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Abstract  

In this paper, we propose a revenue optimization framework integrating demand learning and 

dynamic pricing for firms in monopoly or oligopoly markets. We introduce a state-space 

model for this revenue management problem, which incorporates game-theoretic demand 

dynamics and nonparametric techniques for estimating the evolution of underlying state 

variables. Under this framework, stringent model assumptions are removed. We develop a 

new demand learning algorithm using Markov chain Monte Carlo methods to estimate model 

parameters, unobserved state variables, and functional coefficients in the nonparametric part. 

Based on these estimates, future price sensitivities can be predicted, and the optimal pricing 

policy for the next planning period is obtained. To test the performance of demand learning 

strategies, we solve a monopoly firm's revenue maximizing problem in simulation studies. We 

then extend this paradigm to dynamic competition, where the problem is formulated as a 

differential variational inequality. Numerical examples show that our demand learning 

algorithm is efficient and robust. 
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1. INTRODUCTION 

There has been an enormous amount of literature on dynamic pricing policy for 

revenue management (see [5], [15], [22]). The subject’s popularity is largely because 

controlling price is an effective and direct way to manipulate market demand for 

services or products, so that a firm can maximize its profits in the short run. Thanks to 

rapidly growing information technology, we can conveniently gather, analyze and 

forecast market response or customers’ behavior, and then update prices and 

inventories accordingly. As pointed out by Jayaraman and Baker [15], with the advent 

of the Internet and other more complex transaction formats, dynamic pricing is 

becoming more and more feasible and crucial in supporting the growth of many 

businesses. Therefore, how to learn and predict the impact of dynamic pricing 

decisions on the market and the competitors is the key to success in a variety of 

industries including the service industry (airlines, hotels, and rental car companies), 

the retail industry (department stores) and the e-commerce (see [4]). This requires us 

to carefully exploit efficient mathematical models and computational techniques in 

light of recent developments in statistics, optimization, and game theory.  

In revenue management literature, many methods have been proposed to resolve 

the uncertainty of demands. They incorporated learning mechanisms either by 

experimentation or taking advantage of historical market data. Balvers and Cosimano 

[3] modeled demands as a linear function of prices with unknown slopes and 

intercepts, which motivated to learn by estimating parameters in the linear model. 

Mirman, Samuelson and Urbano [19] further examined the incentives of demand 
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learning, and established two necessary conditions for a firm to learn uncertain 

demand curve from experiments. Later, Petruzzi and Dada [20] considered a demand 

model with both additive and multiplicative stochastic components, whose 

distributions are updated over time using Bayes’ rule. Huang and Fang [14] 

incorporated a planned warranty term of products as a new factor in a demand 

function, and estimated uncertain parameters by market survey and analysis before 

utilizing a Bayesian decision model to determine the optimal warranty proportion in 

postsales service.  

On the other hand, some researchers formulated demand dynamics from the 

perspective of customers’ behavior. Gallego and van Ryzin [12] assumed that the 

number of customer arrivals has a Poisson distribution with exponentially distributed 

reservation prices in their mind. Under this assumption, optimal pricing strategy can 

be derived analytically. Aviv and Pazgal [2] and Araman and Caldentey [1] extended 

this idea to gamma distribution and two-point distribution, respectively. However, 

under this setting, beliefs about the distributions of several random variables have to 

be put a priori, and the impact of firms’ historical prices was ignored.  

Recent works on demand learning have begun to address the issue of competition. 

Bertsimas and Perakis [4] assumed that demand is a linear function of a firm’s price 

and its competitors’ prices, and estimated parameters using a least square method in 

cases of both monopoly and duopoly. Kwon et al. [18] considered dynamic games for 

demand learning, where the relationship between demand and price was characterized 

by evolutionary dynamics from the perspective of game theory. In their work, 
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underlying price sensitivities were assumed to follow a random walk. Although this 

assumption guarantees a closed-form solution provided by Kalman filter, it is too 

restrictive and the whole algorithm will break down if this assumption is violated. 

Moreover, in practice, the model fails to capture future price sensitivity based on its 

patterns from the past.  

In this paper, we propose a general framework for demand learning based on 

state-space models. The state-space model has been a powerful tool in modeling and 

forecasting dynamic systems, which was introduced by Kalman [16] and Kalman and 

Bucy [17]. It consists of an observation equation, which characterizes the dynamic of 

observed inputs and outputs, and a state equation, which describes the evolution of 

underlying unobserved state variables of the system we are interested in. For a 

state-space model with the linear state dynamics, Kalman filter yields good estimation 

and prediction. If the underlying state dynamics is not linear, the solution requires 

approximation or computation-intensive methods based on numerical integration. 

Pole and West [21] used Gaussian quadrature techniques in a Bayesian analysis of 

nonlinear dynamics models, and Carlin et al. [7] developed a Markov chain Monte 

Carlo (MCMC) approach for nonlinear and non-Gaussian state-space models.  

When the price sensitivities in the demand function is considered as an 

unobservable state variable in a state-space model, the successes of demand learning 

and revenue maximization largely rely on estimating the pattern of the price 

sensitivities with high accuracy. The random walk assumption in Kwon et al. [18] 

implies that the historical price sensitivities provide no information about its future 
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changes, since it is assumed that the price sensitivity at time t equals to the price 

sensitivity at time t-1 plus Gaussian noise. Although this assumption provides 

analytical tractability, it may not be realistic in practice. In this paper, we greatly 

generalize this assumption by not making any assumption about the parametric form of 

the unobserved price sensitivity dynamics (i.e. the structure of the state equation) but 

learning it from the historical market data. Our method could discover the underlying 

patterns of the price sensitivities from the available market data, and automatically 

formulate the state equation that best describes how price sensitivities evolve over 

time. To be more precise, we incorporate a nonparametric functional-coefficient 

autoregressive (FAR) model to describe the nonlinear time series of the price 

sensitivities. This nonparametric technique relaxes parametric constraints, such that 

prior knowledge on the state equation structure is not required. Therefore, in our 

general state-space model, the observed demands and prices are described by a 

parametric observation equation, and the underlying state dynamics is captured by the 

nonparametric FAR model in the state equation. We develop a Bayesian method using 

MCMC algorithms to estimate model parameters, latent state variables, and 

functional-coefficients jointly. Then, we employ a simulated annealing algorithm for 

solving a single firm’s pricing problem, and a fixed point algorithm for a 

non-cooperative competition problem.  

The article is organized as follows. In section 2, we describe a revenue 

management model including demand dynamics, the evolution of underlying state 

variables, an optimal control formulation for a monopoly market, and a differential 
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variational inequality (DVI) formulation for competition. In section 3, we explain the 

estimation and prediction procedures for the state-space model. Numerical examples 

and managerial implications for a monopoly and an oligopoly are presented in section 

4. Finally, section 5 concludes the paper. 

 

2. REVENUE MANAGEMENT MODEL 

2.1 Demand Dynamics 

We assume that customers are sensitive to the change of price. If there are 

multiple firms, customers are always searching for services or products at the most 

competitive prices. These so-called bargain-hunting buyers have no brand preference, 

and are willing to sacrifice some convenience for the sake of a lower price.  

Following the game-theoretic dynamics proposed by Fudenberg and Levine [11], 

we assume that at time t, customers have a "reference price" in mind which reflects 

the market condition, and the demand at time t is a function of the difference between 

the current market price and the reference price. More precisely, the reference price 

i  is the weighted moving average price of past k time period of all firms:  

( ) ( ) ( ), (1)

t

f f

i i i

f Ft k

t p


   
 

   

where F  is the set of firms, [ , ]t k t    is the moving window, f

i  is the price of 

service i charged by firm f, and f

ip  is the weight for f

i with ( ) 1

t

f

i

f Ft k

p



 

 . By 

choosing k, the impact significance of historical prices on the current market is 

specified. Then, from the perspective of the evolutionary game theory, the demand 
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Di
f
(t) for the service type i offered by a firm f F  evolves as follows 

( )
( ) ( ( ) ( )). (2)

f
f fi

i i i

dD t
t t t

dt
    

 

The exogenous quantity f

i could be interpreted as the price sensitivity of demand. It 

controls how quickly market demand reacts to price changes of service type i from 

firm f. The firm estimates this unknown quantity by observing and analyzing the past 

market data.  

This equation describes the relationship between observed demands and prices, 

and is usually called observation equation in a state-space framework. Since the 

demand dynamics is a function of firms’ pricing strategy and consumers' price 

sensitivity, once price sensitivities over time are predicted, demand dynamics over a 

time interval will be determined by prices for the same period. Therefore, the revenue 

maximization problem reduces to an optimization problem over a closed set of prices.  
 

2.2 Evolution of Price Sensitivity 

Note that price sensitivity f

i  may exhibit periodic patterns like other time series 

in economics and business, or in general vary over time. For example, consumers may 

be less sensitive to price changes during Christmas holidays or other special events. 

Therefore, understanding its dynamics is a critical step in making pricing policy for 

future planning periods. Since price sensitivities cannot be directly observed, they are 

collectively called state variables in the state-space representation, and their evolution 

will be described by the state equation in our state-space model.  

Many popular parametric time series structures can be used to describe the 

dependence of f

i  on its previous values, such as autoregressive moving-average 
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(ARMA) models, unit-root non-stationary random walk, Markov switching models 

and threshold autoregressive (TAR) models. However, in practice, we may not have 

sufficient knowledge to pre-specify a parametric form, and demand learning cannot be 

perfectly achieved by arbitrarily assuming a parametric structure. Moreover, the 

prediction performance is poor when the data is not actually driven by the model we 

specified.  

Fortunately, recent developments of nonparametric techniques and computing 

facilities provide an alternative to model time series and relax parametric constraints, 

where no prior assumption of the model structure is required. Here we will use the 

functional-coefficient autoregressive (FAR) model proposed by Chen and Tsay [8], 

which proved robust against a range of underlying time series structures and is good 

at out-of-sample forecasting. Thus, the fluctuation of underlying state variables is 

captured by the state equation: 

2 1 2 11 1 1 1( ) ( , , ) ( , , ) , (3)t t t m t m t t m t mE f f                  

where 
21( , , )t t m      is a vector of lagged values of t and 1, 1, ,jf j m   are 

measurable functions from 2m to 1  assumed to be continuous and twice 

differentiable almost surely with respect to their arguments. The estimation of 

coefficient functions
11, , mf f from observed demands and prices allows appreciable 

flexibility on the structure of state equation. In fact, many popular linear or nonlinear 

parametric models are special cases of FAR model. Recently, the FAR model has been 

widely studied. To mention a few, Hoover et al. [13] developed the 

functional-coefficient model to longitudinal data. Cai et al. [6] applied the local linear 
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regression method to estimate coefficient functions, which showed substantial 

improvements in post-sample forecasts over other parametric models. Tsay [23] 

further suggested fitting FAR models to discover nonlinear evolution of the state 

transition equation when specifying a nonlinear state-space model.  

2.3 Optimal Control Problem for a Non-competitive Market 

In this section, we provide an optimal control problem in a non-competitive 

market, which is used to compare the performance of various demand learning 

strategies in Section 5.1. The objective function of a firm is to maximize the net 

present value of revenue by providing a service with limited capacity over finite time 

horizon from 
0

t  to f
t . The firm’s revenue at each time period can be calculated by 

multiplying the specified price and the realized demand. Nominal discount rate or 

interest rate (r) is used to compute the net present value of revenue.  

The customer demand and the price sensitivity evolve over time according to the 

dynamics introduced in the previous sections. The price charged by this firm has 

upper and lower bounds due to market regulation, customer behaviors and firm's 

non-negligible cost. Moreover, the demand may be restricted by the non-negativity 

constraint and the limited capacity of the service provider. Consequently, a firm faces 

the following optimization problem: 

0

min max

max

max ( ) (4)

. .

( )

0 .

ft
rt

t
e D dt

s t

dD

dt

D D

 

  

  

 

  

 

 


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where 
max  and 

min  are positive upper and lower bounds of price, respectively. 

maxD is the upper bound of demand. 

2.4 Formulation for Competition 

When competition among multiple firms offering multiple services is considered, 

the equilibrium problem can be formulated as a differential variational inequality or 

DVI [10]. The solution of DVI represents Cournot-Nash equilibria for the 

revenue-maximizing game of each firm. In this section, we present a DVI formulation 

for competition of multiple service providers. Since each firm f  in a market 

maximizes revenue, it has the following optimal control problem:  

 

0

0

/

0 ,0

0

max ( , , ) ( )     (5)

. .

( )        (6)
| | ( )

                       (7)

( )                                  (8)
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t
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
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                         (10)
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 In the objective function Eq. (5) of this model, prices are determined to maximize 

net profit value of revenue. Eq. (6)-(7) represent the demand dynamics with equally 

weighted average ( )fp t  for all f  at t . In other words, ( )fp t  is equal to 

01/ | | ( )F t t  and the reference price becomes 0( ) ( ) / | | ( )

t

f

i i

f Ft k

t F t t


  
 

  , where 

| |F is the number of companies. By introducing a dummy variable ( )iy t , ( )i t  can be 
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written as 
0( ) / | | ( )iy t F t t  together with Eq. (7). Initial values are considered in Eq. 

(8)-(9) and ,0

f

iK  is the initial demand of service i by firm f . Eq. (10) ensures the 

price is bounded by its lower and upper limits. A joint resource constraint for firm f  

is represented by Eq. (11), where A  is an incidence matrix showing the relationship 

between services and resources, and f

rC  is the capacity of resource r of firm f . The 

incidence matrix ( )irA a  is defined as 

1     if resource r is used by service type i

0                       otherwise.                        
ira


 


 

The last constraint Eq. (12) reflects non-negativity condition.  

For the optimal control problem with fixed terminal time, Hamiltonian fH  is 

defined as 

/0

( ; , ; , ; , ; , )

( ) ( ; , ; , ; , ; ), (13)

where

( ; , ; , ; , ; )

( ) ( ) ( ) ( ). (14)
| | ( )

f f f f f f f

f

t f f f f f f f f f
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The two new variables, f

i  and f

i , are the adjoint vectors satisfying transversality 

conditions due to the free endpoint conditions, which are *( ) 0f

i ft  and 0)(* f

f

i t . 

Also, f

i  and f

i  are dual variables for Eq. (11)-(12).  

Now, we have the following DVI formulation and the solution represents 

Cournot-Nash equilibria for the revenue-maximizing game of each firm: 

0

*

*( ( )) 0 (15)

for     

ft f f f

i i
t

i I f F f

f

f F

H
dt 





 




 


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where 

min, max,{ : }f f f f

f i i i        and * * * * * * * * *( ; , ; , ; , ; , ).f f f f f f f

f fH H D y t        

 

3. ESTIMATION AND PREDICTION 

So far, we have introduced a revenue management model for demand learning, 

where demand dynamics is described by a state-space model, and the optimal pricing 

policy can be obtained by solving the corresponding optimization problem. By 

making use of the historical data, we could estimate unknown quantities in the 

state-space model, and then forecast realized demands in the future following our 

optimization procedure.  

However, since observations for model estimation occur only at discrete times, 

we first discretize a whole planning period into K sub-intervals with the same length 

and suppose one observation is made at the end of each sub-interval. Then, the 

state-space model is reformulated as 

1

2

2

1

1

2

( , , ) , ~ (0, ), (16)

( ) , ~ (0, ), (17)

m

t j t t m t j t t

j

t t t t t t

f u u N

D v v N

    

   

  



   

    


 

where {1,2,..., }t K , 1, 1, ,jf j m   in the state equation are measurable functions, 

tu  and tv  are Gaussian noise with different variances. By specifying parametric 

forms for ( )jf  ’s, this model could be reduced to one of familiar time series models 

described in Section 2. On the other hand, we may wish to estimate these general 

forms of functional-coefficients by nonparametric techniques instead of imposing 

arbitrary constraints, such that underlying dynamics of price sensitivities can be 
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precisely recovered.  

At the end of one planning period, we estimate unknown quantities 

2 2

1 1, , , , mf f   and 1, , K 
 
using observed demands and prices in the past 

planning periods, forecast the dynamics of 
t  in the next planning period, and finally 

determine the firm’s pricing policy for the next planning period to maximize the 

revenue.  

3.1 MCMC Estimation for State-Space Model with AR(1) State Dynamics 

Let us start from a parametric state equation by assuming an autoregressive state 

dynamics. That is, we assume that the dynamic of price sensitivity k  follows an 

AR(1) process. Then we have 1 1m  , 2 1m   and 1f  . That is, the state equation is 

reduced to 

2

1 , ~ (0, ). (18)t t t tu u N     

In our MCMC-implemented Bayesian estimation, we choose the following conjugate 

prior distributions for parameters in the state-space model: 2

0 0~ ( , )IG a b , 

2

0 0~ ( , )IG c d , and 2~ ( , )N     , where IG refers to inverse gamma distribution and 

N refers to a normal distribution. Then, at the i-th iteration, the MCMC steps are:  

a) Initialize 2 2, , , t     for t = 1, 2, … , K. 

b) Update 2 , variance of errors in the state equation. Since the data likelihood is 

normal  

 2 2

1 1| , ~ , ,t t tN       

and the prior distribution is conjugate inverse gamma, the conditional distribution of 

2  is also inverse gamma. Therefore, conditioning on 2 ( 1)i  , ( 1)i   and 
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( 1) ( 1)

1 , ,i i

K      from the previous iteration, we draw a new sample 2 ( )i  from the 

following distribution 

1

2 ( 1) ( 1) ( 1) 2

0 1

0

1 1
| (.) ~ , ( ) .

2 2

i i i

t t

n
IG a

b
   



  



  
    
   

  

c) Update 2 , variance of errors in the observation equation. Similarly, 2 ( )i  is 

drawn from its posterior distribution  

1

2 ( 1) 2

0

0

1 1
| (.) ~ , ( ( )) .

2 2

i

t t t t

n
IG c D

d
   




  
       
   

  

d) Update latent state variables t , for t = 1, 2, … , K. Note that both nonlinear state 

equation and linear observation equation contain information about t . The 

likelihood of t  from the state equation is 2

1 ~ (0, )t t N     and 

2

1 ~ (0, ),t t N   and that from the observation equation is 

2( ) ~ (0, )t t t tD N       , which on manipulation gives the following posterior 

distribution 

2 2 2| ( ) ( ) ( , )t t N B b B    , 

where  

2( 1)
1

2 2( 1) 2( 1)

1
,

i

i i
B



 




 
 

 

( 1) ( 1)

1 1

2 2( 1)
,

i i

t t

i
b



 

 

 

 


 

 

and  
2

( 1)

2( 1)

1
( ) exp ( ) .

2

i

t t t t ti
D    







 
      

 
 

Since this posterior distribution is not a closed form, we cannot directly draw a new 

sample ( )i

t . So we use accept-reject algorithm or in general Metropolis-Hasting 

algorithm.   

e) Update AR(1) coefficient  . The state equation gives 2

1~ ( , )t tN   , therefore, 
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by conjugate normal prior we specified in the initialization step, the posterior 

distribution of   is also normal: ( , )N Bb B , where 
2( 1)

1 1

2 2( 1)

1
i

t

it
B





 


 


  , and 

( 1) ( 1)

1

2 2( 1)

i i

t t

it
b





  

 

 




  . We sample ( )i  from this distribution.  

f) Repeat b) – e).  

Up to now, we have carried out one cycle of the MCMC and are ready to continue 

sampling for the next cycle. The sample process continues until the chains converge 

to the stationary distributions. We then collect all posterior samples and use their 

posterior medians as the point estimates of all parameters and latent state variables.  

3.2 MCMC Estimation for State-Space Model with Functional-Coefficients 

However, if we do not assume any parametric structure for ( )jf  ’s, nonparametric 

techniques such as kernel regression or local linear regression can be used to estimate 

the functional-coefficients ( )jf  ’s. In our example, we take 1 2m   and 2 1m   to 

avoid overfitting as suggested by Cai et al. [6]. In this way, price sensitivity at time t, 

t , is regressed on 1t  and 2t  , and the functional regression coefficients only 

depend on 1t  . The extension to cases 1 2m   and 2 1m   is straightforward. 

Therefore, the state equation in our state-space model becomes 

2

1 1 1 2 1 2( ) ( ) , ~ (0, ). (19)t t t t t t tf f u u N            

In the presence of functional-coefficient, the MCMC estimating procedure is 

similar to the one we described above. However, the conditional posterior distribution 

of state variables t  becomes 
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( ) ( ) ( 1) ( 1) 2( 1) ( ) ( 1) ( 1) 2( 1) ( ) ( 1) ( 1) 2( 1)

1 2 1 1 1 2

( ) 2( 1)

( | .) ( | , , ) ( | , , ) ( | , , )

( | , , ). (20)

i i i i i i i i i i i i i

t t t t t t t t t t

i i

t t t

L p p p

p D

            

  

        

     





  
 

Since there is no corresponding closed form for this posterior distribution, we again 

employ Metropolis-Hasting algorithm to get posterior samples of ( )i

t  that follow this 

distribution. According to the Metropolis-Hasting algorithm, at each cycle of the 

MCMC, we first draw a sample from a closed-form distribution, which is called 

proposal distribution, and then accept this sample with certain probability. After many 

iterations, the resulting posterior samples follow the desired distribution. In particular, 

at the i-th iteration, we draw a new sample of t  denoted by *

t  from a proposal 

distribution 

 
2

* ( 1) ( 1) 2( 1) * ( 1) ( 1) ( 1) ( 1)

1 2 1 1 1 2 1 22( 1)

1
( | , , ) exp ( ) ( ) , (21)

2

i i i i i i i

t t t t t t t ti
q f f        



      

     

 
    

 
 

and then accept ( ) *i

t t   with the probability *min(1, )p , where 

 
 

 
 

* ( 1) ( 1) ( 1) 2( 1)

1 2*

( 1) * ( 1) ( 1) 2( 1)

1 2

| . | , ,
. (22)

| . | , ,

i i i i

t t t t

i i i i

t t t t

L q
p

L q

    

    

   

 

   

 

   

If the new value *

t  is not accepted, we set ( ) ( 1)i i

t t   .  

Moreover, we are not updating   here but updating more general two functions 

1f  and 2f  by least square estimations based on ( ) ( )
1 , ,i i

t  of current iteration. That 

is, we have 

 0 , 1 0

1

ˆ ( ) ( , ) 1,2 (23)
K

j K j i t t

i

f u K X u j 



    

where 

1

, ,2( , ) ( ) ( ). (24)T T

K j j h

x
K x u e X WX K u

ux

  
  

 
 

In the above expression, 1 2( , )i t tX    , ( )hK   is a kernel function with bandwidth 
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h  selected by cross-validation, ,2je  is the 4 1  vector with 1 at the j-th and (2+j)-th 

positions, X  denotes an 4K   matrix with  1 0, ( )T T

i i iX X u    as its i-th row, and 

W is a K K  diagonal matrix with diagonal entries: 1 0( )h iK u   . 

Likewise, after the chains become stationary, we calculate the medians of all 

posterior samples as point estimates. By plugging in estimated parameters, estimated 

coefficient functions and estimated latent state variables of the past, future state 

variables can be predicted. 

3.3 MCMC Estimation for Missing Data  

In the above two algorithms, we assume that there is no missing data. That is, we 

observe tD  and t  for t = 1, 2, … , K. However, in practice, a subset of 

observations, say 'tD  and ''t , may be missing. If statistical inference is easier 

when we have the complete data consisting of observed data and missing data, we 

may use a strategy called “data augment” to overcome the difficulties due to missing 

data. The essential idea here is to substitute the missing values with simulations, and 

then perform the standard estimation procedure using the augmented dataset. The 

strategy allows us to estimate all missing values, and facilitates the parameter 

estimations, since the proposed estimation procedure based on the complete data 

remains after data augment.  

Assume that 'tD , 1 '' ,..., nt v v , and ''t  , 1 '''' ,..., nt w w , are missing, that means, 

we have ' ''n n  missing values. Before implementing MCMC algorithms, we may 

initialize missing observations. Then, at the i-th iteration of the MCMC sampling 

procedure described above, we draw a new sample ( )

'

i

tD  from its posterior 
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distribution conditional on ( 1)i

t
  and ( 1)i

t
 , t = 1, 2, … , K,  

2
'' ' '| (.) ~ ( ( ), ), (25)tt t tD N        

and draw ( )

''

i

t  from its posterior distribution conditional on ( 1)i

t
  and ( 1)i

tD  , t = 1, 

2, … , K, 

2''
''''

''

| (.) ~ ( ), ). (26)t
tt

t

D
N  




   

4. NUMERICAL EXAMPLES 

4.1 A Single Firm’s Problem 

 Let us first consider a monopoly market where a single firm provides a service. 

We assume that the true price sensitivity follows one of the following patterns: (a) 

random walk: 1t t tu     (Kwon et al. [18]), (b) autoregressive structure of order 1: 

10.8t t tu    , (c) autoregressive structure of order 2: 1 20.8 0.4t t t tu      , (d) 

sine wave: sin( ) 2t tt u     (Friesz et al. [10]), (e) composite sine wave: 

sin( ) sin(2 ) sin(4 )t tt t t u     , (f) sawtooth wave: 
50

1

1 2 1 2
sin( )

2 6
t t

j

jt
u

j




 

   , 

where tu  ~ N(0, 
2 ), and 2  = 0.2. Although these state dynamics of price 

sensitivities are unknown to the service provider, given historical demands and prices 

(see Figure 1), a firm can estimate their patterns and make forecasts using one of the 

following demand learning strategies: (a) Kalman filter for linear state dynamics 

proposed by Kwon et al. [18], (b) MCMC algorithm with assumed AR(1) dynamics 

and (c) MCMC algorithm with functional-coefficient autoregressive (FAR) model.  

We assess the forecasting performance of different strategies by the average 

squared errors (ASE): 
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60
2

31

1
ˆ( ) , (27)t t

t

ASE
n

 


   

where ˆ
t  is the predicted price sensitivity in the next planning period (30 days). 

Table 1 gives ASE of each learning method. Since Kalman filter demand learning 

assumes a random walk dynamics of price sensitivity, it yields good forecasts only 

when the true price sensitivity indeed follows a random walk process. Similarly, 

MCMC demand learning with assumed AR(1) dynamics has good performance only 

when the underlying state dynamics follows a random walk or AR(1) process, since 

the AR(1) structure reduces to a random walk when the autoregressive parameter is 

close to 1. Therefore, it is clear that for parametric demand learning methods, to 

achieve good predictive performance, the assumed parametric structure of 

unobservable state dynamics should be correct. On the other hand, the nonparametric 

MCMC demand learning provides the most accurate forecasts for all underlying price 

sensitivity dynamics, since nonparametric technique could recover it nicely from the 

historical data without assuming state dynamics.  

 

   

Figure 1. An example of history data 
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Underlying 

Dynamics 

Kalman Filter MCMC with AR(1) MCMC with FAR 

Random walk 0.0367 0.0352 0.0361 

AR(1) 0.1277 0.0945 0.0831 

AR(2) 0.1659 0.1209 0.0985 

Sine 1.5451 0.6069 0.1466 

Composite sine 2.8575 1.9332 0.9036 

Sawtooth wave 0.4602 0.4421 0.2953 

Table 1. Average squared errors of forecasts over 100 simulations 

 

After predicting price sensitivity dynamics by one of the three strategies, optimal 

pricing policy for the future planning period is determined by simulated annealing 

algorithms. Then according to true underlying dynamics of t , demands 

corresponding to the pricing policies are observed respectively and realized revenues 

are calculated. We take the sine underlying dynamics as an example, and report the 

realized revenues in Table 2. In order to investigate the influence of noise, simulations 

are performed with  = 0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1. 

 As we can see from Table 2, the Kalman filter method could not generate more 

revenue than the other learning methods, since its restrictive assumption of linear 

dynamics of state variables as discussed above, but nonparametric MCMC demand 

learning strategy significantly outperforms the others. As noise decreases, the average 
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revenues of all demand learning methods increase, which implies that the overall 

accuracy of demand learning methods improves; as noise increases, the observed data 

includes a significant proportion of randomness, and thus it is very hard to recover the 

underlying dynamics from the data by any statistical demand learning method. Finally, 

when the noise is large enough (including 1  ), revenues generated by three methods 

are similar since it is very difficult to extract pattern form the data. This simulation 

study in a non-competitive market demonstrates the motivation and importance of 

demand learning for dynamic pricing.  

 

  Kalman Filter MCMC with AR(1) MCMC with FAR 

0 3,523,780 5,758,807 21,514,740 

0.1 3,288,385 5,845,678 18,496,175 

0.2 3,069,296 5,727,536 14,687,021 

0.3 3,301,496 5,667,405 10,395,353 

0.4 3,180,353 5,521,956 8,845,662 

0.5 3,062,381 5,566,315 6,971,845 

1 3,014,238 4,260,647 4,915,539 

Table 2. Average realized revenue over 100 simulations 

4.2 Multiple Firms’ Problem - Competition 

In cases of competition, one firm’s demand and revenue are influenced by 

competing firms’ pricing policy. Therefore, demand parameters for all firms in a 

market have to be estimated and forecasted simultaneously when demand learning 
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based dynamic pricing is performed. In this section, it is assumed that the firms 

believe that competitors are also using the same learning strategy (e.g. Bertsimas and 

Perakis (2006)). Also, we assume that the market has reached equilibrium during the 

past planning period. With the historical market data, each firm can select one of the 

following pricing policies: (a) random pricing, (b) static pricing and (c) demand 

learning based dynamic pricing. A firm employing random pricing policy chooses 

time-varying random price within a feasible price set. For static pricing, the average 

value in a feasible price set is calculated and the single estimate is used during the 

next planning horizon. In the case of dynamic pricing, the MCMC algorithm with 

FAR model is considered as a demand learning strategy. 

 

Service Type (i) Service 1 Service 2 Service 3 Service 4 

,0

f

iK  Firm1 10.0 17.5 22.5 30.0 

Firm2 9.5 16.5 20.0 31.0 

max,

f

i  Firm1 85 135 180 205 

Firm2 75 108 185 210 

min,

f

i  Firm1 30 40 60 130 

Firm2 45 50 65 115 

Table 3. Service dependent data 

 

Resource Type (r) Resource 1 Resource 2 Resource 3 Resource 4 Resource 5 

f

rC  Firm1 300 210 150 60 255 
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Firm2 180 150 120 75 210 

Table 4. Resource dependent data 

 

Our numerical example considers two firms with four services and five resources 

to illustrate the revenue maximization problem under competition. Table 3 

summarizes the service dependent data including initial demands and price boundaries 

according to Friesz et al. [10]. Also, Table 4 shows the resource capacity for each firm. 

The incidence matrix between resources and services is given by 

1 0 0 1

1 1 0 1

0 0 1 0

0 1 0 1

1 0 0 1

A

 
 
 
 
 
 
  

. 

 

Pricing policy  = 0 (No noise)  = 0.1 

Firm1 Firm2 Firm1 Firm2 Firm1 Firm2 

Random Random 1,798,357  1,241,279  1,768,015  1,142,184  

Dynamic Random 6,022,001  18,246  6,114,322  8,637  

Random Dynamic 122,380  5,338,070  89,291  5,283,634  

Static Static 1,513,300  851,200  1,317,772  787,619  

Dynamic Static 6,074,300  10,433  5,946,449  4,555  

Static Dynamic 108,350  5,336,600  75,112  5,412,261  

Dynamic Dynamic 811,130  259,560  748,021  239,033  
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Pricing policy  = 0.2  = 0.3 

Firm1 Firm2 Firm1 Firm2 Firm1 Firm2 

Random Random 1,694,559  1,228,460  1,643,022  1,299,857  

Dynamic Random 6,120,186  9,218  6,137,713  14,515  

Random Dynamic 100,092  5,449,133  101,644  5,570,901  

Static Static 1,436,475  763,137  1,442,174  776,509  

Dynamic Static 6,112,101  6,476  6,189,109  8,631  

Static Dynamic 82,501  5,536,100  83,322  5,556,947  

Dynamic Dynamic 867,265  382,695  914,466  421,076  

Table 5. Average revenue of the firms 

Table 5 shows the average revenues of 100 simulations for different combinations 

of pricing policies. We observe that when competitor’s pricing strategy is fixed, 

demand learning based dynamic pricing is a better approach for a firm in a 

non-cooperative competitive market. Specifically, when Firm 2 is using random or 

static pricing, Firm 1 can increase its revenue by adopting dynamic pricing with 

demand learning strategy. For example, the average revenue of Firm 1 is 1,436,475 

when both companies are using static pricing strategy and noise is 0.2. After changing 

pricing strategy to dynamic pricing, its average revenue jumps to 6,112,101. 

Even if Firm 2 is using dynamic pricing, Firm 1 should also use dynamic pricing 

with learning to increase revenue. Let us look at the case when Firm 2 is employing 

dynamic pricing and noise is 0.2. The average revenue of Firm 1 is 100,092 with 

random pricing or 82,501 with static pricing. However, firm 1 can increase its revenue 
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to 867,265 by employing demand learning based dynamic pricing. This result holds 

the other way around. That is, when Firm 1’s policy is fixed, Firm 2 should use 

dynamic pricing with demand learning regardless of the competitor’s pricing strategy. 

However, one interesting observation is that the realized revenues decrease 

significantly if both firms are adopting the learning method compared to the case 

where both firms are using random pricing or static pricing. It can be interpreted that 

non-cooperative firms will be worse off as long as there is competition and demand 

learning. 

Next, sensitivity analysis is performed to see how the variation of uncertain 

parameter affects the revenue of each firm. It can be seen from Figure 2 that, although 

it’s not strictly monotone, the revenue tends to increase as the noise increases. 

Intuitively, when noise is large, all demand learning methods results come close to the 

random pricing results, which may provide higher revenue. 

  

Figure 2. Realized revenues as noise increases 
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4.3 Managerial Implications 

 Our numerical experiments have several managerial implications. First, they 

indicate that dynamic pricing together with demand learning is the best strategy to 

take no matter whether a firm is in a monopoly market or in a non-cooperative 

competitive market. It is well known that dynamic pricing is an effective way to 

manipulate market demand and maximize revenue in the short run. However, without 

an appropriate demand learning strategy, a firm may not be able to forecast customers' 

response to price changes, which leads to inappropriate dynamic pricing decision and 

loss of sales opportunity.  

 Second, the numerical example of a monopoly market demonstrates that a good 

statistical learning method is crucial to the success of demand learning. Although 

assumptions of model structure could provide analytical tractability and reduce 

computational cost, incorrect assumptions about the unobserved dynamics will 

essentially deteriorate the power of demand learning and result in biased estimation of 

future demands. On the other hand, the nonparametric FAR model with MCMC 

algorithms is the-state-of-the-art method for discovering underlying patterns from the 

data. Despite its sophisticated representation and algorithms, it makes the most of the 

data that are available, and automatically formulates an equation that best describes 

the evolution of underlying dynamics of price sensitivity. What is more, the increasing 

computational power nowadays allows easy and fast implementations of this method.  

 Third, in a competitive market, a firm’s revenue is determined according to its 

own pricing decision as well as competitors’ decisions. Similar to the monopoly case, 
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our analysis indicates that a firm can take advantage of demand learning in a 

competitive market. In practice, it may be difficult to know the demand learning and 

pricing strategies of competitors, but our results show that it makes sense to employ 

the proposed demand learning and dynamic pricing strategy even when competitor’s 

information is incomplete.  

 

5. CONCLUDING REMARKS 

 This paper proposed a demand learning strategy from the perspective of 

evolutionary game theory, and showed how this strategy can be used for the dynamic 

pricing problem in both monopoly and oligopoly markets. Markov chain Monte Carlo 

algorithms were developed to estimate unknown parameters and state variables (price 

sensitivities) in our demand learning model. Nonparametric techniques based on 

functional-coefficient autoregressive models were incorporated to discover the 

dynamics of unobserved price sensitivities such that no arbitrary model assumption is 

needed. After estimating how demand response to price changes, a simulated 

annealing algorithm and a fixed point algorithm were employed to obtain the optimal 

pricing policy in a monopoly market and a duopoly market, respectively. The 

simulation results showed that our new method provides better estimations and 

predictions of price sensitivity, and is robust over a wide range of underlying state 

dynamics.  

 Industrial and market data tends to be messy: the underlying state dynamics could 

be very complicated and many missing values may exist. Compared with existing 
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demand learning and dynamics pricing methods, our procedure can be directly applied 

to the data without requiring careful model specification and a great deal of 

time-consuming data preprocessing. For example, Bertsimas and Perakis [4] assumed 

a linear function to model demand and price, and Kwon et al. [18] assumed a random 

walk for describing uncertain parameter. However, our nonparametric demand 

learning strategy does not make assumptions about model structures, and could 

adaptively and precisely recover the unobserved price sensitivities. As a result, this 

learning strategy avoids the risk of model misspecification and is immune to missing 

values, which are crucial to the following dynamics pricing step. Finally, we provided 

optimization algorithms that successfully resolve the computational difficulties 

introduced by the nonparametric demand learning step. 

 For numerical and theoretical simplicity, our work has focused on homogeneous 

customers who have the same reference price in mind. The scope of future work could 

be extended to dynamic pricing problems with heterogeneous customers. Future 

research could also extend this method to different market scenarios. For example, the 

efficiency of collaboration between competitors for demand learning can be explored. 

Moreover, robust optimization approach can be applied to dynamic pricing problems 

when reliable historical data is unavailable and decision maker can only estimate the 

boundaries of uncertain parameters.  
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Appendix – DVI Algorithm 

The following algorithm is used for solving the non-cooperative competition 

problem in Section 4.2. When regularity conditions hold, DVI is equivalent to the 

fixed point problem and it can be solved by an associated fixed point algorithm (see 

[9] for details of regularity conditions and convergence analysis). The fixed point 

algorithm based on the iterative scheme is given below: 

a) Identify an initial feasible solution 0   and set k=0 

b) Given k , solve the state dynamics to obtain kD  and ky by using the demand 

and price sensitivity dynamics 

0

/

0 ,0

0
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c) Given , ,k k kD y , solve the adjoint dynamics to obtain ,k k  . 

0

,   ( ) 0,

,  ( ) 0.
| | ( )

fk
f t fk fk fk fki

i i i i ff

i

fk f f
f fki i i

i ff

i

dHd
e A t

dt dD

dHd
t

dt dy F t t


   

  


     

   


 

d) Compute 
fK

iF using the equation 
fk fk fk f fkt

i i i i iF e D       

e) Solve the following optimal control problem in order to get an optimal solution 

( *v ) for iteration k and call the solution 1k 
. 
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Note that 
fk

iF computed in step d) is an element of kF . 

f) Stopping test. If 1|| ||k k      where 1R  , stop and optimal price * 1k   , 

otherwise, set k = k+1 and go to step b. 

 


