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Abstract

We propose an integrated supply chain management framework that allows us to explicitly

consider the impact of product perishability on a broad scale that includes manufacturers,

distribution centers, wholesalers, and demand markets. The framework proposed herein also

makes it possible to consider the oligopolistic competition across wholesalers that drives price and

demand fluctuations. Furthermore, the supply chain decision rules are derived from necessary

conditions in the framework. The inclusion of such salient features allows the framework to

generate outcomes that suggest realistic managerial insights. We provide a numerical example in

which two multi-national pharmaceutical firms producing a homogeneous medicinal drug and

four oligopolistic wholesalers are considered.

Key words: pharmaceutical supply chain, perishable inventory dynamics, oligopolistic competi-

tion, variational inequality, interior point methods

1 Introduction

Pharmaceutical supply chains comprise complex processes across players including vendors, man-

ufacturers, distributors, wholesalers, and healthcare providers. While topics discussed in other

supply chain research such as facility location, capacity planning, production planning, inventory
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management, and scheduling still play crucial roles in the management of pharmaceutical supply

chains, we must also consider several critical factors pertaining to the pharmaceutical industry such

as inventory management of perishable pharmaceuticals, its role in broad supply chain perspectives,

and oligopolistic price competition, which necessitate the urgent need for integrated and sophisticated

supply chain optimization techniques (Shah, 2004; Papageorgiou et al., 2001; Papageorgiou, 2009).

Although extensive research has been done on perishable inventory management, multi-stage supply

chain modeling, and price competition, there are very few, if any, works that study the intersection

of all three areas. In this paper, we propose an integrated pharmaceutical supply chain management

framework and analyze the impact of perishability on supply chain equilibrium performances for

the oligopolistic competition model.

Drug perishability is one of the major concerns in pharmaceutical supply chains as drug quality

and safety greatly rely on time (Masoumi et al., 2012; Vila-Parrish and Ivy, 2013). Pharmaceutical

companies are required to stamp an expiration date on their products, until which the full potency

and safety of the drugs are guaranteed if the drugs have been properly treated and stored. After

expiration, products must be discarded or returned to the manufacturer, which may happen at various

supply chain stages. Indeed, a substantial amount of pharmaceutical products are being discarded

because they are outdated. For example, drugs, vaccines, and other medical supplies worth more

than one million U.S. dollars were found to be spoiled and expired in the warehouse of the Health

Department of Chicago in 2007 (Mihalopoulos, 2009). The challenge for managing pharmaceutical

products in its supply chain lies in the difficulty and complexity of handling diminishing stocks

at various stages of the supply chain and addressing the dynamic implication of such on a broad

supply chain scale.

It is worth noting that while a substantial amount of unused/unsold drugs until their expiration

dates exist, the vast majority of U.S. hospitals are suffering from drug shortages, according to the

Food and Drug Administration (FDA). In particular, between July 1 and December 31 of 2010, more

than 240 drugs and more than 400 generic varieties were backordered or even completely unavailable,

and, unfortunately, it is expected that drug shortages will continue to increase (Cherici et al., 2011).

While the reasons for such drug shortages come from multiple sources, it is suggested that the

major culprit is the high degree of market concentration1 in conjunction with mismanagement of

1It is surprising that there are only three firms (Sanofi Pasteur, Novartis, and GlaxoSmithKline) supplying influenza
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supply chains, which forces pharmaceutical companies’ decisions to stop production due to their

financial challenges, especially for low margin drugs and vaccines (Scherer, 2007; Deo and Corbett,

2009). The consequences of drug shortages can be extremely detrimental, examples of which include

delay of treatments and surgeries, use of alternative drugs that could be more expensive and/or less

effective, emergence of the gray market, and patients’ denial of treatments. Although it is impossible

to force manufacturers to keep producing such drugs, their financial challenges can perhaps be

mitigated through supply chain coordination and optimization.

The rest of this paper is organized as follows. In Section 2, we provide a literature review.

We propose an integrated pharmaceutical model that explicitly considers the dynamic inventory

management and oligopolistic competition in Section 3. A computationally efficient interior-point

algorithm is presented in Section 4 and we present an numerical example in Section 5. Section 6

concludes this paper.

2 Literature Review

There is extensive research on the inventory management of perishable products. Ghare and Schrader

(1963) propose an inventory management model for exponentially decaying products and Philip

(1974) extends this model to use a Weibull distribution. Padmanabhan and Vrat (1995) suggest

EOQ models for perishable items whose selling rates are dependent on the size of stock. For a

thorough review of the early works on perishable inventory management, see Nahmias (1982).

While the vast majority of perishability literature focuses only on the inventory management

aspect, a small number of studies also consider wider supply chain issues. Blackburn and Scudder

(2009) study fresh produce supply chain strategies by considering the marginal value of time. They

suggest that a hybrid model of a responsive stage (harvest to cooling) and efficient stages (cooling

to retailers via transporters) is appropriate to minimize lost values in such supply chains. Masoumi

et al. (2012) suggest a generalized network oligopoly model for pharmaceutical supply chains, but

passively consider the dynamic aspect of pharmaceutical supply chains by adding a link multiplier

that is simply a coefficient that reflects the loss of drug quantity during shipments. To the best of our

knowledge, no studies explicitly consider the dynamics of perishable inventory management in the

vaccines to the U.S. market as of 2009; there were more than a dozen firms in the 1970s.
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context of broad, competitive supply chains encompassing manufacturers, distributors, wholesalers,

and demand markets, which is the focus of this paper. Importantly, unlike Masoumi et al. (2012),

we provide the supply chain decision rules derived from necessary conditions for the Cournot-Nash

equilibrium, which provides ample managerial insights into the problem.

With respect to oligopolistic competition, part of our interest is in the analysis of the impact

of perishability on supply chain equilibrium outcomes. In this paper, we employ the Cournot and

Fisher (1897) model of oligopolistic competition. For a detailed review of the Cournot and Fisher

(1897) model, see Vives (2001). Deo and Corbett (2009) consider Cournot competition for the case

of the U.S. influenza vaccine market with a focus on yield uncertainty. Wiggins and Maness (2004)

study price competition for the case of anti-infectives. Perakis and Sood (2006) and Gallego and Hu

(2014) study dynamic or multi-period pricing of perishable products under competition. Magazzini

et al. (2004) propose a model of dynamic competition in pharmaceuticals for the case of patent

expiration in major developed countries such as the USA, France, Germany, and the UK. None

of the above research considers competition on a whole supply chain scale. Masoumi et al. (2012)

propose a generalized network model that takes into account drug perishability and oligopolistic

competition but does not capture the dynamic aspect of equilibrium solutions.

In this paper, we propose an integrated supply chain management framework, encompassing

manufacturers, distributors, wholesalers, and demand markets, in which drug perishability is

explicitly considered in the form of dynamic inventory management on a broad supply chain scale;

the model allows us to capture the dynamics of perishable inventory control at manufacturing

sites, distribution centers, and wholesalers over a planning horizon. In addition, we employ the

Cournot and Fisher (1897) model to consider the oligopolistic drug price competition across agents,

which is well matched with the perishability issue because the reduction of drug quantity due to

expiration may cause price fluctuations. In summary, this paper is the first to explicitly consider

drug perishability and price competition in a broad pharmaceutical supply chain perspective, which

allows us to generate managerial insights through dynamic equilibrium solutions.
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3 The Dynamic Pharmaceutical Supply Chain Model

The pharmaceutical supply chain network is depicted in Figure 1 and the notation used is summarized

in Table 1. Nodes represent supply chain entities, and links represent material flows between

corresponding nodes. In our model, we consider a single, homogeneous pharmaceutical product,

a medicinal drug or vaccine subject to perishability. There are multiple pharmaceutical firms,

wholesalers, and demand markets; a typical pharmaceutical firm is denoted by f ∈ F , a typical

wholesaler by r ∈ R, and a typical demand market by m ∈M where F , R, and M are the set of

pharmaceutical firms, wholesalers, and demand markets, respectively. A pharmaceutical firm f may

operate multiple manufacturing sites and distribution centers in spatially dispersed locations; a

firm f ’s typical manufacturing site is located in j ∈ J f where J f is firm f ’s set of manufacturing

locations such that j = 1, 2, ...,
∣∣J f ∣∣. A typical distribution center is located in k ∈ Kf where Kf is

firm f ’s set of distribution locations such that k = 1, 2, ...,
∣∣Kf ∣∣. In the case where a pharmaceutical

firm f has no distribution centers, k ∈ Kf can be specified as dummy nodes. Wholesaler r has its

own warehouse(s) in a spatially dispersed location(s); a typical warehouse is in location n ∈ N r

where N r is wholesaler r’s set of warehouses and it supplies pharmaceuticals to multiple demand

markets where healthcare providers/pharmacies are located. Let Mr represent the set of demand

markets to which the wholesaler r supplies pharmaceuticals. Note that n = 1, 2, ..., |N r|.

We assume that each pharmaceutical firm controls production quantities at manufacturing sites

and product output flows to distribution centers and to wholesalers, while fulfilling orders from

wholesalers over a specified planning horizon. They manage inventory levels at manufacturing sites

and distribution centers by controlling input and output flows over a planning horizon. We also

assume that each wholesaler controls orders to pharmaceutical firms and output flows to spatially

dispersed demand markets. In addition, wholesalers are assumed to be in oligopolistic competition

against one another. Since the wholesalers are in oligopoly markets, demands from markets are

assumed to be always satisfied and the wholesalers are the ones that control the supply to the

market.
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Figure 1: Pharmaceutical Supply Chain Network

Table 1: Notation

f pharmaceutical firm F set of pharmaceutical firms
r wholesaler R set of wholesalers
m demand market Mr wholesaler r’s set of demand markets
j index for manufacturing sites J f firm f ’s set of manufacturing sites
k index for distribution centers Kf firm f ’s set of distribution centers
n index for warehouses N r wholesaler r’s set of warehouses

Afjk firm f ’s set of links from j to k Bf,rkn set of links from firm f ’s k to wholesaler r’s n
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3.1 Pharmaceutical Product Deterioration

The deterioration of a pharmaceutical product can be expressed as the following exponential decay

equation:

Q(t) = e−δtQ0 (1)

where Q(t) is the drug quantity at time t, Q0 is the initial stock, and δ is a decay constant specific

to a drug. Note that (1) is a unit-based exponential deterioration model that is well-suited for

pharmaceuticals (see, e.g., Masoumi et al. (2012) for a paper employing this model) and is consistent

with Ghare and Schrader (1963), implying that the drug quantity decreases as time passes due to

expiration. For example, suppose a pharmaceutical company has 5,000 boxes of a certain drug at

one of its distribution centers. The boxes have varied manufacturing dates and, therefore, expiration

dates. In time, some of the 5,000 boxes will pass the expiration dates, meaning that there will be

fewer than 5,000 boxes left to be distributed to wholesalers. The distribution center must discard

less than, say, 5% of its inventory some days while it must discard more than 5% some other days.

A convenient assumption is to use an average decay rate, say, 5% throughout the planning horizon,

which can be captured by use of equation (1). Note that this decay model accommodates the

expiration dates as well as a natural decay. Although exponential decay cannot accurately describe,

on a daily basis, the inventory system of perishable pharmaceuticals having fixed lifetime, it is

capable of describing the average decay over the planning horizon. Note that the use of exponential

decay makes the computation very much tractable, which is a desired feature considering that

our multi-level supply chain model is complex in nature. For the First-In-First-Out (FIFO) or

Last-In-First-Out (LIFO) policies for products having fixed lifetime, see Nandakumar and Morton

(1993) and Lian and Liu (2001). For the perishability model that uses a Weibull distribution, see

Philip (1974), and for a value, instead of unit, deterioration model that is better suited for, e.g.,

food perishability, we refer readers to Blackburn and Scudder (2009).

3.2 Inventory Dynamics

It is imperative to consider the dynamic aspects of inventory management in pharmaceutical supply

chains because the quantity of pharmaceuticals decreases over time due to expiration, which has the

cascading impacts on a wider supply chain scale; the production rates, distribution flow rates, and
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sales rates may need to be adjusted accordingly and even the drug price may fluctuate due to such

changes and adjustments.

Let t0 and tf denote the initial time and terminal time, respectively, of a planning horizon. In

our model, time t is discrete and t ∈ [t0, tf ]. To introduce the inventory dynamics, we first illustrate

pharmaceutical firms’ controls in detail. A pharmaceutical firm f controls, at each instant of time

t, 1) production rate xfj (t) at manufacturing site j, 2) drug output flow rate pfl (t), l ∈ Af from

manufacturing site j to distribution center k, and 3) drug output flow rate dfl (t), l ∈ Bf,r from

distribution center k to retailer r’s warehouse in location n, where Af and Bf,r are firm f ’s set

of all links connecting manufacturing sites and distribution centers, and distribution centers and

wholesaler r’s warehouses, respectively. For notational convenience, we define Bf =
⋃
r∈R Bf,r. The

total amount of order pharmaceutical firm f receives from wholesaler r at time t is denoted by

of,r(t). We assume that orders from a wholesaler are shipped out as soon as they are received. That

is ∑
l

e−δtldfl (t) = of,r(t) (2)

where tl represents discrete time required for delivery using link l. This implies that pharmaceutical

firms is capable of considering the perishability when they ship drugs to fulfill orders, which may be

useful when it comes to ones having a very short shelf life such as intravenous drugs. For drugs with a

long shelf life, δ can be simply set to zero. We assume that there is supply-order coordination/contract

between pharmaceutical firm f and wholesaler r, based on which pharmaceutical firm f serves as an

order fulfilling firm given received orders from wholesalers. We introduce of (t) =
∑

r∈R o
f,r(t) to

represent the total amount of orders pharmaceutical firm f receives from all wholesalers at time t.

Wholesaler r controls, at each instant of time t, order rates θr,f (t) to pharmaceutical firm f and

we assume θr,f (t) = of,r(t), meaning that pharmaceutical firm f receives orders with no delay from

wholesaler r as soon as they are placed. The notation of θr(t) =
∑

f∈F θ
r,f (t) represents the total

amount of orders wholesaler r sends to all pharmaceutical firms at time t. Wholesaler r also controls

sales rate sr,mn (t) to healthcare providers/pharmacies in demand market m from its warehouse

located in n. We group concatenations of variables into vectors where notational convenience is

desired. For example, xf (t) =
(
xfj (t) : j ∈ J f

)
, xf =

(
xf (t) : t ∈ [t0, tf ]

)
, and x =

(
xf : f ∈ F

)
.

We apply such notation rule for all other variables throughout this paper where no confusion arises.
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Table 2: Control Vectors

xf (t) firm f ’s production rates at its manufacturing sites at time t
pf (t) firm f ’s output flow rates from manufacturing sites to distribution centers at time t
df (t) firm f ’s output flow rates from distribution centers to wholesalers at time t
θr(t) wholesaler r’s order rates to pharmaceutical firms at time t
sr(t) wholesaler r’s sales rates to demand markets at time t

The control vectors are summarized in Table 2.

We consider inventories at 1) manufacturing sites, 2) distribution centers, and 3) wholesalers.

Associated with each link l ∈ L, where L is the set of all links, in the supply chain network illustrated

in Figure 1 is a pre-specified time duration for material flows. It is possible for each pair of nodes to

have multiple links depending on the speed of shipment. For example, a standard shipping between

two nodes can be expressed as one link while an expedited shipping between the same two nodes

can be expressed as another link. Let tl denote the discrete time duration for link l. The firm f ’s

inventory dynamics at manufacturing sites can be formulated as follows:

P fj (t) = e−δP fj (t− 1) + xfj (t)−
∑
k∈Kf

∑
l∈Afjk

pfl (t) j ∈ J f , t ∈ [t1, tf ] (3)

P fj (0) = P fj,0 j ∈ J f (4)

P fj (t) ≥ 0 j ∈ J f , t ∈ [t0, tf ] (5)

where P fj (t) is the firm f ’s inventory level at manufacturing site j at time t, t1 = t0 + 1, P fj,0 ∈ <1
+

represents firm f ’s initial inventory at site j, and Afjk is firm f ’s set of all links connecting its

manufacturing site j and distribution center k. Equation (3) represents a flow conservation showing

that the inventory level at time t equals the summation of the inventory level at time (t − 1)

multiplied by a deterioration factor e−δ and the amount of production, subtracted by the amount of

drugs sent to distribution centers2. The initial stock conditions are expressed in (4). If the stock at

the terminal time is to be considered, constraints similar to (4) but with respect to the terminal

time can be added.

2The deterioration factor according to equation (1) is e−δt for which t = 1 is used to represent the deterioration as
one time unit elapses.
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Likewise, firm f ’s inventory dynamics at distribution centers can be formulated as follows:

Df
k (t) = e−δDf

k (t− 1) +
∑
j∈J f

∑
l∈Afjk

e−δtlpfl (t− tl)−
∑
r∈R

∑
n∈N r

∑
l∈Bf,rkn

dfl (t) k ∈ Kf , t ∈ [t1, tf ] (6)

∑
n∈N r

∑
k∈Kf

∑
l∈Bf,rkn

e−δtldfl (t) = of,r(t) r ∈ R (7)

Df
k (0) = Df

k,0 k ∈ Kf (8)

Df
k (t) ≥ 0 k ∈ Kf , t ∈ [t0, tf ] (9)

where Df
k (t) is the firm f ’s inventory at distribution center k at time t, Df

k,0 ∈ <
1
+ represents

firm f ’s initial inventory at distribution center k, and Bf,rkn is firm f ’s set of all links connecting

its distribution center k and wholesaler r’s warehouse n. The second and the third term in the

right-hand-side of equation (6) show the summation of drug input flows from manufacturing sites

and the summation of drug output flows to wholesalers, respectively. Note that, in the second term,

there is a deterioration factor e−δtl , where tl is the shipping time for link l ∈ Af , implying that the

flow from manufacturing sites is reduced by the factor of e−δtl when it reaches the successor node

due to perishability. The left side of (7) is the amount of shipment from pharmaceutical firm f ’s

distribution centers to wholesaler r’s warehouses and the right-hand-side of (7) is the amount of

order wholesaler r places to pharmaceutical firm f at time t. Note that the firms do consider the

amount of deterioration during the shipment when they send out pharmaceuticals as is apparent in

the left side of (7) such that the wholesalers will receive the amount they order when the shipment

arrives.

The wholesaler r’s inventory dynamics can be formulated in a similar fashion:

W r
n(t) = e−δW r

n(t− 1) +
∑
f∈F

∑
k∈Kf

∑
l∈Bf,rkn

e−δtldfl (t− tl)−
∑

m∈Mr

sr,mn (t) n ∈ N r, t ∈ [t1, tf ] (10)

W r
n(0) = W r

n,0 n ∈ N r (11)

W r
n(t) ≥ 0 n ∈ N r, t ∈ [t0, tf ] (12)

where W r
n(t) is the wholesaler r’s inventory in its warehouse in location n at time t, W r

n,0 ∈ <1
+

represents firm r’s initial inventory in n, and Mr is the set of demand markets to which wholesaler
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r’s supply pharmaceuticals. Note that we do not allow backorders in the inventories as in (5), (9),

and (12).

3.3 Mathematical Programming Formulation

Now we are ready to introduce objective functions of pharmaceutical firms and wholesalers. The

net profit of pharmaceutical firm f can be expressed as follows:

F f (xf , pf , df ; of ) =

tf∑
t=t0

e−ρt

∑
r∈R

∑
l∈Bf,r

πf,re−δtldfl (t)−
∑
j∈J f

cfj

(
xfj , t

)
−
∑
l∈Af

zfl,1

(
pfl , t

)

−
∑
l∈Bf

zfl,2

(
dfl , t

)
−
∑
j∈J f

yfj

(
P fj , t

)
−
∑
k∈Kf

ufk

(
Df
k , t
)+ Ψf (tf ) (13)

where ρ is the exogenous discount rate, πf,r represents the contracted unit price firm f charges

wholesaler r, cfj (·) is the production cost function, zfl,1(·) and zfl,2(·) are the cost functions of material

flows (e.g., shipping costs) between manufacturing sites and distribution centers, and between

distribution centers and wholesalers, respectively. By use of the function zfl,2(·), the cost of material

flow from the pharmaceutical firm f to wholesaler r can be set as desired. For example, if it’s

a constant function set as zero, then the firm f is not responsible for the material flow cost to

wholesalers; the cost may be embedded in the drug price wholesaler r pays to firm f , denoted by

πf,r, agreed between firm f and wholesaler r. The cost function can also be defined in such a way

that firm f is responsible for shipping to wholesalers. In addition, yfj (·) and ufk(·) are firm f ’s

inventory cost functions at manufacturing sites and distribution centers, respectively. Note that the

pharmaceutical firms make a profit based on the actual amount of pharmaceuticals the wholesalers

receive, implying that pharmaceutical firms are responsible for perishability until the products reach

the wholesalers. The wholesalers are only responsible for their own deteriorating inventory. The

salvage value of inventories at terminal time is represented by Ψf (tf ) = Ψf
(
P f (tf ), Df (tf )

)
. We

assume that xf , pf , and df are subject to exogenous upper bounds due to, e.g., physical restrictions

or contracts between pharmaceutical firms and wholesalers such that:

0 ≤ xfj (t) ≤ x̄fj j ∈ J f , t ∈ [t0, tf ] (14)

0 ≤ pfl (t) ≤ p̄fl l ∈ Af , t ∈ [t0, tf ] (15)
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0 ≤ dfl (t) ≤ d̄fl l ∈ Bf , t ∈ [t0, tf ] (16)

Note that x̄fj , p̄
f
l , d̄

f
l ∈ <

1
++ are given constants. Now we are ready to define the set of firm f ’s

feasible solutions as:

Ξf = {(xf , pf , df ) : (3)–(9) and (14)–(16) hold.} (17)

Note that the feasible set Ξf is compact and convex. The pharmaceutical firm f ’s problem is then:

max F f (xf , pf , df ; of ) (18)

s.t. (xf , pf , df ) ∈ Ξf (19)

Turning our attention to wholesalers, the net profit of wholesaler r can be expressed as:

Rr(sr, θr; s−r) =

tf∑
t=t0

e−ρt

 ∑
m∈Mr

∑
n∈NR

πm(sr,m, t; s−r,m)sr,mn (t)

−
∑
f∈F

πf,rθr,f (t)−
∑
n∈N r

grn (W r
n , t)

+ Φr(tf ) (20)

where πm(sr,m, t; s−r,m) is the unit price function of the pharmaceutical product at demand market

m at time t that depends not only on wholesaler r’s sales but also on all other wholesalers’ sales at

the same demand market m, and grn(·) is the wholesaler r’s inventory cost function at warehouse n.

We define s−r,m = (sg,m : g ∈ R \ {r}) where R \ {r} represents the set of all wholesalers but r.

The first, second, and third term in (20) represent wholesaler r’s revenue, the amount of money

wholesaler r pays to pharmaceutical firms, and wholesaler r’s inventory cost, respectively. The

salvage value of inventories at terminal time is represented by Φr(tf ) = Φr (W r(tf )). Like the

pharmaceutical firm’s case, we assume that wholesalers’ controls, sr,mn , are subject to exogenous

upper bounds such that

0 ≤ sr,mn (t) ≤ s̄r,mn ∀m ∈Mr, n ∈ N r, t ∈ [t0, tf ] (21)

where s̄r,mn ∈ <1
++, ∀m ∈Mr, r ∈ R are given constants. We define the set of wholesaler r’s feasible
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solutions as:

Ωr = {(sr, θr) : (10)–(12) and (21) hold.} (22)

The feasible set Ωr is also compact and convex. The wholesaler r’s problem is then:

max Rr(sr, θr; s−r) (23)

s.t. (sr, θr) ∈ Ωr (24)

It is important to stress at this point that both the pharmaceutical firm’s problem (18)–(19) and

the wholesaler’s problem (23)–(24) are in the form of convex programming if all cost functions are

concave.

3.4 Nash Equilibria

The competition across players within the context of supply chain management has been considered

in the literature; see, e.g., Chung et al. (2013), Chung et al. (2014), and Friesz et al. (2011). We

assume that, in oligopolistic pharmaceutical supply chains, each wholesaler makes decisions in a

noncooperative manner, implying that it seeks to maximize its own profit. At the state called an

equilibrium, no firm can increase its profit unilaterally without other firms’ further actions. We

formally define such an equilibrium as follows.

Definition 1. [Wholesaler Nash Equilibrium] A vector of wholesaler r’s decisions, (sr∗, θr∗) ∈ Ωr,

is called a Cournot-Nash equilibrium if, for each firm r ∈ R, the following condition is satisfied:

Rr(sr∗, θr∗; s−r∗) ≥ Rr(sr, θr; s−r∗) ∀(sr, θr) ∈ Ωr (25)

where s−r∗ = (sg∗ : g ∈ R \ {r}) and s−r∗ ∈ Ω−r =
∏
g∈R\{r}Ωg.

4 Variational Inequality Formulation and Interior-Point Algorithm

In this section, we formulate the variational inequality (VI) that enables us to attain decision rules

from which managerial insights may be derived and that provides computationally tractable algo-

rithms such as interior-point methods. We now introduce X =
(
Xf : f ∈ F

)
and Y = (Y r : r ∈ R)
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where

Xf =


xf

pf

df

 , Y r =

sr
θr


for notational convenience and present the following Variational Inequality (VI) formulation.

Theorem 1 (Variational Inequality Formulation). Assuming that the profit functions F f (·) and

Rr(·) are concave, continuous, and twice continuously differentiable with respect to the corresponding

arguments, then X∗ ∈ Ξ and Y ∗ ∈ Ω, where Ξ =
⋃
f∈F Ξf and Ω =

⋃
r∈R Ωr, are the pharmaceutical

supply chain’s Cournot-Nash equilibrium if and only if the following variational inequality is satisfied:

∑
f∈F

〈
∇XfF f (X∗), Xf −Xf∗

〉
+
∑
r∈R

〈
∇Y rRr(Y ∗), Y r − Y r∗

〉
≤ 0 ∀Xf ∈ Ξf , Y r ∈ Ωr (26)

where < ·, · > represents the inner product in the Euclidean space, ∇XfF f (X∗) and ∇Y rRr(Y ∗)

represent the gradients of F f (X∗) and Rr(Y ∗) with respect to Xf and Y r, respectively.

Proof. see Friesz (2010)

With the following vector function H(·) and vector Z defined as:

H(Z) =



∇X1F 1(X∗)

∇X2F 2(X∗)

...

∇Y 1R1(Y ∗)

∇Y 2R2(Y ∗)

...


, Z =

X
Y

 (27)

the VI formulation (26) can be re-written as follows:

〈
H(Z∗)T , Z − Z∗

〉
≤ 0 ∀Z ∈ Λ (28)

where Λ = Ξ× Ω. We call the above problem V I(H,Λ). From this re-formulation (28), we derive

the Karush-Kuhn-Tucker (KKT) necessary conditions that will be a basis for our interior-point
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algorithm.

4.1 Karush-Kuhn-Tucker Conditions

Theorem 2 (KKT necessary conditions for V I(H,Λ) ). Let us assume that F (X) and R(Y ) are

continuous on Ξ and Ω, respectively. Also, let Z∗ ∈ Λ be the solution of V I(H,Λ). Let g(Z) be

constraints such that g(Z) ≥ 0. If the gradients of the constraint satisfying ∇g(Z∗) = 0 are linearly

independent, then we introduce a so-called Lagrangian multiplier λ such that

H(Z∗) + [∇g(Z∗)]T λ = 0 (29)

λT g(Z∗) = 0 (30)

λ ≥ 0 (31)

are satisfied. We call (29)–(31) the necessary conditions of V I(H,Λ).

Proof. Note that Z∗ is the solution of the following mathematical program:

max [H(Z∗)]TZ (32)

s.t. Z ∈ Λ (33)

The KKT necessary conditions for the above mathematical programming problem are:

H(Z∗) + [∇g(Z∗)]T λ = 0 (34)

λT g(Z∗) = 0 (35)

λ ≥ 0 (36)

The above conditions are also sufficient because the assumed linear independency of binding

constraint meets the constraint qualification. The equations and inequalities (34)–(36) are identical

to equations (29)–(31). This completes the proof.

Note that the necessary conditions of V I(H,Λ), (29)–(31), are also sufficient because Λ is convex.

The formal representation for this observation is ready in the next theorem.
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Theorem 3 (Sufficient conditions for V I(H,Λ) ). If the gradients of the constraint satisfying

∇gi(Z∗) = 0 are linearly independent, Λ is convex, Z∗ ∈ Λ, and (29)–(31) hold, then Z∗ is also the

solution to V I(H,Λ).

Proof. Note that the mathematical programming problem (32)–(33) is in the form of convex

programming. Also, (29)–(31) are sufficient conditions for the convex mathematical programming

problem, (32)–(33). Thus,

[H(Z∗)]TZ ≤ [H(Z∗)]TZ∗ ∀Z ∈ Λ (37)

That is,

[H(Z∗)]T (Z − Z∗) ≤ 0 ∀Z ∈ Λ (38)

which implies that Z∗ solves V I(H,Λ).

In summary, the key aspect that we would like to stress in this section is that a solution to

(29)–(31) is also a solution to the integrated pharmaceutical supply chain problem expressed as

V I(H,Λ) and, subsequently, we will attempt to solve (29)–(31) using an interior point method.

4.2 Decision Rules from KKT Necessary Conditions

Decision rules with respect to supply chain control variables can be derived from the KKT con-

ditions of the VI. This is of particular interest, as they may provide managerial insights into the

pharmaceutical supply chain equilibrium performances. Note that the KKT conditions (29)–(31)

can be rewritten with respect to each control vector as follows.

∇XfF f (X∗) + [∇gX(X∗)]T λX = 0 (39)

∇Y rRr(Y ∗) + [∇gY (Y ∗)]T λY = 0 (40)

[λX ]T gX(X∗) = 0 (41)

[λY ]T gY (Y ∗) = 0 (42)

λX , λY ≥ 0 (43)

where λX and λY are Lagrangian multipliers for X and Y respectively and gX and gY are constraints

for X and Y respectively. By employing these conditions, the following theorem is derived.
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Theorem 4 (Pharmaceutical firms’ decision rules). At equilibria, the firm f ’s decision rules with

respect to each control variable xfj , p
f
l , and dfl are presented as follows.

xfj > 0→MCx = eρtλg1, MCx < eρtλg1 → xfj = 0

(44)

pfl > 0→MCp = −eρtλg1 + eρt−δtlλg2, MCp < −eρtλg1 + eρt−δtlλg2 → pfl = 0

(45)

dfl > 0→MCd = e−δtlπf,r − eρtλg2 − eρt−δtlλg3, MCd < e−δtlπf,r − eρtλg2 − eρt−δtlλg3 → pfl = 0

(46)

where MCx = ∂cfj (xfj , t)/∂x
f
j , MCp = ∂zfl,1(p

f
l , t)/∂p

f
l , and MCd = ∂zfl,2(d

f
l , t)/∂d

f
l , which imply

the marginal cost arising at time t from the unit change of the production rate, xfj , output flow to

distribution center, pfl , and outflow to wholesaler, dfl , respectively. In addition, λg1, λg2, and λg3

are multipliers for constraints (3), (6), and (7), respectively.

Proof. In regard to the control vector xf , we derive the following from (39).

∇
xfj
F f∗ +

[
∇
xfj
gX

]T
λX = −e−ρtMCx + λg1 − λb1 = 0 (47)

where λX is a multiplier vector and λb1 is a multiplier from (14). Also from (41), we derive:

xfj λb1 = 0 (48)

It follows that

xfj > 0→ λb1 = 0→ e−ρtMCx = λg1 (49)

e−ρtMCx < λg1 → λb1 > 0→ xfj = 0 (50)

which is identical to (44). The decision rules for pfl and dfl can be proven in a similar fashion. This

completes proof.

To interpret the decision rule (44), it is essential to note that the multiplier λg1 represents the
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shadow price of the inventory constraint (3) of firm f , and, therefore, eρtλg1 is the future inventory

cost increament as a result of increasing the production today. This follows that each firm f ,by

implementing the decision rule (44), equates its marginal production cost to a future inventory

cost increment at its manufacturing site when the Cournot-Nash equilibrium is achieved. That

is, at the equilibrium, MCx = eρtλg1 if xfj > 0. The decision rule also implies that if the future

inventory cost increment is larger than the marginal cost of production, the firm should not produce

(xfj = 0). Similar conclusions can be made for decision rules (45) and (46). Turning out attention to

wholesalers, we present the following theorem.

Theorem 5 (Wholesalers’ decision rules). At equilibria, the wholesaler r’s decision rules with

respect to each control variable sr,mn and θr,f are presented as follows.

sr,mn > 0→MPs = eρtλg4, MPs < eρtλg4 → sr,mn = 0 (51)

θr,f > 0→MCθ = eρtλg4, MCθ < eρtλg4 → θr,f = 0 (52)

where MPs = πm and MCθ = πf,r, which imply the marginal profit or cost arising at time t from

the unit change of the sales rate, sr,mn , order rate, θr,f , respectively. In addition, λg4 is the multiplier

for constraint (10).

This theorem can be proven in the same manner as for Theorem 4. The implication of the decision

rules (51) and (52) is also identical as the pharmaceutical firm’s case. That is, by implementing the

decision rules, the wholesaler equates its marginal profit arising from increasing its sales by one unit

to its marginal cost.

4.3 Interior Point Algorithm for Variational Inequalities

One of the significant advantages of employing the VI formalism is that it promotes a computationally

tractable methods including fixed-point methods, complementarity problems, and interior-point

methods. For theoretical details on how to use such methods from the VI formulation, we refer

readers to Harker and Pang (1990), Facchinei and Pang (2007), and Friesz (2010). For the use of

interior-point methods for the VI, see Nesterov et al. (1994), Wright (1997), and Ye (2011). For the

VI application areas, see, for example, Chung et al. (2012), Chung et al. (2013), and Chung et al.
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(2014).

A modified Newton step for (29)-(31) is as follows.

 ∇ZH(Z∗) +∇Z [∇g(Z∗)]T λ [∇g(Z∗)]

∇Zg(Z)Tλ g(Z)


 ∆Z

∆λ

 =

 −H(Z∗)− [∇g(Z∗)]T λ

−λT g(Z) + σµe

 (53)

where µ is the duality measure, σ ∈ [0, 1] is a step length adjustment coefficient, and e =

[ 1 1 1 ... 1]T . Then, the interior-point barrier algorithm can be stated as follows.

Interior–Point Barrier Method— Given Z0, λ0 with Z0 ∈ Ω, λ0 ≥ 0.
for k = 0 1, 2, ... do

Solve (53) to obtain ∆Z and ∆λ.
Find αZ by solving
max αZ

Z + αZ∆Z ≥ 0
αZ ≤ 1.

Find αλ by solving
max αλ

z + αλ∆z ≥ 0
αλ ≤ 1.

Determine the step length by αk = min(αZ , αλ).
Then, set
(Zk+1, λk+1)← (Zk, λk) + 0.99αk(∆Z,∆λ).
Check terminal criteria

end
Algorithm 1: Interior-Point Barrier Algorithm

It is worth pointing out that the leftmost matrix in (53) is sparse containing lots of zeros. In our

numerical example presented subsequently, we use the matrix division operator using Gaussian

elimination in Matlab to solve (53) while the sub-problems to find αZ and αλ are solved using

CPLEX.

5 Numerical Example with Two Pharmaceutical Firms and Four

Wholesalers

We consider a pharmaceutical supply chain network with two pharmaceutical firms and four

wholesalers. The network is depicted in Figure 2. Each link is denoted by numbers in increasing

order, and the numerical values in parentheses associated with each link mean corresponding shipping
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Figure 2: Supply Chain Network with 2 Pharmaceutical Firms and 4 Wholesalers

times. We use one week as a time unit in this example. Therefore, for example, it will take one,

two, two, and three week(s) to ship materials using links 1, 2, 3, and 4, respectively.

5.1 Numerical Example Setup

We assume each pharmaceutical firm has one manufacturing site and two distribution centers, denoted

by P 1
1 , D

1
1, and D1

2 for firm 1, and P 2
1 , D

2
1, and D2

2 for firm 2. Among the four wholesalers, the first

two wholesalers supply pharmaceuticals to market 1 and the other two supply pharmaceuticals to

market 2. We assume each wholesaler has one warehouse and warehouses are denoted by R1
1, R

2
1, R

3
1,

and R4
1, for wholesaler 1, 2, 3, and 4, respectively. The set of links are A1 =(1, 2, 3, 4), B1,1 =(9,

13), B1,2 =(10, 14), B1,3 =(11, 15), B1,4 =(12, 16), A2 =(5, 6, 7, 8), B2,1 =(17,21), B2,2 =(18,22),

B2,3 =(19,23), and B2,4 =(20,24). The pharmaceutical firm 1’s control vector is
(
x11(t) , p11(t), p12(t),

p13(t), p14(t), d19(t), d110(t), d111(t), d112(t), d113(t), d114(t), d115(t), d116(t)
)T

, while pharmaceutical firm 2’s

control vector is
(
x21(t) , p25(t), p

2
6(t), p

2
7(t), p

2
8(t), d

2
17(t), d

2
18(t), d

2
19(t), d

2
20(t), d

2
21(t), d

2
22(t), d

2
23(t),

d224(t)
)T

. The wholesalers’ control vectors are
(
s1,11 (t), θ1(t)

)T
,
(
s2,11 (t), θ2(t)

)T
,
(
s3,21 (t), θ3(t)

)T
,

and
(
s4,21 (t), θ4(t)

)T
for wholesaler 1, 2, 3, and 4, respectively.

Over a planning horizon, each firm adjusts its controls at each instant of time to maximize its

overall profit in a non-cooperative fashion. We define the production cost function for pharmaceutical
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firms as:

cfj (xf , t) = cf,j,1

(
xfj (t)

)2
+ cf,j,2x

f
j (t) t ∈ [t0, tf ], j ∈ J f , f ∈ F (54)

where cf,j,1 and cf,j,2 are exogenous constants, and define the flow cost functions as:

zfl,1(p
f
l , t) = zf,l,1

(
pfl (t)

)2
+ zf,l,2p

f
l (t) t ∈ [t0, tf ], l ∈ Af , f ∈ F (55)

zfl,2(d
f
l , t) = wf,l,1

(
dfl (t)

)2
+ wf,l,2d

f
l (t) t ∈ [t0, tf ], l ∈ Bf , f ∈ F (56)

where zf,l,1, zf,l,2, wf,l,1, and wf,l,2 are exogenous and dependent on each link l. Inventory cost

functions are defined as:

yfj (P fj , t) = yf,jP
f
j (t) t ∈ [t0, tf ], j ∈ J f , f ∈ F (57)

ufk(Df
k , t) = uf,kD

f
k (t) t ∈ [t0, tf ], k ∈ Kf , f ∈ F (58)

where yf,j and uf,k are exogenous and dependent on location j or k. Price functions are defined in

such a way that the drug price decrease as the sales increases, and vice versa. In particular, the

wholesaler r’s price in market m at time t is specified as:

πrm(t) = πrm,1 − πrm,2
∑
r∈R

∑
n∈N r

sr,nm (t) m ∈Mr, r ∈ R (59)

where πrm,1 and πrm,2 are given constants. Finally, wholesalers’ inventory functions are as follows:

grn(W r
n , t) = gr,nW

r
n(t) t ∈ [t0, tf ], n ∈ N r, r ∈ R (60)

where gr,n are given constants.

5.2 Case Study

We assume that pharmaceutical firms 1 and 2 are large drug manufacturers producing a homogeneous,

generic substitute of a brand drug (e.g., pharmacy-branded acetaminophen for Tylenol) for the

U.S. market, and that pharmaceutical firm 1 is U.S. based, having all of its facilities in the U.S.

while pharmaceutical firm 2 is U.S. based but having its manufacturing site and distribution centers
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Parameter Firm 1 Firm 2

cf,j,1, cf,j,2 0.001, 0.120 0.001, 0.084

Table 3: Coefficients of Production Cost Functions

outside the U.S. (e.g., Mexico). Accordingly, firm 2 has lower production costs and lower shipping

costs between its manufacturing site and distribution centers but has higher shipping costs between

its distribution centers and wholesalers located in the U.S. We set the planning horizon as 21 weeks

in our case study. The time unit is in weeks, manufacturing and material flow units are in boxes3

per week, and the price unit is in 1,000 U.S. dollars. We also assume that the salvage value of

remaining inventories at the end of the planning horizon is zero, mainly for the sake of simplicity,

but it is still a plausible scenario in case of, e.g., seasonal drugs.

The price function parameters are specified as πrm,1 = 2.7 and πrm,2 = 0.01 for wholesalers 1 and

2 in market 1, and πrm,1 = 3.0 and πrm,2 = 0.01 for wholesalers 3 and 4 in market 2, which implies

that while the base price for market 2 (=3.0) is higher than that of market 1 (=2.7), the price

sensitivity is the same for both markets. The price pharmaceutical firm 1 charges to all wholesalers

is πf,r = 0.65, and the price pharmaceutical firm 2 charges to all wholesalers is πf,r = 0.58. All

other parameter values are summarized in Tables 3–5.

We consider the following three cases to analyze the impact of perishability (Case 2) and discount

rate (Case 3):

Case 1: Nominal case with decay constant δ = 0.01 and discount rate ρ = 0.03.

Case 2: Same as Case 1 but decay constant is increased from 0.01 to 0.015 (50% increase)

Case 3: Same as Case 1 but discount rate is increased from 0.03 to 0.045 (50% increase)

The main routine of interior-point barrier algorithm is written in Matlab, and sub-algorithms were

solved using CPLEX. Apple Macbook Pro with 2.8 GHz Intel Core i7, 16gb ram was used for

implementation and the results are summarized in Figures 3–9.

Figure 3 shows pharmaceutical firms’ production rates and drug output flows through links

1, 4, 5, and 8 over the planning horizon. We omit here flows through links 2, 3, 6, and 7 due to

space limitation. Firm 1’s results are on the left while firm 2’s results are on the right in Figure

3. In all cases, both pharmaceutical firms decrease their production rates toward the end of the

3We assume that each box contains 1,000 acetaminophens.
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Link Parameter Firm 1 Firm 2

1 / 5

zf,l,1, zf,l,2

0.001, 0.130 0.001, 0.1120
2 / 6 0.001, 0.104 0.001, 0.0896
3 / 7 0.001, 0.130 0.001, 0.1120
4 / 8 0.001, 0.104 0.001, 0.0896

9 / 17

wf,l,1, wf,l,2

0.001, 0.06 0.002, 0.06
10 / 18 0.001, 0.06 0.002, 0.06
11 / 19 0.001, 0.06 0.002, 0.06
12 / 20 0.001, 0.06 0.002, 0.06
13 / 21 0.001, 0.06 0.002, 0.06
14 / 22 0.001, 0.06 0.002, 0.06
15 / 23 0.001, 0.06 0.002, 0.06
16 / 24 0.001, 0.06 0.002, 0.06

Table 4: Coefficients of Flow Cost Functions for Each Link

Firm Firm 1 Firm 2 W1 W2 W3 W4

Parameter y1,1 u1,1 u1,2 y2,1 u2,1 u2,2 g1,1 g2,1 g3,1 g4,1
Value .025 .015 .025 .025 .015 .025 .015 .015 .015 .015

Table 5: Inventory Cost Parameters

planning horizon. This is because it is optimal for wholesalers to deplete inventory at the end of

the planning horizon, leading to a gradual decrease in production. Accordingly, drug output flow

rates decrease as time passes. Compared to Case 1, production rates and material flows are lower in

Cases 2 and 3, which implies that the higher decay constant and the higher discount rate make

unfavorable conditions for the supply chain in our numerical example setup. In addition, both firms

prefer relatively inexpensive links (i.e., links 4 and 8, compared to links 1 and 5, respectively) having

longer transit times. Furthermore, firm 2’s manufacturing rates and drug output rates are higher

than firm 1’s because firm 2 has lower manufacturing costs and shipping costs.

Figure 4 shows drug output flows from distribution centers to wholesalers over the planning

horizon. Unlike the drug output flows from manufacturing sites, distribution flows increase over time.

This is mainly because wholesalers increase their sales in later time periods to maximize profits while

depleting their inventories as shown in Figure 8, which is the optimal strategy for wholesalers due

to inventory cost, perishability, and competition. Unlike the wholesalers, pharmaceutical firms do

not deplete their inventories as in Figure 7, which may seem somewhat unexpected. However, since

there are shipping costs associated with material flows, the pharmaceutical firms do not pursue zero
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Figure 3: Pharmaceutical Firms’ Production Rates

inventories at the end of the planning horizon and try to find the balance between the inventory cost

and shipping cost. One important implication here is that pharmaceutical firms and wholesalers

may have different inventory strategies depending on the phase of supply chains. In addition, note

that the problem is solved in a noncooperative game setting, for which solutions may not be optimal

but are equilibria. This implies that a manufacturing firm cannot lower its terminal inventory to

maximize its own profit unless other players lower their inventories first.

Figure 5 shows wholesalers’ sales rates. Of particular interest is to see how they adjust their

sales rates over time. Sales rates are rather high in earlier time periods because wholesalers want to

reduce their inventories quickly to avoid high inventory costs and, at the same time, to make a profit

early. Then sales rates decrease to avoid low prices as a result of high competition in early time

periods. As the wholesalers reduce sales after early periods, the prices increase. Finally, sales rates

increase rather drastically near the end of the planning horizon to deplete inventories at the end

of the horizon as can be seen in Figure 8 and, accordingly, prices drop rapidly. Note in particular

that in case 2, sales rates are significantly different than in the other cases; they are highest in
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Figure 4: Pharmaceutical Firms’ Distribution Flows

earlier periods, and wholesalers sell drugs quickly because of higher perishability, but due to price

competition, the sales rates drop subsequently.

Price trajectories are shown in Figure 6. Note that in our case study the price function is defined

(see (59)) in such a way that prices decrease as the total sales increase and vice versa. Therefore,

prices drop near the end of planning horizon as firms increase sales to deplete their inventories.

Figures 7 and 8 show inventory levels at manufacturing sites, distribution centers, and demand

markets. Note in particular that inventory levels are rather stable at manufacturing sites but change

rather drastically at distribution centers especially in earlier periods because of flash sales in those

periods. Wholesalers deplete their inventories at the end of the planning horizon. It is apparent in

our specification that case 2 with a higher decay constant produces the lowest inventory levels for

all supply chain stages due to perishability.

Figure 9 shows profits of pharmaceutical firms and wholesalers. The net profit decreases as

perishability and discount rates increase because such makes the environment worse. Note that the

most influential factor in terms of net profit is the decay constant, not the discount rate in our
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Figure 5: Wholesalers’ Sales Rates
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Figure 6: Price Trajectories in Each Market
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Figure 7: Pharmaceutical Firms’ Inventories

parametrization.

6 Conclusions

In this paper, we have proposed a systematic, integrated pharmaceutical supply chain management

framework that makes it possible to consider the impact of pharmaceuticals perishability on

a wider supply chain scale via dynamic equilibrium solutions. In particular, we propose the

formalism of dynamic optimization to tackle inventory management schemes at manufacturing

sites, distribution centers, and wholesalers, explicitly considering deterioration of pharmaceutical

products. In addition, our model enables us to capture price fluctuations as a result of wholesalers’

oligopolistic competition and perishability of pharmaceutical products. Furthermore, we provide

the supply chain decision rules derived from KKT necessary conditions, which presents ample

managerial insights into the problem. In summary, our proposed model allows us to include key

salient features such as oligopolistic competition, interdependence, drug deterioration, dynamic

inventory control, and vertical integration to provide insights into complex pharmaceutical supply

27



5 10 15 20
0

20

40

60

80

R
1 1

Inventory Trajectory: Wholesaler 1

5 10 15 20
0

20

40

60

80

R
2 1

Inventory Trajectory: Wholesaler 2

5 10 15 20
0

20

40

60

80

R
3 1

Inventory Trajectory: Wholesaler 3

5 10 15 20
0

20

40

60

80

R
4 1

Inventory Trajectory: Wholesaler 4

 

 

Case 1 Case 2 Case 3

Figure 8: Wholesalers’ Inventories

1 2 3
100

120

140

160

P
ro

fi
t 

(i
n
 U

S
 d

o
lla

rs
) Pharmaceutical Firm 1’s Net Profit

1 2 3
100

120

140

160

P
ro

fi
t 

(i
n
 U

S
 d

o
lla

rs
) Pharmaceutical Firm 2’s Net Profit

1 2 3
550

600

650

700

P
ro

fi
t 
(i
n

 U
S

 d
o

lla
rs

) Wholesaler 1’s Net Profit

1 2 3
550

600

650

700

P
ro

fi
t 
(i
n

 U
S

 d
o

lla
rs

) Wholesaler 2’s Net Profit

1 2 3
550

600

650

700

P
ro

fi
t 
(i
n
 U

S
 d

o
lla

rs
) Wholesaler 3’s Net Profit

1 2 3
550

600

650

700

P
ro

fi
t 
(i
n
 U

S
 d

o
lla

rs
) Wholesaler 4’s Net Profit

Figure 9: Each Firm’s Net Profit

28



chain problems. The inclusion of above-mentioned salient features in our model gives rise to a

computational challenge, which is resolved by use of the variational inequality formalism and the

associated interior point method. In our numerical example, we show that, within the context of

our specifications, perishability is indeed a factor that may dominate supply chain performances.

We note that our proposed framework is readily applicable beyond pharmaceutical supply chains

to other perishable product supply chain problems with minor modifications. That is, this research

lays a foundation for studying complex perishable product supply chain problems including food

supply chains.
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