et al., 2018). Consequently, a single-level reduction, widely used

in optimistic formulations of bilevel optimization problems, where the objectives of a leader and

follower collide, is not obtainable for pessimistic formulations in general. Because of such structural

differences, solution methods designed for optimistic formulations are not directly applicable for

solving pessimistic formulations (Wiesemann et al., 2013; Zare et al., 2018). Therefore, in addition

to formulating the general case of the EFCP, we present a cutting plane algorithm to solve the

pessimistic formulation exactly.

A recent study by Arslan et al. (2018) has expedited solution times of the EFCP by using a

path-cut formulation that enumerates unintercepted paths on the fly. The path-cut based method,

however, is only applicable to the optimistic formulation with a specific cost function. In this paper,

we consider generic cost functions in deriving exact solutions for the pessimistic formulations. In

particular, we construct cost functions not only looking at the lengths of links, but also taking into

account critical infrastructure elements such as bridges, tunnels and etc.

The main contributions of this study are as follows. To the best of our knowledge, this study

is the first to present the EFCP considering the bounded rationality of drivers and general cost

structures, for which no algorithm is available. Within the proposed framework, two pessimistic

formulations of the problem are presented, which yield a robust network design and allow control

over the level of pessimism on the behaviors of drivers. The proposed cutting-plane algorithm solves

the pessimistic EFCP exactly and generalizes to various forms of cost functions. As our numerical

studies on real networks suggest, the pessimistic formulations prevent up to 13.25% more damage
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to the network compared to optimistic formulations, highlighting the vulnerability of optimizing

behavior assumptions.

The remainder of the paper will proceed as follows. In Section 2, we state the problem formally

and discuss the properties of the commonly used assumption in the literature and the resulting

formulations. By relaxing assumptions on the travelers’ behavior, we present two pessimistic bilevel

formulations in Sections 3 and 4. In Section 5, we discuss solution methods. In Section 6, we

demonstrate the numerical study results. Lastly, in Section 7, we give concluding remarks.

2 The Evasive Flow Capturing Problem

In a given network G(N ,A), with a set of nodes N and a set of arcs A, let us consider a set of

vehicle flows, F . Each flow f ∈ F is characterized by an origin-destination pair and a deviation

tolerance factor λf > 0. ξsf tf represents the length of the shortest path between origin node sf

and destination node tf for flow f .

Definition 1 (Acceptable Path). A path is called acceptable for flow f , if its length is at most λf ,

where λf = λfξsf tf .

Definition 2 (Unintercepted Path). A path is called unintercepted for flow f , if it enables traversing

without passing any law enforcement facilities. Accordingly, flow f is intercepted if it does not

possess an unintercepted path.

Then for each flow f ∈ F , λf induces a restricted set of nodes Nf ⊂ N and a restricted set of

arcs Af ∈ A. For each arc (i, j) ∈ Af we have ξsf i + dij + ξjtf ≤ λf , where dij is the length of arc

(i, j), sf is origin node and tf is destination node for flow f . Then Nf represents all nodes in Af ,

which is the same as the notion of non-dominated arcs and nodes in Arslan et al. (2018).

The EFCP naturally fits the bilevel setting, where the government (the leader) decides the

location of law enforcement facilities and unlawful travelers (followers) aim to drive on unintercepted

acceptable paths. Then the set of leader’s feasible decisions can be defined as follows:

X =
{
x : xij ∈ {0, 1} ∀(i, j) ∈ A

}
. (1)

where xij is a binary variable, whose value equals 1 if a law enforcement facility is located on arc

(i, j) and 0 otherwise. Accordingly, vector x represents all xij variables for all (i, j) ∈ A. We define

the set of feasible reactions of followers for any given leader’s decision x ∈ X:

Lf (x) =


(rf , uf )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
(i,j)∈Af

rfij −
∑

(j,i)∈Af

rfji =


uf if i = sf

−uf if i = tf

0 otherwise

∀i ∈ Nf ,

rfij ≤ 1− xij ∀(i, j) ∈ Af ,

uf , r
f
ij ∈ {0, 1} ∀(i, j) ∈ Af


(2)
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where uf is a binary variable whose value is equal to 1 if flow f is unintercepted and 0 otherwise.

Another binary variable rfij indicates if arc (i, j) is selected for the follower’s path or not. Then

vector rf represents all rfij variables for all (i, j) ∈ Af .

We define the set of best responses of followers (Arslan et al., 2018):

Lf0(x) = arg max
(rf ,uf )∈Lf (x)

{
(λf + δ)uf −

∑
(i,j)∈Af

dijr
f
ij

}
(3)

Note that δ is a sufficiently small positive constant so that the addition of δ has no impact on

comparing the path length. In practice, δ can be smaller than the data precision. In the above

problem, if the length of the shortest unintercepted path exceeds λf , then uf becomes 0; so does rf .

Therefore, the optimal objective function value of the lower-level problem is always nonnegative;

hence,
∑

(i,j)∈Af
dijr

f
ij ≤ λf . We use L(x) to denote the Cartesian product

∏
f∈F Lf (x) = L1(x)×

L2(x)× · · · × L|F|(x). Similarly, L0(x) =
∏
f∈F L

f
0(x).

Arslan et al. (2018) proposed the following evasive flow capturing problem as a bilevel optimiza-

tion problem, where the leader aims to minimize installation costs and damage to network induced

by followers:

BM : minimize
x,r,u

[ ∑
(i,j)∈A

wijxij +
∑
f∈F

∑
(i,j)∈Af

hfijr
f
ij

]
(4)

subject to x ∈ X (5)

(r,u) ∈ L0(x) (6)

where wij is cost of installation at arc (i, j) and hfij is cost of damage to arc (i, j) caused by flow

f . Arslan et al. (2018) deployed a specific damage cost function, namely hfij = cfdij with constant

cost coefficient cf for flow f and relied on the following assumptions:

Assumption 1. Arslan et al. (2018) assumed the following behavior of the followers (unlawful

travelers):

(a) The followers drive on the shortest unintercepted acceptable path.

(b) If no unintercepted acceptable path is available, then a follower does not travel.

Figure 1 illustrates the above assumptions, where black nodes denote intercepted paths and

white nodes denote unintercepted paths. Then according to Assumption 1, followers select the

shortest unintercepted path.

The bilevel formulation BM can be reformulated as a single-level optimization problem by

replacing the lower-level problem by a set of optimality conditions. Using the duality and bounding

some dual variables by λf +δ, a single-level formulation without big-M has been proposed in Arslan

et al. (2018).
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path length

Shortest
Path

Shortest
Unintercepted
Path, Lf0(x)

λf

Acceptable Paths

Figure 1: Followers take the unintercepted shortest path in Assumption 1. ( : intercepted path,
#: unintercepted path)

However, Arslan et al. (2018) shows the superiority of the following path-cut formulation com-

pared to the obtained single-level formulation.

PM : minimize
x,r,u

[ ∑
(i,j)∈A

wijxij +
∑
f∈F

∑
(i,j)∈Af

hfijr
f
ij

]
(7)

subject to 1−
∑

(i,j)∈Ap

xij ≤ uf ∀f ∈ F , p ∈ Pf (8)

x ∈ X (9)

(r,u) ∈ L(x) (10)

Note that Pf is the set of all acceptable paths and Ap is the set of arcs in path p. Although the

number of constraints (8) is exponential, by adding them as lazy constraints with other heuris-

tic cuts, we do not need to enumerate all acceptable paths a priori ; instead, the next shortest

unintercepted acceptable path will be generated and a constraint will be added on the fly.

While the performance of PM has been demonstrated to exceed the performance of the single-

level model of Marković et al. (2015), it has some limitations in a few manners. We note that PM

does not enforce Assumption 1(a) explicitly, while Assumption 1(b) has been considered in the

definition of Pf . By considering hfij = cfdij in the objective function, PM automatically selects

the shortest unintercepted acceptable path for each f ∈ F . The competitive performance of PM

can therefore be explained, because the number of lazy constraints to be generated is expected to

be small with the objectives of the leader and the follower being the same.

As pointed out by Hooshmand and MirHassani (2018), the condition hfij = cfdij is not nec-

essarily observed in practice. However, for networks with hfij 6= cfdij , PM will assume that the

followers will choose the least harmful path among all unintercepted acceptable paths. Therefore,

in general settings, PM is no longer equivalent to BM.

Note that the BM formulation in the previous section is called an optimistic formulation,

regardless of whether hfij = cfdij or not. That is, when there are multiple optimal solutions in

the lower level, the leader assumes that the followers will cooperatively choose the least harmful

choice. On the other hand, when the followers are assumed to be non-cooperative, thus they select
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the most harmful paths, we can write the vanilla pessimistic formulation as follows:

PeBM0 : minimize
x∈X

[ ∑
(i,j)∈A

wijxij + max
(r,u)∈L0(x)

∑
f∈F

∑
(i,j)∈Af

hfijr
f
ij

]
, (11)

which we call PeBM0. Note that the bilevel nature is embedded in the definition of the set L0(x)

as the lower-level problem, while the upper-level problem is a minimax optimization problem. To

contrast the above pessimistic formulation with the original optimistic formulation BM, we may

write BM as follows:

BM : minimize
x∈X

[ ∑
(i,j)∈A

wijxij + min
(r,u)∈L0(x)

∑
f∈F

∑
(i,j)∈Af

hfijr
f
ij

]
. (12)

In practical applications, PeBM0 unlikely makes a meaningful contribution, since in many

practical networks, the shortest unintercepted path is usually unique, i.e. L0(x) is a singleton for

most x, especially when link travel cost dij is not integer valued. Therefore, the vanilla pessimistic

formulation PeBM0 is not the topic of this study. Indeed, we consider non-optimizing followers

with ambiguous preferences and present pessimistic formulations accordingly.

3 The Pessimistic Formulation

Even though the assumption of optimizing the behavior of travelers prevails in modeling followers’

reactions in the existing literature, it does not always hold, mainly for the following two reasons.

First, followers may not always select the shortest path. Instead of choosing the shortest path,

followers may accept a reasonably short path, especially when travel time along paths is uncertain.

Second, the leader, or the modeler, cannot observe the exact cost coefficient in the followers’

optimization problem. Hence, the exact choice of followers remains ambiguous. To consider such

ambiguity, we relax Assumptions 1(a) and model ambiguous path choices as follows:

Assumption 2 (PeBM). We assume the following behavior of the followers (unlawful travelers):

(a) The followers drive on an unintercepted acceptable path, but the exact path choice is am-

biguous.

(b) If no unintercepted acceptable path is available, then the follower does not travel.

Figure 2 illustrates the new assumption, where black circles represent intercepted paths and

white circles represent unintercepted paths. Then according to Assumption 2, followers may select

any unintercepted path whose length is less than or equal to the threshold λf for each flow f ∈ F .

To present a bilevel pessimistic formulation under Assumption 2, we perturb the cost function

of follower f ∈ F by vector σf = (σfij : (i, j) ∈ Af ). For any given perturbation vector σf , we
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path length

Shortest
Path

Shortest
Unintercepted
Path, Lf0(x)

λf

Unintercepted
Acceptable

Paths, Lf (x)

Figure 2: The path choice of followers is ambiguous among unintercepted acceptable paths in
Assumption 2. ( : intercepted path, #: unintercepted path)

Table 1: List of formulations and symbols related to the followers’ responses

Symbol Description

BM the optimistic formulation as in Assumption 1
PeBM0 the vanilla pessimistic formulation as in Assumption 1
PeBM the pessimistic formulation as in Assumption 2
PeBMε the pessimistic formulation as in Assumption 3
L the set of feasible solutions of followers; see (2)

Given leader’s decision x:
L0(x) the set of unambiguous responses of followers as in Assumption 1; see (3)
L(x) the set of ambiguous responses of followers as in Assumption 2; see (14)
Lε(x) the set of ambiguous responses of followers as in Assumption 3, given satisficing

threshold ε; see (17)

Given leader’s decision x and perturbation σ:
L(x;σ) the set of followers’ perturbed responses used inside L(x); see (13)
Lε(x;−σ) the set of followers’ perturbed responses used inside Lε(x), given satisficing threshold

ε; see (16)

define the set of optimal responses of follower f ∈ F :

Lf (x;σf ) = arg max
(rf ,uf )∈Lf (x)

{
(λf + δ)uf −

∑
(i,j)∈Af

(dij + σfij)r
f
ij

}
. (13)

Note that Lf0(x) = Lf (x; 0). For a bounded set of perturbation vectors

Σf =
{
σf : 0 ≤ σfij ≤ λf + δ ∀(i, j) ∈ Af

}
,

we also define the set of ambiguous responses of follower f ∈ F :

Lf (x) =

{
(rf , uf ) ∈ Lf (x;σf ) : σf ∈ Σf

}
. (14)

We let Σ =
∏
f∈F Σf and L(x) =

∏
f∈F Lf (x). We use a few different symbols related to the

followers’ responses. We summarize them in Table 1 for the convenience of readers.

We show that L(x) leads to an equivalent set of followers’ responses as described in Assumption
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2. First, we show that any element of L(x) is an unintercepted acceptable path; hence satisfies the

conditions in Assumption 2.

Proposition 1. For any given x ∈ X, we let (r̂f , ûf ) ∈ Lf (x) for each f ∈ F . Then, we have∑
(i,j)∈Af

dij r̂
f
ij ≤ λf for all f ∈ F .

We also show that the converse is true; that is, any possible response from Assumption 2 is an

element of Lf (x). We first consider an unintercepted acceptable path and then show that it can

be an optimal solution to (13) for a particular perturbation vector σ̂f ∈ Σf .

Proposition 2. Consider any upper-level solution x. For each f ∈ F , let (r̂f , ûf ) ∈ Lf (x) such

that
∑

(i,j)∈Af
dij r̂

f
ij ≤ λf . Define σ̂f ∈ Σf such that

σ̂fij =

λf + δ if r̂fij = 0

0 if r̂fij = 1
. (15)

Then (r̂f , ûf ) ∈ Lf (x; σ̂f ) and, consequently, (r̂f , ûf ) ∈ Lf (x).

Propositions 1 and 2 indicate the equivalency between Lf (x) and Assumption 2. Using this

equivalency, we present a bilevel pessimistic formulation as follows:

PeBM : minimize
x∈X

[ ∑
(i,j)∈A

wijxij + max
(r,u)∈L(x)

∑
f∈F

∑
(i,j)∈Af

hfijr
f
ij

]
.

Note that L0(x) is a subset of L(x). Therefore, PeBM considers more pessimistic behavior of

followers or yields a more robust solution to the leader, than PeBM0. As defined earlier in (13) and

(14), set L(x) consists of optimal solutions to optimization problems. Therefore, PeBM involves

tri-level optimization problems. We devise an exact algorithm for solving PeBM in Section 5.

4 The ε-Pessimistic Formulation

In Assumption 1, followers are assumed always to take the unintercepted shortest path, leading

to an optimistic formulation in BM. On the other hand, since Assumption 2 considers ambiguity

among all unintercepted acceptable paths, the modeling of followers can be overly pessimistic with

PeBM. In this section, we develop a formulation that can flexibly control the level of pessimism

on the behavior of followers between optimistic and overly pessimistic.

Figure 3 demonstrates the key idea. While there are five unintercepted acceptable paths avail-

able, we assume that followers will only choose the first three paths, since the lengths of those three

paths are ‘short enough’ within a certain threshold. The first three paths are called satisficing

paths, which are formally defined as follows:

Definition 3 (Satisficing Path). For each follower f ∈ F , a path is called satisficing with threshold

εf > 0, if its length is shorter than (1 + εf )ξf , where ξf is the length of the shortest unintercepted

path between sf and tf .
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path length

Shortest
Path

Shortest
Unintercepted
Path, Lf0(x)

λf
εfξf

Unintercepted
Acceptable Satisficing

Paths, Lfε (x)

Figure 3: The path choice of followers is ambiguous among unintercepted acceptable satisficing
paths in Assumption 3. ( : intercepted path, #: unintercepted path)

Note that as the facility location decision in the upper-level changes, the unintercepted shortest

path may change and correspondingly the set of satisficing paths may also change. Some satisficing

paths are also subpath-satisficing, as defined by Sun et al. (2018):

Definition 4 (Subpath-Satisficing Path). For each follower f ∈ F , a path is called subpath-

satisficing with threshold εf > 0, if any subpath, including itself, is a satisficing path with the same

threshold εf .

We limit our interest to subpath-satisficing paths, for a reason to be clearer later in Proposition

4. In this section, we make the following assumption:

Assumption 3 (PeBMε). We assume the following behavior of the followers (unlawful travelers):

(a) The followers drive on an unintercepted acceptable path, but the exact path choice is am-

biguous among subpath-satisficing paths.

(b) If no unintercepted acceptable path is available, then the follower does not travel.

To provide a formulation that is consistent with Assumption 3, we introduce new variables and

sets. Let λ = (λf : f ∈ F) and ε = (εf : f ∈ F). For any ε ≥ 0, we define

Lfε (x;−σf ) = arg max
(rf ,uf )∈Lf (x)

{
λf + δ

1 + εf
uf −

∑
(i,j)∈Af

(dij − σfij)r
f
ij

}
. (16)

We define new sets of perturbation vectors:

Σf
ε =

{
σf : 0 ≤ σfij ≤

εf
1 + εf

dij ∀(i, j) ∈ Af
}

and Σε =
∏
f∈F Σf

ε . We also define

Lfε (x) =

{
(rf , uf ) ∈ Lfε (x;−σf ) : σf ∈ Σf

ε

}
(17)
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and Lε(x) =
∏
f∈F L

f
ε (x). Refer to Table 1 for various symbols used for modeling followers’ decision

problems.

With the new set Lε(x), we present a bilevel pessimistic formulation as follows:

PeBMε : minimize
x

[ ∑
(i,j)∈A

wijxij + max
(r,u)∈Lε(x)

∑
f∈F

∑
(i,j)∈Af

hfijr
f
ij

]
subject to xij ∈ {0, 1} ∀(i, j) ∈ A.

We prove that PeBMε is indeed consistent with Assumption 3. First, we consider any element of

Lε(x) and show that it corresponds to an unintercepted subpath-satisficing, acceptable path.

Proposition 3. For each f ∈ F , given x ∈ X, let (̊rf , ůf ) ∈ Lf0(x) and let (r̂f , ûf ) ∈ Lfε (x). Then

the following conditions hold: ∑
(i,j)∈Af

dij r̂
f
ij ≤ λf , (18)

∑
(i,j)∈Af

dij r̂
f
ij ≤ (1 + εf )

∑
(i,j)∈Af

dij r̊
f
ij , (19)

for all f ∈ F .

We now consider the converse. Unfortunately, the converse does not hold exactly. That is, a

satisficing path is not necessarily an optimal solution to the follower’s problem. Instead, only a

subset of satisficing paths correspond to optimal solutions to the lower-level problem; in particular,

the set of subpath-satisficing paths.

The following result is immediate from Sun et al. (2018, Theorem 6):

Proposition 4. For each f ∈ F , given x ∈ X, let (̊rf , ůf ) ∈ Lf0(x). Consider any subpath-

satisficing path represented by (r̂f , ûf ) ∈ Lf (x) with ûf = 1. That is,
∑

(i,j)∈Af
dij r̂

f
ij ≤ (1 + εf )λf

and
∑

(i,j)∈Af
dij r̂

f
ij ≤ (1+εf )

∑
(i,j)∈Af

dij r̊
f
ij. Then (r̂f , ûf ) ∈ Lfε (x), in particular for the following

σ̂fij:

σ̂fij =
εf

1 + εf
dij r̂

f
ij =


εf

1 + εf
dij if r̂fij = 1

0 if r̂fij = 0
(20)

for all (i, j) ∈ Af .

The results in Propositions 3 and 4 indicate that PeBMε is closely related to the ε-approximation

to the general pessimistic bilevel optimization problem in the literature (Wiesemann et al., 2013).

In particular, defining a shorthand for the objective function of followers f ∈ F :

gf (rf , uf ) = (λf + δ)uf −
∑

(i,j)∈Af

dijr
f
ij ,

11



we may write the ε-approximation as follows:

minimize
x∈X

[ ∑
(i,j)∈A

wijxij + max
(r,u)∈L̃ε(x)

∑
f∈F

∑
(i,j)∈Af

hfijr
f
ij

]
,

where

L̃fε (x) =

{
(rf , uf ) ∈ Lf (x) : gf (rf , uf ) > gf (rf , uf )− εf ∀(rf , uf ) ∈ Lf (x)

}
,

for any ε > 0. In Propositions 3 and 4, we have shown that our definition of Lfε (x) leads to the

following relationship:

Lfε (x) =

{
(rf , uf ) ∈ Lfε (x;σ) : σf ∈ Σf

ε

}
⊆
{

(rf , uf ) ∈ Lf (x) : gf (rf , uf ) ≥ 1

1 + εf
gf (rf , uf ) ∀(rf , uf ) ∈ Lf (x)

}
,

for any ε ≥ 0. The last ‘subset’ relation is due to the subpath-satisficing path consideration as in

Proposition 4. While ε in L̃fε (x) is additive, ε in Lfε (x) is multiplicative.

Note that Lf0(x) given in (3) can be restated as follows:

Lf0(x) = arg max
(rf ,uf )∈Lf (x)

gf (rf , uf )

≡
{

(rf , uf ) ∈ Lf (x) : gf (rf , uf ) ≥ gf (rf , uf ) ∀(rf , uf ) ∈ Lf (x)

}
.

While both L̃ε(x) and Lε(x) approach to L0(x) as ε→ 0, we see that L̃ε(x) is not defined at ε = 0.

Apparently, Lε(x) ≡ L0(x) when ε = 0. In general, we have the following relationship for any

given x ∈ X: L0(x) ⊆ Lε(x) ⊆ L(x) for any ε ≥ 0.

5 Solution Methods

The discussed pessimistic formulations result in trilevel optimization problems. Namely, the mas-

ter problem based on the decision of the leader is followed by the worst-case problem (WCP) of

the follower. The latter problem itself has a bilevel structure, where a follower selects the most

damaging route among unintercepted paths with length at most λ. We first present the cutting

plane algorithm to solve the PeBM and then introduce the single-level reformulation of the WCP.

Later, we introduce similar techniques to solve the PeBMε formulation.

12



5.1 The Cutting Plane Algorithm

We propose a cutting plane algorithm to solve the problem PeBM. Consider the following master

problem, which is a relaxation of PeBM:

Master : minimize
x,r,u

[ ∑
(i,j)∈A

wijxij +
∑
f∈F

∑
(i,j)∈Af

hfijr
f
ij

]
(21)

subject to x ∈ X (22)

(r,u) ∈ L(x) (23)

{cuts are added iteratively}.

Let x and rf denote an optimal solution to the master problem.

Given the master solution, we solve the following worst-case problem (WCP) to generate feasible

reactions of followers:

WCP(x) : maximize
r,u

∑
f∈F

∑
(i,j)∈Af

hfijr
f
ij (24)

subject to (r,u) ∈ L(x) (25)

Let a solution of the worst-case problem be r̂f and ûf for each f ∈ F .

Given the two pairs of solutions, we add cuts. For each f ∈ F , we compare the paths chosen by

rf and r̂f . We focus on the distinct subpaths, which are definite as not identical arcs in rf and r̂f ,

and denote them as p and p̂ respectively. We add the following cuts motivated by Gzara (2013) and

Liu and Kwon (2020) for each f ∈ F adjusting them to the possibility of followers not traveling:

• If uf=1 and ûf=1, we add the following cut:∑
(i,j)∈p̂

xij ≥ 1− |p|+
∑

(i,j)∈p

rfij . (26)

• If uf=0 and ûf=1, we add the following cut:∑
(i,j)∈p̂

xij ≥ 1− uf . (27)

• If uf=0 and ûf=0, we add no additional cut.

Cut (26) indicates that at least one arc in subpath p̂ must be intercepted to reroute flow f to

subpath p. The form of cut (26) is first proposed by Gzara (2013) and later simplified by Liu and

Kwon (2020). In the second case when the travel demand varies in the two solutions, we add a

new type of cut (27), which indicates that at least one arc in subpath p̂ must be intercepted in

order to disable traversing of flow f . The case with uf = 1 and ûf = 0 should not occur by the

13
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Figure 4: The overview of the cutting plane algorithm

nature of the worst-case problem. Note that cuts (26) and (27) do not require creating any new

variables; therefore they can potentially be used as lazy constraints. We repeat this procedure until

the master solution and the worst-case solution coincide, i.e. x = x̂. Thus, when dual bound of

PeBM (represented by the solution of the master problem) and its upper bound (represented by

the WCP solution) match, the cutting plane algorithm terminates.

We show that cuts (26) and (27) do not cut out the optimal solution (x∗, r∗,u∗).

Proposition 5. Suppose WCP(x) has the unique optimal solution for any given x ∈ X. Then,

any optimal solution of PeBM is feasible to Master.

Although it is unlikely in realistic cases, there could exist multiple optimal solutions to WCP(x)

and, therefore, multiple optimal solutions to PeBM. In such cases, the cutting plane algorithm

may cut out an optimal solution, but it assures that at least one optimal solution is feasible to the

master problem.

Due to the structural similarity between PeBMε and PeBM, we can apply the same cutting

plane algorithm for the latter formulation. The master problem is the same as given in (21)–(23)

and the cut generation procedure is the same as well. The structure of the worst-case problem

is also the same, although we need to replace L(·) by Lε(·). That is, For PeBMε, we solve the

following worst-case problem (WCP), given the master solution:

WCPε(x) : maximize
r,u

∑
f∈F

∑
(i,j)∈Af

hfijr
f
ij (28)

subject to (r,u) ∈ Lε(x) (29)

We let the solution of the worst-case problem be r̂f and ûf for each f ∈ F . Overall, Figure 4

summarizes the cutting plane algorithm for both formulations.
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5.2 Single Level Reformulation of WCP(x)

While the proposed cutting plane algorithm can be combined with any solution method for the

WCP, we can reduce the trilevel structure of the pessimistic formulations by reformulating the

underlying WCP.

Note that the worst-case problem in (24)–(25) itself is a bilevel optimization problem of the

following form:

maximize
σf

∑
(i,j)∈Af

hfijr
f
ij (30)

subject to σf ∈ Σf (31)

maximize
rf ,uf

(λf + δ)uf −
∑

(i,j)∈Af

(dij + σfij)r
f
ij (32)

subject to
∑

(i,j)∈Af

rfij −
∑

(j,i)∈Af

rfji =


uf if i = sf

−uf if i = tf

0 otherwise

∀i ∈ Nf , (33)

rfij ≤ 1− xij ∀(i, j) ∈ Af , (34)

uf , r
f
ij ∈ {0, 1} ∀(i, j) ∈ Af (35)

for each f ∈ F . Using Propositions 1 and 2, we can easily show the following statement holds.

Corollary 1. Suppose that (r,u,σ) is an optimal solution to (30)–(35). Define σ̂f ∈ Σf such that

σ̂fij =

λf + δ if rfij = 0

0 if rfij = 1
(36)

for all f ∈ F . Then (r,u, σ̂) is also an optimal solution to (30)–(35).

Using Corollary 1, we can simplify the presentation of (30)–(35) via a change of variables and

derive an equivalent single-level reformulation to (30)–(35).

Proposition 6. Any optimal solution to the following single-level optimization problem is also an

optimal solution to the worst-case problem WCP(x) in (24)–(25):

maximize
rf ,uf ,πf ,µf

∑
(i,j)∈Af

hfijr
f
ij (37)

subject to
∑

(i,j)∈Af

rfij −
∑

(j,i)∈Af

rfji ≤


uf if i = sf

−uf if i = tf

0 otherwise

∀i ∈ Nf , (38)

rfij ≤ 1− xij ∀(i, j) ∈ Af , (39)
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πfj ≤ π
f
i + dij + (λf + δ)(xfij + 1− rfij) (i, j) ∈ Af (40)

(λf + δ)(1− uf ) +
∑

(i,j)∈Af

dijr
f
ij ≤ π

f
tf
− πfsf (41)

(λf + δ)uf −
∑

(i,j)∈Af

dijr
f
ij ≥ 0 (42)

rfij , uf ∈ {0, 1} ∀(i, j) ∈ Af (43)

πfi , µ
f
ij ≥ 0 ∀i ∈ Nf , (i, j) ∈ Af (44)

for each f ∈ F .

The dual variable πfi can be interpreted as a label for an unintercepted path with length at

most λf from sf to node i and πftf − π
f
sf represents the length of the chosen path. We can provide

useful insights regarding the properties of the WCP. Constraint (41) serves as a switch for uf to

determine whether flow f is on or off and constraint (42) ensures that the path length does not

exceed the threshold. Constraint (40), obtained from the dual feasibility condition, serves as a

sub-tour elimination constraint essentially, where a dual variable πfi can be interpreted as a label

for the chosen path with length at most λf from sf to node i. The form of constraint (40) is

popularly used in the literature of vehicle routing problems with time windows for tracking the

arrival time of each vehicle in each node (Erdoğan and Miller-Hooks, 2012; Schneider et al., 2014).

The subtour elimination constraint (40) is particularly useful for the worst-case problem, since the

problem is a maximization problem. Note also that one can remove links (i, j) ∈ Af such that

xij = 1 and corresponding constraints (39) and (40) from the problem to reduce the problem size,

since x is not a variable for this worst-case problem.

When uf = 1, the worst-case problem is indeed an instance of the Elementary Shortest Path

Problem with Resource Constraints (ESPPRC). In fact, the resource constraint is induced by the

lengths of an unintercepted acceptable path given the solution of the master problem and reduced

cost is represented by cost of damage to the network. ESPPRC typically arises in solving vehicle

routing problems and exact algorithms have been proposed for solving the problem using cycle

elimination techniques (Irnich and Villeneuve, 2006). Lozano et al. (2015) develop a pulse algorithm

based on implicit enumeration of paths with novel bounding techniques to prune paths. Instead

of using the single-level reformulation (SLR) given in (37)–(44), we can use the pulse algorithm of

Lozano et al. (2015) as follows. First, for given x, remove links (i, j) ∈ Af such that xij = 1. Then,

find the unintercepted shortest path for each f ∈ F . If the length of the unintercepted shortest

path exceeds λf , then set uf = 0. If not, find the most harmful unintercepted acceptable path using

the pulse algorithm by redefining the reduced cost as the cost of damage and set rf accordingly.
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5.3 Single Level Reformulation of WCPε(x)

The WCPε(x) can be restated as follows:

maximize
σf

∑
(i,j)∈Af

hfijr
f
ij (45)

subject to 0 ≤ σfij ≤
εf

1 + εf
dij ∀(i, j) ∈ Af (46)

maximize
rf ,uf

λf + δ

1 + εf
uf −

∑
(i,j)∈Af

(dij − σfij)r
f
ij (47)

subject to
∑

(i,j)∈Af

rfij −
∑

(j,i)∈Af

rfji ≤


uf if i = sf

−uf if i = tf

0 otherwise

∀i ∈ Nf , (48)

xijr
f
ij ≤ 0 ∀(i, j) ∈ Af , (49)

uf , r
f
ij ∈ {0, 1} ∀(i, j) ∈ Af (50)

for each f ∈ F .

Proposition 7. Any optimal solution to the following single-level optimization problem is also an

optimal solution to the worst-case problem WCPε(x) in (28)–(29):

maximize
rf ,uf ,σf

∑
(i,j)∈Af

hfijr
f
ij (51)

subject to
∑

(i,j)∈Af

rfij −
∑

(j,i)∈Af

rfji ≤


uf if i = sf

−uf if i = tf

0 otherwise

∀i ∈ Nf , (52)

rfij ≤ 1− xij ∀(i, j) ∈ Af , (53)

πfj ≤ π
f
i + dij −

εf
1 + εf

dijr
f
ij + (λf + δ)xij ∀(i, j) ∈ Af (54)

λf + δ

1 + εf
(1− uf ) +

∑
(i,j)∈Af

dijr
f
ij −

εf
1 + εf

∑
(i,j)∈Af

dijr
f
ij ≤ π

f
tf
− πfsf (55)

λf + δ

1 + εf
uf −

∑
(i,j)∈Af

dijr
f
ij +

εf
1 + εf

∑
(i,j)∈Af

dijr
f
ij ≥ 0 (56)

uf , r
f
ij ∈ {0, 1} ∀(i, j) ∈ Af (57)

πfk , u
f ≥ 0 ∀k ∈ Nf (58)

for each f ∈ F .

Again instead of using the single-level reformulation (SLR) for WCPε(x), we can use the
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following procedure. First, for given x, remove links (i, j) ∈ Af such that xij = 1. Then, find

the length of the unintercepted shortest path for each f ∈ F , denoted by ξf . If the length of the

unintercepted shortest path exceeds λf , then set uf = 0. If not, find the most harmful unintercepted

path with length at most (1 + εf )ξf by using the pulse algorithm for the ESPPRC. However, as

discussed in Section 4, not all satisfying paths are subpath satisfying paths. Therefore, for any

given path with the length at most (1 + εf )ξf , we need to check if it is a subpath satisfying path

using techniques discussed in Sun et al. (2018). Then we can set rf accordingly.

6 Numerical Experiments

In this section, we present the experimental setup and used network data to evaluate the perfor-

mance of the cutting plane algorithm for PeBM and PeBMε. We implement algorithms using

Julia programming language under Windows and CPLEX 12.8.0 and use a computer with Intel

Core i7-4790 3.60-GHz processors with 16 GB RAM. A machine has 8 cores and each experiment

was run using up to 8 threads. To solve the underlying problem in both formulations of the WCP,

the elementary shortest path with resource constraint algorithm by Lozano et al. (2015) is imple-

mented. We use the LightGraphs library for graphical computations including Dijkstra’s algorithm

(see Bromberger et al. (2017) for full documentation).

6.1 Data Description

For the numerical studies, we use several datasets. The first dataset is the 25-node network used

by Arslan et al. (2018). The second group of datasets is generated randomly. We place randomly

the different numbers of nodes (we use 30, 50, 70 and 100 nodes) on a 100 miles by 100 miles grid

and randomly connect arcs, so that the density of the network is equal to ρ and arcs’ lengths are

defined in the euclidean distance. We consider two values of ρ equal to either 0.2 or 0.4, which is

defined as the ratio of the number of arcs to the number of arcs in a complete graph with the same

number of nodes. We generate a different number of origin-destination pairs, where the distance

between origin and destination nodes is at least 60 miles. We also assign randomly a number of

flows in links ranging from 20 to 8000.

As a test on a real network, we employ the Albany network data used in hazardous materials

transportation (Kang et al., 2014b,a). The data represents the transportation network around the

Albany county, NY consisting of seven interstate and US highways. Damage to a link is calculated

as the product of the number of flows passing and the probability of link damage, which itself

accounts for the population density and link length (details can be found in Kang et al. (2014b)).

We generate random origin-destination pairs whose distance is at least 17.5 miles (the average

shortest distance among all nodes in the network).

We use realistic values of WIM installation costs defined in thousands of dollars presented

in Marković et al. (2015). For followers cost of damage, similar to Hooshmand and MirHassani

(2018), we consider cost coefficient cij = $4/mile for all (i, j) ∈ A. Vulnerability coefficients µij are
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Table 2: Performance of the cutting plane algorithm for PeBM

λf = 1.0 λf = 1.5 λf = 2.0

CPUTime, sec Iter CPUTime, sec Iter CPUTime, sec Iter

wij , $ Pulse SLR Pulse SLR Pulse SLR Pulse SLR Pulse SLR Pulse SLR

10k 13.30 6.38 2.60 2.60 15.33 14.31 3.20 3.20 26.81 59.35 5.00 5.20
60k 13.31 6.68 2.80 2.80 15.64 15.02 3.20 3.40 30.55 60.88 5.60 5.60

110k 13.37 6.93 2.80 3.00 16.36 17.79 4.80 4.80 28.63 62.62 6.20 6.20
160k 13.33 6.95 2.80 3.00 13.77 17.26 4.80 4.80 30.55 68.25 7.00 7.20
260k 13.44 7.20 3.00 3.20 17.05 20.98 6.40 6.40 39.42 75.46 8.80 8.40
360k 13.55 7.81 4.00 3.60 17.10 22.71 7.20 7.20 55.20 89.05 10.40 10.00

Table 3: Performance of the cutting plane algorithm for PeBMε

λf = 1.0 λf = 1.5 λf = 2.0

CPUTime, sec Iter CPUTime, sec Iter CPUTime, sec Iter

wij , $ Pulse SLR Pulse SLR Pulse SLR Pulse SLR Pulse SLR Pulse SLR

10k 15.56 6.48 2.60 2.60 15.55 9.14 2.80 2.80 18.60 12.15 2.80 3.00
60k 12.95 6.25 2.80 2.80 18.63 10.71 3.20 3.20 19.53 14.00 3.60 3.60

110k 15.76 7.06 3.00 3.00 18.99 11.45 3.60 3.60 16.17 12.55 3.40 3.40
160k 15.78 7.06 3.00 3.00 19.20 12.53 4.20 4.20 19.73 15.75 4.40 4.40
260k 15.96 7.32 3.20 3.20 19.58 14.14 4.80 5.00 21.96 20.48 6.20 5.80
360k 16.12 7.85 3.60 3.60 16.92 13.39 5.00 5.00 20.80 22.47 6.40 6.40

introduced to account for various vulnerable structures such as bridges and tunnels. Then the total

damage cost to arc from flow F is computed as follows: hfij = cijdijµijnf , where nf is a number of

vehicles in flow F and µij is randomly drawn from {1.0, 1.5, 2.0} for each (i, j) ∈ A. The value of

δ is set to 0.1, 0.1, and 0.01 for the 25-node network, random networks, and the Albany network,

respectively.

6.2 The 25-node network

Table 2 shows the performance of the cutting plane algorithm for the PeBM formulation using the

25-node network. With varying values of λ, we measure (with five replicates) the computational

time and a number of iterations of the algorithm when we solve the WCP either by the pulse

algorithm presented in Lozano et al. (2015) or using the single-level reformulation obtained in

Section 5. In general, applying the pulse algorithm expedites the solution. The computational

time difference of both methods is evident with a large value of λ and installation cost. Solving

the SLR optimization problem becomes harder as the number of ambiguous paths increases with λ

and installation costs become more comparable to the damage costs of followers. Similarly, Table 3

presents the cutting plane algorithm performance in solving the PeBMε formulation. In this case,

we observe that the single level reformulation of the WCP with satisfying paths performs better

than the pulse algorithm in terms of the computational time. In general, the number of iterations

of the SLR is comparable to the number of iterations under the pulse algorithm.

To assess the value of pessimistic formulations we introduce a new term called the value of

pessimistic solutions, VPS. Let xBM, xPeBM, and xPeBMε be an optimal solution of BM, PeBM,
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Table 4: The value of the pessimistic formulation, PeBM

Total Costs Installation Costs Cost of Damage

wij , $ Opt. Pess. VPS, % Opt. Pess. Opt. Pess.

10k 426,787 426,787 0.00 420,000 420,000 6,787 6,787
60k 2,492,636 2,492,636 0.00 2,328,000 2,328,000 164,636 164,636

110k 4,389,244 4,387,012 0.05 4,048,000 4,070,000 341,244 317,012
160k 6,258,940 6,184,900 1.12 5,536,000 5,568,000 722,940 616,900
260k 9,759,323 9,420,499 3.42 7,904,000 8,216,000 1,855,323 1,204,499
360k 13,471,236 12,525,926 6.86 9,648,000 11,088,000 3,823,236 1,437,926

and PeBMε, respectively. We write the upper-level objective functions of PeBM

Z(x) =
∑

(i,j)∈A

wijxij + max
(r,u)∈L(x)

∑
f∈F

∑
(i,j)∈Af

hfijr
f
ij

and that of PeBMε

Zε(x) =
∑

(i,j)∈A

wijxij + max
(r,u)∈Lε(x)

∑
f∈F

∑
(i,j)∈Af

hfijr
f
ij

Then, the VPS for PeBM can be defined as follows:

VPS =
Z(xBM)− Z(xPeBM)

Z(xBM)
(59)

Similarly, the VPS for PeBMε can be defined as follows:

VPS =
Zε(x

BM)− Zε(x
PeBMε)

Zε(xBM)
. (60)

We run experiments measuring the total costs under the solutions of optimistic and pessimistic

formulations of the EFCP. We implement the optimistic formulation presented in (12) and again

use the pulse algorithm to solve the underlying elementary shortest path problem with the resource

constraint. Table 4 illustrates that the value of the VPS for PeBM may reach up to 6.86%

depending on installation costs. However, damage costs caused by unlawful travelers under the

optimistic solutions may exceed damage costs under the pessimistic solutions of the PeBM more

than two times as shown in Table 4 with wij = $360k. In general, pessimistic solutions require to

install more WIM stations, thus requiring a higher initial investment, which can be justified by the

preventable damage costs compared to the optimistic solutions. In the case of PeBMε as shown

in Table 5, solutions of the optimistic and pessimistic solutions are similar in most cases when we

let the value of εf = 70%. However, with increased installation costs we observe similar results as

in the case of PeBM.
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Table 5: The value of the pessimistic formulation, PeBMε, ε = 70%

Total Costs Installation Costs Cost of Damage

wij , $ Opt. Pess. VPS, % Opt. Pess. Opt. Pess.

10k 426,302 426,302 0.00 420,000 420,000 6,302 6,302
60k 2,492,913 2,492,913 0.00 2,328,000 2,328,000 164,913 164,913

110k 4,368,018 4,368,018 0.00 4,048,000 4,048,000 320,018 320,018
160k 6,198,784 6,144,769 0.83 5,536,000 5,568,000 662,784 576,769
260k 9,519,564 9,419,416 1.05 8,008,000 8,216,000 1,511,564 1,203,416
360k 12,506,229 12,417,145 0.71 9,864,000 10,224,000 2,642,229 2,193,145

Table 6: Random network results for PeBM

wij = $110k wij = $160k

Network CPUTime, sec Iter Gap, % CPUTime, sec Iter Gap, %

|N | ρ |F| Pulse SLR Pulse SLR Pulse SLR Pulse SLR Pulse SLR Pulse SLR

30 0.2 20 2.68 1.41 7.6 7.8 0 0 2.72 1.61 9.6 9.6 0 0
50 2.74 2.45 7.2 7.4 0 0 2.71 2.37 7.2 7.2 0 0

0.4 20 2.97 2.88 17.4 17.0 0 0 3.92 7.85 32.2 31.4 0 0
50 3.03 4.17 12.0 11.4 0 0 0.49 3.74 13.0 11.8 0 0

50 0.2 20 2.99 3.04 19.4 18.8 0 0 3.02 3.06 19.0 18.8 0 0
50 3.65 6.01 17.6 16.6 0 0 4.59 9.11 24.0 23.6 0 0

0.4 20 2.95 2.97 18.2 17.4 0 0 2.98 3.02 17.2 18.2 0 0
50 4.10 9.38 28.0 25.0 0 0 4.38 10.09 26.0 26.2 0 0

70 0.2 20 4.57 8.36 39.8 43.6 0 0 14.69 21.36 57.8 56.6 0 0
50 3.79 7.59 18.6 19.2 0 0 4.76 8.03 19.8 19.2 0 0

0.4 20 6.49 15.74 72.4 73.4 0 0 12.59 21.05 68.6 69.0 0 0
50 258.85 333.10 206.8 206.4 0 0 170.02 225.41 137.6 142.6 0 0

100 0.2 20 8.84 28.80 4.86 29.40 0 0 6.93 27.60 5.26 27.60 0 0
50 5.71 26.20 13.99 28.20 0 0 9.63 27.40 17.27 27.20 0 0

100 0.4 20 2288.91 301.00 2519.20 309.00 0 0 39631.85 497.00 38264.41 542.00 13.61 14.94
50 47897.73 205.00 48772.74 198.00 27.07 22.82 55651.64 120.00 54974.55 130.00 37.09 30.99

Table 7: Random network results for PeBMε with εf ∈ [15%, 20%]

wij = $110k wij = $160k

Network CPUTime, sec Iter CPUTime, sec Iter

|N | ρ |F| Pulse SLR Pulse SLR Pulse SLR Pulse SLR

30 0.2 20 3.03 1.26 6.4 6.4 3.06 1.42 8.0 8.0
50 3.16 1.90 5.2 5.4 3.18 1.93 5.6 5.6

0.4 20 3.49 1.87 10.0 10.2 3.47 1.85 9.2 9.8
50 3.92 3.01 9.0 8.4 3.93 3.06 8.2 8.6

50 0.2 20 5.09 5.15 26.6 26.4 3.30 1.83 9.4 10.2
50 4.97 5.09 14.0 13.0 4.27 4.23 13.8 12.4

0.4 20 7.99 9.24 42.2 42.4 3.72 2.28 12.2 13.0
50 14.58 19.62 27.8 29.2 5.57 7.04 22.2 19.8

70 0.2 20 5.09 5.15 26.6 26.4 10.29 12.73 38.0 40.6
50 4.97 5.09 14.0 13.0 5.25 5.52 13.6 13.6

0.4 20 7.99 9.24 42.2 42.4 10.05 10.98 42.8 41.6
50 14.58 19.62 27.8 29.2 14.64 19.16 28.8 28.4

100 0.2 20 4.88 3.86 19.8 19.6 2.45 4.19 20.4 20.8
50 7.06 9.34 18.2 18.8 7.73 10.22 20.2 20.4

0.4 20 133.13 148.10 122.0 121.6 133.13 148.10 122.0 121.6
50 12123.16 12460.66 313.0 310.6 12123.16 12460.66 313.0 310.6
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Figure 5: Results for the random networks using the PeBMε formulation

6.3 The random networks

In order to further evaluate the performance of the cutting plane algorithm for both formulations,

we test them on randomly generated networks of different sizes and a number of flows (with 5

replications of each setting). Tables 6 and 7 demonstrate the performance of the proposed cutting

plane for the PeBM and PeBMε formulations respectively, where λf = 2. The experiments results

suggest the efficient performance of the algorithm for the most of instances for the PeBM formula-

tion, while the instance with 100 nodes and ρ = 0.4 is not solved within an hour time limit with the

gaps reported in the table. The reason for such performance can be explained by a large number

of nodes, strong connectivity within the network and a large value of λ. In the case of the PeBMε,

where ε values are drawn randomly between 15% and 20%, all instances are solved in a reasonable

amount of time, including the instance with 100 nodes and ρ = 0.4.

To measure the gains associated with the pessimistic solutions, we again measure the value of

VPS on the random networks. Table 8 shows the VPS values with varying values of installation

costs for random networks. In general, as installation costs increase the value of VPS increases.

Also, as shown in Figure 5a the value of the VPS increases with the increased value of ε. We

also have to note that under the optimistic solution, installation costs remain the same with the

increased value of ε, while under the pessimistic solution the installation costs increase as shown in

Figure 5b.

6.4 The Albany network

To assess the value of pessimistic solutions on the real network, we conduct experiments measuring

the VPS values. As shown in Figure 6a, the value of VPS on the Albany network can reach up to

13.25% for wij = $260k and 12.97% for wij = $360k even for small values of ε, highlighting the

benefits of the pessimistic solutions. We also observe constant VPS values with the increased value

of ε for wij = $260k, which is due to the nature of damage cost to the network. In particular, since

for the Albany network, the damage costs of followers is estimated not only considering the lengths
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Table 8: The value of pessimistic solutions for PeBMε, random networks, ρ = 0.4

Total Costs Installation Costs Damage

ε |N | wij , $ Opt. Pess. VPS, % Opt. Pess. Opt. Pess.

0.5 30 10 360,000 360,000 0.00 360,000 360,000 0 0
60 2,700,000 2,700,000 0.00 2,700,000 2,700,000 0 0

110 4,213,420 3,932,688 6.53 3,520,000 3,762,000 693,420 170,688
160 5,831,220 5,585,824 4.19 4,960,000 5,216,000 871,220 369,824
260 8,931,220 8,756,512 1.94 8,060,000 8,216,000 871,220 540,512

50 10 450,000 450,000 0.00 450,000 450,000 0 0
60 2,700,000 2,700,000 0.00 2,700,000 2,700,000 0 0

110 4,950,000 4,950,000 0.00 4,950,000 4,950,000 0 0
160 7,200,000 7,200,000 0.00 7,200,000 7,200,000 0 0
260 11,897,088 11,640,864 2.14 10,400,000 11,284,000 1,497,088 356,864

70 10 830,000 830,000 0.00 830,000 830,000 0 0
60 4,980,000 4,980,000 0.00 4,980,000 4,980,000 0 0

110 9,213,352 9,130,000 0.87 9,064,000 9,130,000 149,352 0
160 14,070,504 13,268,872 5.60 12,128,000 13,088,000 1,942,504 180,872
260 26,190,384 21,197,760 18.94 14,872,000 19,500,000 11,318,384 1,697,760

0.6 30 10 360,000 360,000 0.00 360,000 360,000 0 0
60 2,160,000 2,160,000 0.00 2,160,000 2,160,000 0 0

110 4,373,440 3,960,000 9.22 3,520,000 3,960,000 853,440 0
160 5,991,240 5,760,000 3.84 4,960,000 5,760,000 1,031,240 0
260 9,091,240 9,031,664 0.65 8,060,000 8,164,000 1,031,240 867,664

50 10 450,000 450,000 0.00 450,000 450,000 0 0
60 2,700,000 2,700,000 0.00 2,700,000 2,700,000 0 0

110 4,950,000 4,950,000 0.00 4,950,000 4,950,000 0 0
160 7,200,000 7,200,000 0.00 7,200,000 7,200,000 0 0
260 11,897,088 11,640,864 2.14 10,400,000 11,284,000 1,497,088 356,864

70 10 830,000 830,000 0.00 830,000 830,000 0 0
60 4,980,000 4,980,000 0.00 4,980,000 4,980,000 0 0

110 9,213,352 9,130,000 0.87 9,064,000 9,130,000 149,352 0
160 14,070,504 13,268,872 5.60 12,128,000 13,088,000 1,942,504 180,872
260 26,721,188 21,197,760 20.52 14,872,000 19,500,000 11,849,188 1,697,760

0.7 30 10 360,000 360,000 0.00 360,000 360,000 0 0
60 2,160,000 2,160,000 0.00 2,160,000 2,160,000 0 0

110 4,380,552 3,960,000 9.36 3,520,000 3,960,000 860,552 0
160 6,019,688 5,760,000 4.30 4,960,000 5,760,000 1,059,688 0
260 9,119,688 9,101,908 0.20 8,060,000 8,060,000 1,059,688 1,041,908

50 10 450,000 450,000 0.00 450,000 450,000 0 0
60 2,700,000 2,700,000 0.00 2,700,000 2,700,000 0 0

110 4,950,000 4,950,000 0.00 4,950,000 4,950,000 0 0
160 7,200,000 7,200,000 0.00 7,200,000 7,200,000 0 0
260 12,271,360 11,700,000 4.63 10,400,000 11,700,000 1,871,360 0

70 10 830,000 830,000 0.00 830,000 830,000 0 0
60 4,980,000 4,980,000 0.00 4,980,000 4,980,000 0 0

110 9,213,352 9,130,000 0.87 9,064,000 9,130,000 149,352 0
160 14,160,940 13,280,000 6.16 12,128,000 13,280,000 2,032,940 0
260 27,143,116 21,382,564 21.09 14,872,000 19,500,000 12,271,116 1,882,564

0.8 30 10 360,000 360,000 0.00 360,000 360,000 0 0
60 2,160,000 2,160,000 0.00 2,160,000 2,160,000 0 0

110 4,448,116 3,960,000 10.64 3,520,000 3,960,000 928,116 0
160 6,087,252 5,760,000 5.34 4,960,000 5,760,000 1,127,252 0
260 9,187,252 9,169,472 0.20 8,060,000 8,060,000 1,127,252 1,109,472

50 10 450,000 450,000 0.00 450,000 450,000 0 0
60 2,700,000 2,700,000 0.00 2,700,000 2,700,000 0 0

110 4,950,000 4,950,000 0.00 4,950,000 4,950,000 0 0
160 7,200,000 7,200,000 0.00 7,200,000 7,200,000 0 0
260 12,375,808 11,700,000 5.46 10,400,000 11,700,000 1,975,808 0

70 10 830,000 830,000 0.00 830,000 830,000 0 0
60 4,980,000 4,980,000 0.00 4,980,000 4,980,000 0 0

110 9,213,352 9,130,000 0.87 9,064,000 9,130,000 149,352 0
160 14,282,796 13,280,000 6.94 12,128,000 13,280,000 2,154,796 0
260 27,534,888 21,467,004 21.99 14,872,000 20,280,000 12,662,888 1,187,004
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Figure 6: The Albany network results for the PeBMε formulation λ = 1.2

Table 9: Location of WIM systems with constraints on the installation budget and the number of
installations on Albany network, ε = 20%. Distinct locations between the optimistic and pessimistic
solutions are shown in bold face.

# WIM Budget Intercepted links

∞ ∞ Opt. (4, 5), (61, 16), (24, 25), (33, 34), (80, 23), (42, 82), (5, 4), (16, 61), (26, 25), (33, 25), (51, 52), (44, 79), (82, 42)
Pess. (4, 5), (61, 16), (19, 20), (27, 5), (80, 23), (42, 82), (5, 4), (12, 11), (16, 61), (27, 26), (19, 7), (35, 20), (51, 52), (42, 43), (44, 79), (42, 78)

5 ∞ Opt. (61, 16), (5, 4), (16, 61), (42, 43), (42, 78)
Pess. (61, 16), (5, 4), (16, 61), (42, 43), (42, 78)

7 ∞ Opt. (61, 16), (5, 4), (16, 61), (26, 25), (32, 24), (33, 25), (82, 42)
Pess. (61, 16), (80, 23), (5, 4), (16, 61), (51, 52), (42, 43), (42, 78)

10 ∞ Opt. (61, 16), (80, 23), (5, 4), (16, 61), (26, 25), (32, 24), (33, 25), (51, 52), (44, 79), (82, 42)
Pess. (61, 16), (80, 23), (77, 78), (5, 4), (16, 61), (26, 25), (32, 24), (33, 25), (51, 52), (82, 42)

∞ 3 m Opt. (61, 16), (24, 25), (33, 34), (37, 8), (78, 42), (5, 4), (16, 61), (26, 25), (33, 25), (51, 52), (82, 42)
Pess. (61, 16), (27, 5), (80, 23), (78, 42), (5, 4), (16, 61), (26, 25), (32, 24), (33, 25), (51, 52), (82, 42)

∞ 5 m Opt. (4, 5), (61, 16), (21, 10), (24, 25), (5, 17), (80, 23), (42, 82), (5, 4), (16, 61), (26, 25), (33, 25), (48, 19), (51, 52), (44, 79), (82, 42)
Pess. (4, 5), (61, 16), (21, 10), (24, 25), (27, 5), (43, 42), (80, 23), (78, 42), (5, 4), (16, 61), (26, 25), (33, 25), (48, 19), (51, 52), (44, 79), (82, 42)

of arcs, but also considering the population density, increase in the lengths of satisfying paths may

not have a dominant effect.

We investigate the effect of ε values on the locations of WIM systems. Figure 6b shows the total

prevented damage cost to the network with respect to ε. We define the total prevented damage

cost as damage costs of followers caused to the network in the absence of WIM stations. The total

prevented damage cost increases up to ε = 30% and decreases at ε = 40%. If we look at the detailed

solution presented in Figure 7, we can see the differences of WIM locations under two different ε

values. We marked the different locations only. Under ε = 30%, WIM systems are located in a

shorter arc with higher population density compared to the solution with ε = 40%, which explains

the decrease in the total prevented damage cost.

Another set of experiments investigates the location of WIM systems with constraints on the

installation budget and the number of installations on the Albany network. The results are pre-

sented in Table 9. In all instances, except when the number of installations is set to 5, optimistic

and pessimistic solutions result in different locations for WIM. When the number of installations

is set to 5, both formulations select short links located in areas with a high density of population

and consequently high damage costs. Figure 8 demonstrates the locations of WIM stations under
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(a) ε = 30% (b) ε = 40%

Figure 7: The differences of WIM locations for the Albany network using PeBMε, wij = $360k

(a) Optimistic (b) Pessimistic

Figure 8: The differences of WIM locations for the Albany network using PeBMε, wij = $260k,
with 7 installations. The common locations are shown in blue and own distinct locations are shown
in red.
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optimistic and pessimistic formulations, when the total number of installations cannot exceed 7.

7 Concluding Remarks

We present and solve the pessimistic formulations of the Evasive Flow Capturing Problem (EFCP),

which aims to find efficient locations of law enforcement facilities in order to capture unlawful

travelers. The proposed pessimistic formulations consider bounded rationality instead of perfect

rationality in reactions of followers, thus representing more realistic behavior of travelers. Further,

we let the followers select the most damaging paths, thus looking for the worst-case scenario for

the decision of the leader.

To solve the resulting trilevel optimization problem, we propose a cutting plane algorithm to

solve the problem exactly. The extensive computational studies confirm the efficiency of the pro-

posed algorithm. We compare the solutions of the pessimistic formulations with those of optimistic

approaches on the real and random networks. Depending on the cost of installation of the law

enforcement facilities, the damage costs caused to a network by unlawful travelers under optimistic

solutions may be up to 13.25% higher compared to pessimistic solutions on the Albany transporta-

tion network. While installations costs are typically high under the pessimistic solutions, they

result in a long-term benefit in preserving the network infrastructure.

As a future research direction, novel solution methods can be developed to solve the pessimistic

formulations on large networks. While the proposed pessimistic formulations assume ambiguity

among satisfying paths, the future models may consider uncertainty in the threshold for calculations

of the lengths of satisfying paths.
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Appendix

A Proofs of Statements

Proof of Proposition 1. If ûf = 0, then r̂f = 0; hence it is trivial. For any σf ∈ Σf , we first

note that

(λf + δ)ûf −
∑

(i,j)∈Af

(dij + σfij)r̂
f
ij ≥ 0,

since the objective function value is 0 when ûf = 0. Suppose ûf = 1. Then we have∑
(i,j)∈Af

(dij + σfij)r̂
f
ij ≤ (λf + δ)ûf
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which leads to ∑
(i,j)∈Af

dij r̂
f
ij ≤ (λf + δ)−

∑
(i,j)∈Af

σfij r̂
f
ij

≤ λf + δ,

since σfij ≥ 0. Finally, we obtain
∑

(i,j)∈Af
dij r̂

f
ij ≤ λf , since δ < dij for all (i, j) ∈ Af .

Proof of Proposition 2. We observe that

(λf + δ)ûf −
∑

(i,j)∈Af

(dij + σ̂fij)r̂
f
ij = (λf + δ)ûf −

∑
(i,j)∈Af

dij r̂
f
ij

≥ 0

≥ (λf + δ)uf −
∑

(i,j)∈Af

(dij + σ̂fij)r
f
ij

for all (rf , uf ) ∈ Lf (x). Therefore, we obtain the proposition.

Proof of Proposition 3. If ûf = 0, then r̂f = 0; hence the results are trivial. We only consider

the cases with ûf = 1.

(i) For any σf ∈ Σf
ε , we first note that

λf + δ

1 + εf
ûf −

∑
(i,j)∈Af

(dij − σfij)r̂
f
ij ≥ 0,

since the objective function value is 0 when ûf = 0. With ûf = 1, we have

∑
(i,j)∈Af

dij r̂
f
ij ≤

λf + δ

1 + εf
+

∑
(i,j)∈Af

σfij r̂
f
ij (61)

Since 0 ≤ σfij ≤
εf

1 + εf
dij , (61) should be true when σfij = 0 ∀(i, j) ∈ Af . Then, we have

∑
(i,j)∈Af

dij r̂
f
ij ≤

λf + δ

1 + εf
≤ λf + δ,

which is equivalent to
∑

(i,j)∈Af
dij r̂

f
ij ≤ λf .

(ii) Since ûf = 1, the problem in Lfε (x;−σf ) is equivalent to the minimization of
∑

(i,j)∈Af
(dij−
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σfij)r
f
ij , for which r̂f is an optimal solution. Observe that:∑

(i,j)∈Af

(dij − σfij)r̂
f
ij ≤

∑
(i,j)∈Af

(dij − σfij )̊r
f
ij ≤

∑
(i,j)∈Af

dij r̊
f
ij ,

since σfij ≥ 0 for all (i, j) ∈ Af . We also have

∑
(i,j)∈Af

(
dij −

εf
1 + εf

dij

)
r̂fij ≤

∑
(i,j)∈Af

(dij − σfij)r̂
f
ij ≤

∑
(i,j)∈Af

dij r̊
f
ij ,

since σfij ≤
εf

1+εf
dij for all (i, j) ∈ Af . Consequently, we have

∑
(i,j)∈Af

dij r̂
f
ij ≤ (1 + εf )

∑
(i,j)∈Af

dij r̊
f
ij .

Hence we obtain the proposition.

Proof of Proposition 4. The proposition is true for more general cases; for all (r̂f , ûf ) ∈ Lf (x)

such that
∑

(i,j)∈Af
dij r̂

f
ij ≤

∑
(i,j)∈Af

dij r̊
f
ij(1 + εf ). With ûf = 1, the problem in Lfε (x;−σf ) is

equivalent to the minimization of
∑

(i,j)∈Af
(dij − σfij)r

f
ij . By applying Theorem 6 of Sun et al.

(2018), we complete the proof.

Proof of Proposition 5. Let (x∗, r∗,u∗) be optimal to PeBM. That is,

(rf∗, uf ) = arg max
(rf ,uf )∈Lf (x∗)

∑
(i,j)∈A

hijr
f
ij . (62)

for each f ∈ F . We need to show that the above optimal solution satisfies both cuts (26) and (27).

We prove by induction. In the first iteration, when no cuts are added, the proposition is obviously

true.

In iteration k − 1, we assume that the proposition is true. When the master solution (x, r,u)

and the WCP solution (r̂, û) are obtained, distinct subpaths p and p̂ are identified, and new cuts

are generated and added to the master problem in iteration k. We show that these new cuts (26)

and (27) do not cut out the optimal solution. For each flow f ∈ F , we consider two cases: u∗f = 0

and u∗f = 1.

(i) When u∗f = 0, we also have rf∗ = 0. Therefore, (26) is trivially satisfied at the optimal

solution. To show that x∗ and u∗f also satisfy (27), we suppose not. That is, we assume∑
(i,j)∈p̂

x∗ij � 1− u∗f = 1,
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which implies
∑

(i,j)∈p̂ x
∗
ij = 0. Cut (27) was added in iteration k − 1, because we had uf = 0;

therefore p̂ implies a complete path from the origin to the destination for flow f . Since path p̂ is

unintercepted and available for traveling, we observe that u∗f = 0 cannot be optimal to WCP in

(62).

(ii) When u∗f = 1, (27) is trivially satisfied at the optimal solution. To show that x∗ and u∗f
also satisfy (26), we need to show ∑

(i,j)∈p̂

x∗ij ≥ 1− |p|+
∑

(i,j)∈p

rf∗ij . (63)

Consider two subcases. If
∑

(i,j)∈p r
f∗
ij < |p|, then (63) is satisfied. When

∑
(i,j)∈p r

f∗
ij = |p|, subpath

p is used by rf∗. That is, subpath p is part of the WCP solution in (62). Let us suppose (63) does

not hold. That is, we assume ∑
(i,j)∈p̂

x∗ij � 1− |p|+
∑

(i,j)∈p

rf∗ij = 1,

which implies
∑

(i,j)∈p̂ x
∗
ij = 0. Note that subpath p̂ was part of the unique optimal solution to

WCP in iteration k−1. That is,
∑

(i,j)∈p hij <
∑

(i,j)∈p̂ hij . Since subpath p̂ is unintercepted by x∗

and available for traveling, subpath p cannot be part of the optimal solution to WCP in (62).

Proof of Proposition 6. We first note that Corollary 1 enables us to change the variable σ in

(30)–(35) by a new binary variable y such that yfij = 1 − rfij and, subsequently, yfijr
f
ij = 0 for all

f ∈ F and (i, j) ∈ Af . We use inequalities yfijr
f
ij ≤ 0 in the constraints; similarly for (39), we use

xfijr
f
ij ≤ 0, which in combination leads to (xfij + yfij)r

f
ij ≤ 0. We obtain:

maximize
yf

∑
(i,j)∈Af

hfijr
f
ij (64)

subject to yfij ∈ {0, 1} ∀(i, j) ∈ Af (65)

maximize
rf ,uf

(λf + δ)uf −
∑

(i,j)∈Af

dijr
f
ij (66)

subject to
∑

(i,j)∈Af

rfij −
∑

(j,i)∈Af

rfji ≤


uf if i = sf

−uf if i = tf

0 otherwise

∀i ∈ Nf (πfi ) (67)

(xij + yfij)r
f
ij ≤ 0 ∀(i, j) ∈ Af (νfij) (68)

uf ≤ 1 (ηf ) (69)

uf , r
f
ij ≥ 0 ∀(i, j) ∈ Af (70)

for each f ∈ F . Note that the integrality of uf and rf is relaxed, since the lower-level problem
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satisfies the total unimodularity, and the inequality form in (67) is used. Using the dual variables

πf and ηf , the dual problem can be written as:

minimize
πf ,νf ,ηf

ηf (71)

subject to πfi − π
f
j + µfij(xij + yfij) + dij ≥ 0 ∀(i, j) ∈ Af (72)

πftf − π
f
sf

+ ηf ≥ λf + δ (73)

ηf , π
f
k , µ

f
ij ≥ 0 ∀k ∈ Nf , (i, j) ∈ Af (74)

for each f ∈ F . Note that the lower-level problem of the above bilevel problem is identical in its

structure to the lower-level problem of the optimistic formulation considered in Arslan et al. (2018).

Using Proposition 1 of Arslan et al. (2018), we can show that there exists an optimal solution to

(71)–(74) such that µfij = λf + δ for all (i, j) ∈ Af . By replacing the lower-level by its optimality

conditions and eliminating ηf by using strong duality, we obtain (37)–(44).

Proof of Proposition 7. It can be proved similar to Proposition 6. The dual problem of the

lower-level can be written as follows:

minimize ηf (75)

subject to πfi − π
f
j + µfijxij + (dij − σfij) ≥ 0 (76)

πftf − π
f
sf

+ ηf ≥
λf + δ

1 + εf
(77)

ηf , πfi , µ
f
ij ≥ 0 (78)

Using Proposition 1 of Arslan et al. (2018), we can show that there exists an optimal solution such

that µfij = λij + δ. With the strong duality, we have

ηf =
λf + δ

1 + εf
uf −

∑
(i,j)∈Af

(dij − σfij)r
f
ij (79)

Eliminating ηf using (79) in the dual feasibility constraints (77) and (78), we obtain the following

conditions respectively:

λf + δ

1 + εf
(1− uf ) +

∑
(i,j)∈Af

(dij − σfij)r
f
ij ≤ π

f
tf
− πfsf (80)

λf + δ

1 + εf
uf −

∑
(i,j)∈Af

(dij − σfij)r
f
ij ≥ 0. (81)

By using (20) in Proposition 4, we can let σfij =
εf

1 + εf
dijr

f
ij and rewrite (80) and (81) as (55) and
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(56), respectively.
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