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Abstract

We investigate dual-toll setting as a policy tool to mitigate the risk of hazardous material

(hazmat) shipment in road networks. We formulate the dual-toll problem as a bi-level program

wherein the upper level aims at minimizing the risk, and the lower level explores the user

equilibrium decision of the regular vehicles and hazmat carriers given the toll. When the upper

level objective is to minimize the risk and all links are tollable, we decompose the formulation

into first-stage and second-stage, and suggest a computational method to solve each stage. Our

two-stage solution methodology guarantees nonnegative valid dual tolls regardless of the solution

accuracy of the first-stage problem. We also consider a general dual-toll setting problem where

the regulator rather wishes to minimize a combination of risk and the paid tolls and/or some

links are untollable. To solve this truly bilevel problem, we provide heuristic algorithms that

decompose the problem into subproblems each being solved by a line search. Case studies based

on the Sioux Falls network illustrate the insights on the dual-toll policies.

Keywords: hazardous material transportation; toll setting; non-convex optimization; bi-level

programming

1 Introduction

Despite the extensive use of hazardous material (hazmat) from fueling our vehicles and heating our

homes to farming, medical and manufacturing purposes, they are potentially disastrous to the people

and the environment. Common examples are explosives, gases, flammable liquids and poisonous

substances shipped by trucks, trains, vessels, and planes containing undesirable consequences in

the event that they release or explode due to an accident. According to the U.S. Department
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of Transportation Pipeline and Hazardous Materials Agency, among the close to 1 million daily

shipments of hazmats crisscrossing the United States, during the year 2013, 16,769 hazmat incidents

have been recorded. Nevertheless, these incidents caused a total of 12 fatalities, 23 major and 123

minor injuries and damages of over $114 million. These incidents underscore the importance of

overseeing safe, reliable and environmentally sound hazmat transportation. This study specifically

focuses on regulating hazmat transportation in road networks motivated by the fact that in 85% of

the hazmat incidents truck has been used as the mode of transportation.

To mitigate hazmat transport risk, authorities usually attempt to separate hazmat flow from

regular traffic flow while directing hazmat trucks to less populated areas. Two groups of policies are

available to the governments: network design and toll setting. In the former approach, the authority

restricts hazmat carriers from using certain road segments by imposing (permanent or time-based)

curfews (Kara and Verter, 2004; Erkut and Alp, 2007; Erkut and Gzara, 2008; Bianco et al., 2009).

The latter approach diverts hazmat carriers to less risky areas based on their economical and time

preferences by assigning tolls to road segments (Marcotte et al., 2009; Wang et al., 2012; Bianco

et al., 2015). While toll pricing is most often used to reduce traffic congestion (Arnott and Small,

1994; Hearn and Ramana, 1998; Johansson-Stenman and Sterner, 1998), toll setting (TS) policy

also provides a flexible and effective hazmat transport risk mitigation tool (Marcotte et al., 2009).

The majority of existing literature on hazmat risk mitigation policies focuses either on the

restrictive network design policy, or single toll pricing that excludes the inevitable impact of regular

vehicles on hazmat risk. Even though Wang et al. (2012) proposed a dual toll pricing problem

to regulate both types of traffic, their model assumes a linear travel delay function for analytical

tractability, which does not capture the regular traffic congestion properly. Our dual-toll pricing

model uses a nonlinear travel delay function used by the U.S. Bureau of Public Roads.

We develop computational methods for both first-best and second-best dual-toll pricing policies.

When every road link is tollable, it is called first-best, and when some links are not tollable, it

is second-best. For the first-best toll pricing, we extend the two-stage approaches of Yang and

Huang (2004) and Marcotte et al. (2009) that are based on inverse optimization. As the first-best

toll pricing policy seeks a nonnegative toll vector that can lead traffic flow to the desired optimal

traffic pattern, it naturally involves the notion of inverse optimization (Ahuja and Orlin, 2001).

In the conventional inverse optimization approaches for toll-pricing, we must obtain an optimal

solution to the first-stage problem to ensure the existence of a valid toll. In our work we consider

nonlinearity of the travel delay function, which makes the objective function of the first stage

problem non-convex; hence an optimal solution is difficult to find. Nevertheless, we propose a

solution method to guarantee the existence of a valid toll even with an approximate solution to

the first stage problem. When only a subset of links is tollable, we formulate the second-best toll

pricing problem as a mathematical program with equilibrium constraints (MPEC), and propose a

two-step equilibrium-decomposition-optimization (2-step EDO) method that extends the work of

Suwansirikul et al. (1987).

In the literature of hazmat routing, risk measurement typically relies on two link attributes:
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accident probability and accident consequence. The accident consequence can be the population,

which may be measured using the λ-neighborhood concept (Batta and Chiu, 1988), or it can also

include damages to individuals who are directly involved in an incident as well as damage to the

environment and properties (Abkowitz and Cheng, 1988). Various measures of hazmat accident risk

can be defined by considering different distributions for these two link attributes such as quantile-

based measures (Kang et al., 2011; Toumazis et al., 2013). We use a duration-population-frequency

risk measure to model the dependence of hazmat risk on congestion induced by regular traffic.

The rest of this paper is organized as follows. Section 2 reviews technical contributions related

to our research. Section 3 develops the dual toll pricing model. Section 4 is devoted to our solution

methodology for the first-best dual-toll pricing. Section 5 explains the 2-step EDO method to

solve the second-best dual-toll pricing. We present an application on the realistic road network of

Sioux Falls in Section 6. Finally, Section 7 concludes the paper and suggests some future research

directions.

2 Review of Related Technical Contributions

We review technical contributions in past research efforts for both regular and hazmat traffic control

that use toll pricing. We build upon these techniques in developing our solution methodology.

2.1 Regular Traffic Control

In regular traffic control, the primary objective of the network administrator is to minimize a

certain system total cost function such as the total travel time or the total emissions-denoted by

system optimum. Consider a directed network G(N ,A), with a set of nodes N , and a set of arcs A.

Let fij(vij), a function of arc traffic volume vij , denote such a performance measure in each arc

(i, j) ∈ N that the network administrator wants to minimize. We assume there is travel demand dw

for each O-D pair w in the set of O-D pairs W. The administrator’s problem is written as follows:

min
v∈V

∑
(i,j)∈A

fij(vij) (1)

where

V :=

{
v : vij =

∑
w∈W

ywij ∀(i, j) ∈ A,∑
j:(i,j)∈A

ywij −
∑

j:(j,i)∈A

ywji = bwi , ∀i ∈ N , ∀w ∈ W,

ywij ≥ 0, ∀(i, j) ∈ A, ∀w ∈ W

}
, (2)
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ywij is the traffic flow in arc (i, j) for O-D pair w, bwi = dw if node i is the origin of O-D pair w,

bwi = −dw if node i is the destination of O-D pair w, and bwi = 0 for all other intermediate nodes.

We let an optimal solution to the administrator’s problem (1) to be v̄.

While v̄ is the desired traffic flow of the administrator, network users will not necessarily follow

the desire. Instead, they are often interested in their own benefits; hence a game-theoretic model is

necessary. Given a tolling scheme from the administrator, according to the Wardrop’s first principle

(e.g. Florian and Hearn, 1995), the users, in an attempt to minimize their individual travel cost,

will take the User Equilibrium flow pattern. When arc traveling time/cost is cij(vij), the user

equilibrium of network users can be modeled as a variational inequality (e.g. Dafermos, 1980). Let

us introduce toll prices τij for each arc (i, j) ∈ A. Therefore, the objective of the toll pricing problem

is to make the desired flow pattern v̄ the tolled-user equilibrium flow that satisfies the following

variational inequality: ∑
(i,j)∈A

(cij(v̄ij) + τij)(vij − v̄ij) ≥ 0, ∀v ∈ V. (3)

Any toll vector τ that makes (3) hold is called a valid toll (Hearn and Ramana, 1998). Bergendorff

et al. (1997) develop and prove the following property:

Lemma 1. For τ to be a valid toll vector for v̄ ∈ V , there should exist a vector λ such that

cij(v̄ij) + τij ≥ λwi − λwj , ∀(i, j) ∈ A, w ∈ W, (4)∑
(i,j)∈A

[cij(v̄ij) + τij ]v̄ij =
∑
i∈N

∑
w∈W

λwi b
w
i . (5)

We notice that to obtain constraints (4) and (5), one can construct the Lagrangian of variational

inequality (3), and derive the KKT conditions.

Usually, there are multiple valid tolls and one may choose a toll based on another criteria. A

popular choice is to minimize the total toll collected. Hence, for a given v̄, we solve:

RTP(v̄) : min
τ≥0

∑
(i,j)∈A

v̄ijτij , (6)

subject to (4) and (5).

The regular-toll problem (RTP) is an instance of inverse optimization (IO) problems (e.g. Ahuja

and Orlin, 2001) to find toll prices. Mathematically, arc tolls can be positive or negative (subsidy).

However, it is impractical to consider subsidies when trying to regulate traffic. The existence

of a nonnegative valid toll vector τ ≥ 0 is assured by the following theorem due to Yin and

Lawphongpanich (2006):

Theorem 1. If fij(·) is a monotically increasing function for all (i, j) ∈ A, there exists a nonnegative

valid toll vector τ ≥ 0 for the traffic pattern v̄. Therefore, problem RTP(v̄) has a feasible solution.

A key to Theorem 1 is that v̄ is an optimal solution to (1).
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2.2 Hazmat Traffic Regulation

To guide hazmat traffic to a certain desired pattern, we can follow an analogous process as introduced

by Marcotte et al. (2009). On the directed network G(N ,A), we let S denote the set of shipments

(similar to the set of O-D pairs for regular traffic case), ns the number of trucks for each shipment

s ∈ S, and xsij a binary routing variable corresponding to shipment s on arc (i, j) ∈ A. For a certain

performance measure gij(·) for each arc (i, j) ∈ A, the hazmat network administrator’s problem can

be written as follows:

min
x∈X

∑
s∈S

∑
(i,j)∈A

gij(x
s
ij), (7)

where

X :=

x :
∑

j:(i,j)∈A

xsij −
∑

j:(j,i)∈A

xsji = esi ∀i ∈ N , s ∈ S, xsij ∈ {0, 1} ∀(i, j) ∈ A, s ∈ S

 , (8)

esi = 1 if node i is the origin of shipment s, esi = −1 if node i is the destination of shipment s, and

esi = 0 for all other intermediate nodes i. We let x̄ denote an optimal solution to problem (7).

As opposed to the user equilibrium in the regular traffic case wherein an O-D pair flow can split

in many routes, we assume hazmat carriers use the shortest path for all trucks of each shipment.

Thus, with cij a nonnegative travel time for each arc (i, j) ∈ A, and a hazmat toll vector t, hazmat

carriers determine their routes by solving the following multi-commodity shortest path problem:

min
x∈X

∑
s∈S

∑
(i,j)∈A

ns(cij + tij)x
s
ij . (9)

A valid hazmat toll vector t makes the desired hazmat traffic pattern x̄ an optimal solution to (9).

Referring to Marcotte et al. (2009), Section 4, we can characterize a valid hazmat toll:

Lemma 2. For t to be a valid toll vector for x̄ ∈ X, there should exist a vector π such that

πsi − πsj ≤ ns(cij + tij) ∀(i, j) ∈ A, s ∈ S, (10)

x̄sij(π
s
i − πsj − ns(cij + tij)) = 0 ∀(i, j) ∈ A, s ∈ S. (11)

Similar to the regular traffic case, multiple valid toll vectors may exist and one can choose a toll

to minimize the total toll collected:

HTP(x̄) : min
t≥0

∑
s∈S

∑
(i,j)∈A

nsx̄sijtij , (12)

subject to (10) and (11).

The following theorem guarantees the existence of a nonnegative valid toll vector t ≥ 0:
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Minimize the Total Risk (selected PATHS) 

 

Charge Regular Tolls and Hazmat Tolls 
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Regular Vehicles/ 

Hazmat Trucks 

Each User Minimizes his own Total Cost 

Figure 1: Hazardous-Network Dual Toll Pricing Problem

Theorem 2. If gij(·) is a monotonically increasing function for all (i, j) ∈ A, there exists a

nonnegative valid toll vector t ≥ 0 for the traffic pattern x̄.

Proof. We can revise the proof of Marcotte et al. (2009, Proposition 1). Although the original proof

is written for a linear program with nonnegative cost coefficients, the same argument applies to any

increasing function gij(·).

Again, a key to Theorem 2 is that x̄ is an optimal solution to (7).

3 Hazardous-Network Dual Toll Pricing Problem

We introduce the dual-toll pricing problem to minimize the risk of hazmat transportation. In

our network, there are two distinct groups of decision makers: the local government, and the

network users including regular vehicles’ drivers and hazmat carriers. To capture this leader-follower

relationship, we use a bilevel framework to represent our model with the government in level 1 and

the users in level 2 as depicted in Figure 1.

Once the government decides on the toll charges in level 1, two different sets of users (i.e., regular

traffic and hazmat carriers) will minimize their total travel cost in level 2. Specifically, the regular

traffic will take the tolled user equilibrium flow, and apart from them, the hazmat carriers will

choose the shortest paths between every origin and destination pair considering both time and

economical preferences. In response to such behavior, the government can indirectly influence the

users’ decisions through toll pricing. We seek a dual toll policy that produces a mutually acceptable

solution.

3.1 A Bilevel Model

We represent the existing road system by the directed network G(N ,A), with a set of nodes N ,

and a set of arcs A. Consider a regular traffic demand dw for each O-D pair w in regular O-D pair

set W. In addition, there is a set S of O-D shipments for hazmat traffic with each shipment s ∈ S
representing a specific hazmat type with a certain level of risk exposure. Let ns be the number

of trucks needed to complete every shipment s ∈ S. Finally, let ρij denote a measure of hazmat
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Table 1: Mathematical notation

Notation Description

A Set of arcs
N Set of nodes
W Set of O-D pairs for regular vehicles
dw Demand of regular vehicles for O-D pair W
ywij Regular traffic flow variable in arc (i, j) for O-D pair w

vij Total regular traffic volume in arc (i, j)
bwi Equals dw, −dw, or 0 depending if node i ∈ N is the origin,

the destination or an intermediate node for O-D pair w
S Set of hazmat O-D shipments
ns Number of trucks for shipment s ∈ S
xsij Binary variable taking the value 1 if arc (i, j) ∈ A is used for shipment s ∈ S
esi Equals 1, -1, or 0 depending if node i ∈ N is the origin,

the destination or an intermediate node for shipment s
ρij Number of people exposed on arc (i, j) when a hazmat accident occurs
cij A nonnegative arc travel time for each arc (i, j) ∈ A
τij Continuous variable representing the toll charged to regular vehicles on arc (i, j) ∈ A
tij Continuous variable representing the toll charged to hazmat trucks on arc (i, j) ∈ A
σR Parameter converting toll unit into travel time unit perceived by Regular vehicles
σH Parameter converting toll unit into travel time unit perceived by Hazmat trucks

transportation risk in arc (i, j) ∈ A, for example, population along each arc. Table 1 provides a

summary of the notation used in the formulations.

We make two simplifying assumptions for analytical tractability of our model. First, we assume

that network users have perfect information of the current status of the network. Second, there is no

stochasticity in the travel time and the behavior of users implying that our model is deterministic.

By imposing separate toll policies τ and t, we guide regular and hazmat traffic to a solution of

network administrator’s problem of the following form:

min
v∈V,x∈X

z(v, x) =
∑
s∈S

∑
(i,j)∈A

nscij(vij)ρijx
s
ij , (13)

with V and X being as constraint sets (2) and (8), respectively. The objective function z(v, x)

is called a duration-population-frequency measure of hazmat exposure in arc (i, j) (Wang et al.,

2012) as it involves the product of cij , ρij and ns. To determine the travel time on each link given

the flow, we use the US Bureau of Public Roads (BPR) function. Algebraically, the function is

of the form cij(vij) = c0ij(1 + 0.15(vij/lij)
4), where vij is the amount of the flow on link (i, j). In

a road network, the number of hazmat trucks is relatively small when compared to the flow of

regular traffic. Therefore, in calculating the link travel time, congestion induced by the traffic flow

of hazmat trucks can be ignored. Consequently, we assume the link travel delay function cij to

be only a function of regular traffic flow vij . The remaining parameters, c0ij and lij , represent the
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free-flow travel time and capacity for link (i, j), respectively.

Once the administrator makes a decision on toll charges for regular and hazmat traffic (upper

level), the regular vehicles’ drivers follow the tolled-user equilibrium flow pattern that satisfies the

variational inequality of the form (3), and hazmat carriers take the shortest path between each

specified O-D pair by solving equation (9).

The hazardous-network dual toll pricing problem lends itself to a bilevel programming formulation

of the following form:

(TS) min
v∈V,x∈X,τ≥0,t≥0

z(v, x) =
∑
s∈S

∑
(i,j)∈A

nscij(vij)ρijx
s
ij , (14)

where vij solves the following tolled-user equilibrium problem:

(R)
∑

(i,j)∈A

(cij(vij) + σRτij)(v
′
ij − vij) ≥ 0, ∀v′ ∈ V, (15)

with V being as set (2), and simultaneously xsij solves the shortest path problem:

(H) min
x∈X

∑
s∈S

∑
(i,j)∈A

ns(cij(vij) + σHtij)x
s
ij , (16)

with X being as set (8). Overall, equations (14)–(16) represent the bilevel model denoted by problem

(TS). We note that problem (H) contains the decision variables of the regular vehicles’ problem

(R), i.e., vij , which implies that hazmat carriers’ route choice is influenced by regular traffic flow

through the link travel time function cij(vij). When some links are untollable as in the second-best

dual-toll pricing problem, corresponding toll variables, τij and tij , will be forced to be zero.

Problem (TS) is a mathematical program with equilibrium constraints (MPEC), which is in

general very difficult to solve. Section 4 develops an efficient two-stage method for the first-best

dual-toll pricing problem. For the second-best dual-toll pricing problem, Section 5 develops a

heuristic algorithm.

4 Two-Stage Inverse-Optimization Approach

We exploit specific structural properties to demonstrate that problem (TS) as an MPEC is equivalent

to a two-stage problem which can be solved efficiently, using Theorems 1 and 2.

The first stage problem corresponds to determining the minimum-risk flow pattern, i.e., the

administrator’s ideal solution. The minimum-risk problem (MR) is comprised of the objective

function of problem (TS), i.e., equation (14), and the flow conservation constraints (2) and (8),

without considering toll vectors. That is, we solve:

(MR) min
v∈V,x∈X

z(v, x) =
∑
s∈S

∑
(i,j)∈A

nscij(vij)ρijx
s
ij . (17)
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for which we can relax the binarity conditions on x. Note that (MR) is a non-convex problem. We

can prove, by a counter-example, that problem (17) is not even pseudo-convex or quasi-convex.

Thus, finding an optimal solution to (MR) is challenging.

An important issue surrounding the existence of nonnegative valid toll vector pairs, i.e., τ and t,

is that our numerical solution to (17) may be sub-optimal. Since Theorems 1 and 2 require optimal

solutions, the existence of a valid toll is not guaranteed for an approximate numerical solution to

(MR). To overcome this issue, we propose a simple post-iteration to the numerical solution to (MR).

We let v̆ ∈ V and x̆ ∈ X denote an approximate solution to (17) obtained using an algorithm.

Then the post-iteration is that we solve two following optimization problems:

v̆l+1 = arg min
v∈V

z(v, x̆l) (18)

x̆l+1 = arg min
x∈X

z(v̆l+1, x), (19)

until convergence, starting with an initial solution x̆0 = x̆ when l = 0. Note that (18) is an instance

of convex traffic assignment problem which can be solved efficiently using, e.g., the Frank-Wolfe

algorithm (Frank and Wolfe, 1956) and its variants, and (19) is a pure network flow problem (one

shortest-path problem per carrier). Finally, let (ṽ, x̃) represent a solution to the post-iteration phase.

Despite the simplicity, the post-iteration has two major outcomes. First, although the pair (ṽ, x̃)

may not be an optimal solution to (17), the risk value corresponding to (ṽ, x̃) is at least as good as

the one induced by (v̆, x̆). Second, after the post-iteration (18) and (19), we obtain the following

existence results:

Theorem 3. For any approximate solution v̆ ∈ V and x̆ ∈ X to (MR), there exists a nonnegative

valid dual-toll pair (τ, t) ≥ 0 for the traffic pattern (ṽ, x̃) as obtained by (18) and (19).

Proof. Since z(·, x̆) is an increasing function, there exists a nonnegative valid regular toll τ by

Theorem 1. Similarly the existence of a nonnegative valid hazmat toll t is assured by the monotonicity

of z(ṽ, ·) and Theorem 2.

After obtaining ṽ and x̃, in the second stage we use the inverse optimization problems RTP(ṽ)

as equation (6), and HTP(x̃) as equation (12) to determine toll vectors τ and t, whose existence is

guaranteed by Theorem 3. We note that the inverse optimization enforces achievement of dual-toll

vector (τ, t) such that ṽ and x̃ are a tolled-user equilibrium and shortest-paths, respectively. The

flowchart of the entire two-stage process is illustrated in Figure 2 for easy reference. Therefore, the

original problem (TS) is analytically equivalent to this two-stage problem. In what follows, we focus

on the computational methods to separately solve each stage of the two-stage problem.

4.1 The First Stage Problem

Note that (MR) is a non-convex optimization problem with two disjoint linear constraint sets V and

X. We further observe that for any given x, minv∈V z(v, x) is an easy convex minimization with

9



Perform  post-iteration phase on  (𝒗,  𝒙 ) 

Iteratively apply (18) and (19)  to obtain 𝒗 , 𝒙    

Obtain an approximate solution to problem (MR), 

i.e. (𝒗,  𝒙 ) 

Perform  Inverse Optimization  phase on 𝒗 , 𝒙  

Solve RTP 𝑣  to obtain 𝜏 ≥ 0, and HTP(𝑥 ) to obtain 𝑡 ≥ 0 

Figure 2: The Two-Stage Process Flowchart for Problem (TS)

linear constraints, and for any given v, minx∈X z(v, x) is the shortest path problem which can be

easily solved. However, a cyclic minimization approach will not guarantee optimality. On the other

hand, other methods such as branch-and-bound which guarantee the optimality are likely to be

computationally expensive.

For solving the first stage problem, we use the Modified Frank-Wolfe algorithm proposed by

Fukushima (1984), which is devised for convex optimization problems. Although there is no

guarantee on the optimality for the non-convex problem (MR), it is computationally efficient. We

will show that an approximate solution is enough for the dual-toll pricing purpose, and there always

exists a nonnegative dual-toll pair if a simple post-iteration is applied at the end of the Frank-Wolfe

iterations. The details of the Modified Frank-Wolfe algorithm applied in problem (MR) are described

in a supplementary document (Appendix A, Part I).

The Modified Frank-Wolfe algorithm is a heuristic approach for the non-convex problem (MR)

and does not guarantee the global optimality. To study the quality of the solution provided by

Modified Frank-Wolfe algorithm, we use two linearization approaches whose solution possesses the

desirable property of global optimality. We then use those solutions to justify our results from the

heuristic method. Note that throughout Section 4.1, we use the terms ‘Modified Frank-Wolfe’ and

‘heuristic’ interchangeably.

The linearization idea is rooted in the work of Wang and Lo (2010) who transform the network

design problem with equilibrium constraints into a mixed-integer linear program that may be solved

optimally by an optimization solver. We incorporate a similar logic to our model to approximate

the travel time function cij(vij) with a set of piecewise-linear functions.

In the first linearization approach, referred to as piecewise-linear model 1, transformation of the

nonlinear objective function (17) involves two parts. The first is to linearize the travel time function

and the second is to linearize the resultant bilinear terms. For doing so, we partition the feasible

domain of vij into N segments each denoted as [n]. We note that the larger the number of partitions,

the finer the discretization adopted, resulting in a more accurate global optimal solution. Then we

modify the original idea of Wang and Lo (2010) for the single variable function cij(vij), and specify

a linear function to approximate cij(vij) within each region [n]. However, after replacing the linear

transformation of the travel time in the objective function (17), the result is still nonlinear due
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Table 2: Test networks

Test Problem No. of No. of No. of OD pairs

Nodes Links Regular Hazmat

8-node network 8 13 27 2
10-node network 10 20 39 3
15-node network 15 28 97 4

to the bilinear terms. Every bilinear term is denoted by the product of a nonnegative continuous

and a binary variable, namely vij and xsij . Therefore, we adapt the approach proposed by Gupte

et al. (2013) to replace the bilinear term with an equivalent continuous variable. Eventually, by

combining all the constraints required for transformations, we can convert nonlinear problem (MR)

to a mixed-integer linear problem referred to as (MILP-1).

The second linearization approach in transformation of the objective function (17) to a linear

problem considers the entire nonlinear term in problem (MR) as a single function with two variables,

namely vij and xsij . Therefore, the linearization relies solely on the piecewise technique introduced by

Wang and Lo (2010). In essence, in piecewise-linear model 2, we incorporate their idea of linearizing

a two-variable nonlinear function while taking advantage of the binary nature of some variables.

Consequently, another equivalent MILP model is obtained for problem (MR) which we refer to as

(MILP-2). The comprehensive descriptions of the two linearization approaches are delegated to the

supplementary document (Appendix A, Parts II and III).

To compare the Modified Frank-Wolfe algorithm with MILP-1 and MILP-2, we consider three

networks for our test problem generation, having 8, 10, and 15 nodes, respectively. Table 2 provides

a summary of these networks, with additional details in the supplementary document (Appendix C).

We used Java as the programming language. When required, for solving LP or MILP, we use CPLEX

12.5.1 integrated with Java platform. All experiments were performed on an Intel(R) Processor 2.99

GHz computer. The supplementary document (Appendix A, Part IV) entails the complete version

of our extensive experiments on the efficiency of the heuristic algorithm and the two exact models.

Here, we underscore our most significant observations as well as the final comparative analysis.

To verify the solution quality of the heuristic we present a summary of our computational

results for the three algorithms, namely Modified Frank-Wolfe, Piecewise Linear Model 1 and 2. We

compare the quality of the solutions provided by each of the algorithms as well as the time required

to obtain such solutions. Notice that here by solution we denote the MR objective value found by

each method which for the two piecewise-linear cases it is determined by calculating equation (17)

for the flow solutions obtained by (MILP-1/2) to remove the linearization error. Specifically, for the

Frank-Wolfe algorithm, starting from a few initial solutions, we choose the least Min-Risk objective

value and the corresponding total computational time. Similarly, for piecewise-linear models 1 and 2,

the best found MR objective value is adopted for comparison purposes. As the required computation

time, we report the instant of observing the solution by MILPs. We also present the percentage

gap between the solution of the heuristic with the one provided by either of the two linearization

11



Table 3: Solution performance of the Modified Frank-Wolfe vs. MILP-1 and MILP-2. Run times are
in seconds.

Modified Frank-Wolfe MILP-1a MILP-2b Gap (%)

Test MRc Run MR Run MR Run MFW d MFW
Problem Obj. Time Obj. Time Obj. Time vs. MILP-1 vs. MILP-2

8-node 81082.36 2 81077.19 256 81077.19 151 0.006 0.006
10-node 16299.75E4 4 16298.71E4 25920 16298.71E4 3237 0.006 0.006
15-node 492075.36 227 486838.86 3379 487423.20 3325 1.075 0.954

aDenotes the mixed-integer linear problem obtained by piecewise-linear model 1,
bDenotes the mixed-integer linear problem obtained by piecewise-linear model 2,
cRefers to the performance of the approximate solution (v̆, x̆) obtained prior to post-iteration,
dRefers to the Modified Frank-Wolfe algorithm.

approaches. The results prior to the post-iteration step are shown in Table 3.

From Table 3 it is observed that the computation time required to obtain the solution of problem

(MR) is significantly reduced under the Modified Frank-Wolfe algorithm for all problem instances.

Although the piecewise-linear models produce a better exact MR objective value in all cases, the

gaps between the heuristic solution and the ones provided by linearization methods are very small.

Owing to the global optimality of the solution obtained from the linearization methods, we conclude

that the Modified Frank-Wolfe also converges to the optimal solution of problem (MR).

The Modified Frank-Wolfe can be applied to the first-stage problem (17) to determine a regular

flow pattern v̆ ∈ V and a hazmat flow pattern x̆ ∈ X inducing a sufficiently low level of risk to the

network. In the next section, we will further show that given such an approximate minimum-risk

flow pattern, it is always guaranteed to obtain a nonnegative valid toll pair.

4.2 The Second Stage Problem

Let (v̆, x̆) denote an approximate minimum-risk flow obtained by solving the first-stage problem

(MR). To assure the existence of a nonnegative valid dual-toll vector (τ, t), the post-iteration step

is carried out. That is the optimization problems (18) and (19) are solved using the Frank-Wolfe

algorithm (Frank and Wolfe, 1956), and a shortest path algorithm such as Dijkstra’s, respectively,

to obtain (ṽ, x̃). Now according to Theorem 3, we can determine a nonnegative regular toll vector τ

by solving

RTP(ṽ) : min
τ≥0

∑
(i,j)∈A

ṽijτij , (20)

subject to

cij(ṽij) + σRτij ≥ λwi − λwj , ∀(i, j) ∈ A, w ∈ W, (21)∑
(i,j)∈A

[cij(ṽij) + σRτij ]ṽij =
∑
i∈N

∑
w∈W

λwi b
w
i , (22)

12



and a nonnegative hazmat toll vector t using

HTP(x̃) : min
t≥0

∑
s∈S

∑
(i,j)∈A

nsx̃sijtij , (23)

subject to

πsi − πsj ≤ ns(cij + σHtij) ∀(i, j) ∈ A, s ∈ S, (24)

x̃sij(π
s
i − πsj − ns(cij + σHtij)) = 0 ∀(i, j) ∈ A, s ∈ S. (25)

Both inverse optimization problems RTP(ṽ) and HTP(x̃) are linear programs which can be solved

efficiently.

To computationally test the validity of our claim, we also implemented the second stage on the

problem instances described in Section 4.1. Our numerical experiments reveal that there always

exists a nonnegative valid dual-toll vector (τ, t) resulting in a tolled-user equilibrium flow pattern

for regular vehicles and shortest-path flows for hazmat trucks for which the corresponding risk is

sufficiently low. That is, our results are consistent with Theorem 3.

5 Heuristic Approaches for Truly Bilevel Cases

So far, in problem (TS) the sole objective of the administrator is to minimize the population

exposure. However, when the administrator is interested in minimizing a combination of hazmat

transport risk and paid tolls, or when some links are untollable as in second-best toll pricing, the

dual-toll pricing problem becomes truly bilevel, and the two-stage solution methodology is no longer

a feasible approach. Therefore, in this section, we assume that in problem (TS), the objective

function (14) is replaced with

(GTS) min
v∈V,x∈X,τ≥0,t≥0

z(v, x, τ, t) =
∑
s∈S

∑
(i,j)∈A

nscij(vij)ρijx
s
ij

+ ϕ

( ∑
(i,j)∈A

τijvij +
∑
s∈S

∑
(i,j)∈A

nstijx
s
ij

)
, (26)

where problems (R) and (H) are kept same as in Section 3.1, and ϕ is a parameter converting

users’ cost into population exposure units. If some links are untollable, we can also enforce the

toll variables τij and tij in the corresponding links to be zero for the second-best toll pricing. Our

proposed method still works with such untollable links with the general objective function in (26).

We call this general toll setting problem as (GTS), wherein the administrator’s goal of charging toll

is to route network users to minimize population exposure while keeping the users’ cost as low as

possible.

Our main purpose is to suggest a heuristic for finding an approximate solution to problem

(GTS). Our algorithm is a variant of the Equilibrium-Decomposed Optimization (EDO) heuristic

first introduced for the continuous equilibrium network design problem by Suwansirikul et al. (1987).
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In the following, we briefly discuss the obstacles toward solving bi-level problem (GTS) with the

conventional EDO heuristic, and present a formal statement of the altered EDO, namely the 2-Step

EDO heuristic, along with the results of our numerical tests.

The major difficulty in solving problem (GTS) is due to the unknown functional forms. In

particular, we note that v(τ) is a UE flow pattern wherein vij , ∀(i, j) ∈ A, is an implicit function

of regular toll τ , i.e., vij = vij(τ). Similarly, xsij = xsij(t), ∀(i, j) ∈ A,∀s ∈ S, denotes the hazmat

shortest path flow pattern x as an implicit function of the hazmat toll t. The conventional EDO of

Suwansirikul et al. (1987) suggests decomposition of the problem into single variable subproblems

corresponding to each arc, and simultaneously minimizing the subproblems with a one-dimensional

search routine. For the two decision variable case, although one may perform a dual search for both

τ and t, we choose to limit the one-dimensional search routines to search only for τ in order to

reduce the approximation error and increase the computational efficiency.

An appropriate approach for (GTS) is to decompose it into interacting subproblems with regard

to regular toll, τ , one for each arc considered to be tolled. Each subproblem has the following form

subproblem of each arc (i, j):

min
τ
zij(τ) =

∑
s∈S

nscij(vij(τ))ρijx
s
ij(t) + ϕ

(
τijvij(τ) +

∑
s∈S

nstijx
s
ij(t)

)
. (27)

In fact, in equation (27), assuming that xij(t) and t are available from another routine, we transformed

the bivariate problem into univariate unconstrained nonlinear subproblems with respect to τ . The

interaction among the subproblems stems from the fact that the value of vij depends on the vector τ

for all arc tolls. Referred to as Modified EDO heuristic, our algorithm is similar to the conventional

EDO in its strategy of applying simultaneous line searches along each arc, as well as solving only

one user equilibrium at each iteration. The Modified EDO algorithm is as follows:

The Modified EDO

Step 0. Initialization

– For the links considered for regular toll charge, let L0 = (. . . , L0
ij , . . . ) and U0 =

(. . . , U0
ij , . . . ) represent the initial lower and upper bounds on τ , respectively.

– Solve the UE problem (R), using Frank-Wolfe algorithm, once for τ = L0 to obtain the

regular flow vector v(L0), and once for τ = U0 to obtain v(U0).

– Obtain hazmat shortest path flow x(t)|L0 and hazmat toll t|L0 corresponding to v(L0).

Similarly, obtain x(t)|U0 and hazmat toll t|U0 corresponding to v(U0). For doing so, solve

the following bi-level model for hazmat toll setting given a regular flow vector v̌:

(HTS) min
x∈{0,1},t≥0

∑
s∈S

∑
(i,j)∈A

nscij(v̌ij)ρijx
s
ij + ϕ

∑
s∈S

∑
(i,j)∈A

nstijx
s
ij
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subject to

(H) min
x∈{0,1}

∑
s∈S

∑
(i,j)∈A

ns(cij(v̌ij) + σHtij)x
s
ij∑

(i,j)∈A

xsij −
∑

(j,i)∈A

xsji = esi ∀i ∈ N ∀s ∈ S.

We note that upon replacing problem (H) by its primal-dual optimality conditions and

linearizing the bilinear terms as described in Gupte et al. (2013), problem (HTS) is

transformed into a single-level linear model which can be solved with a powerful linear

programming software.

– For each arc (i, j), evaluate zij(L
0) and zij(U

0). Set k = 1 and go to step k.

Step k. Iterative search for τ

– For each (i, j), specify a new point τkij ∈ [Lk−1ij , Uk−1ij ] using a line search procedure.

– Solve the UE problem (R) for given τk and get v(τk).

– Solve problem (HTS) for given v(τk) and obtain x(t)|τk and t|τk .

– For each arc (i, j), evaluate zij(τ
k).

– Calculate new intervals [Lkij , U
k
ij ], for each arc (i, j) by a line search such as Golden

Section.

– For all (i, j), if Ukij − Lkij < ∆, stop and set τ∗ij = (Lkij + Ukij)/2; otherwise set k = k + 1.

Since the line search procedure is based on function evaluations, the quality of the solution provided

by the Modified EDO is very sensitive to the magnitudes of the risk and revenue terms. In particular,

our numerical observations on the test problems of Table 2 reveal that for some cases, in the first

iterations, large values of regular toll yield revenue terms of higher magnitudes. Hence, initially

the algorithm favors the revenue term without making any significant improvement to the risk.

Upon obtaining a revenue term with the same order of magnitude as risk, the algorithm starts

minimizing both terms almost equally. At this stage, the intervals of τ are no longer wide enough to

substantially minimize the risk, and consequently we can get low quality solutions. This motivates

us to suggest a 2-Step EDO which resolves the shortcomings of the Modified EDO.

The 2-Step EDO uses the Modified EDO algorithm in two consecutive steps. Ignoring the

revenue terms in problem (GTS), the first step applies the Modified EDO to obtain a solution

(τ I , vI , tI , xI) which only minimizes the risk. From the underlying information in problem (GTS),

one can notice that for any link (i, j), regardless of the amount of regular flow (i.e., vIij), without

having a hazmat truck passing through the link, the corresponding risk value is zero implying that

charging toll not only is neutral to risk reduction but also increases the revenue. Therefore, we

incorporate the following modification to the regular toll vector, τ I , of the current solution:

– ∀s ∈ S, ∀(i, j) ∈ A: if xsij
I = 0, set τ Iij = 0;
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Step 2: Minimize Risk , Regular Revenue, and Hazmat Revenue  

Consider the new regular toll bounds, 𝐿𝑛𝑒𝑤 , 𝑈𝑛𝑒𝑤 , 

Consider the sub problem of link (𝑖, 𝑗) as equation (27),  

Apply modified EDO to obtain 2nd step solution (𝜏𝐼𝐼, 𝑣𝐼𝐼, 𝑡𝐼𝐼, 𝑥𝐼𝐼). 

 Step1 : Minimize the Risk 

Consider sub problem of link (𝑖, 𝑗) as 𝑧𝑖𝑗 𝜏 =   𝑛𝑠𝑐𝑖𝑗 𝑣𝑖𝑗 𝜏 𝜌𝑖𝑗x𝑖𝑗
𝑠 𝑡𝑠∈𝑆 ,  

Apply modified EDO to obtain the  1st step solution (𝜏𝐼 , 𝑣𝐼, 𝑡𝐼, 𝑥𝐼). 

Modify the 1st step regular toll solution i.e., 𝜏𝐼 

Use  hazmat shortest path information, i.e., 𝑥𝐼, 

Obtain new regular toll bounds, 𝐿𝑛𝑒𝑤 , 𝑈𝑛𝑒𝑤 .  

Figure 3: The 2-Step EDO algorithm

– Otherwise, set Lnew
ij = L0

ij and Unew
ij = τ Iij .

Starting from the new toll bounds, Lnew and Unew, the second step applies the Modified EDO to

problem (GTS) to minimize risk and revenue simultaneously. In fact, modifying the first step solution

helps the second step search procedure to start from the minimum risk solution and gradually

redirect the exploration towards minimizing the revenue at the expense of a higher risk. This allows

the algorithm to efficiently search in the direction of risk and revenue and lead to a qualified solution

which favors both objective terms. Figure 3 illustrates the procedure undertaken by the 2-Step

EDO algorithm.

In problem (GTS), one notable point is the possibility of obtaining multiple shortest path

solutions to problem (H) referred to as instability issue (Erkut and Gzara, 2008). Under such

situations, the regulator’s ability in minimizing the risk to its prescribed level is not guaranteed.

Despite being theoretically possible, in real applications, multiple solutions to problem (H) are

very unlikely to happen due to numerical values generated by the BPR delay function during

computations. Therefore, as problem (GTS) is supposed to address practical problems, we assume

that a solution to problem (H) is always stable.

To evaluate the performance of the Modified EDO and 2-Step EDO heuristics, we use the

LINGO optimization solver as an exact method for problem (GTS). The details of our numerical

analysis are found in the supplementary document (Appendix B). The results demonstrate that the

CPU time substantially decreases under either of the heuristics, with the Modified EDO algorithm

being in general superior to the 2-Step EDO. The 2-Step EDO is markedly more effective than the

Modified EDO algorithm in terms of solution quality, providing nearly identical optimal solutions

for all problem instances globally solved by LINGO. Also, for networks with significant congestion

and complexity which cannot be handled by LINGO, the 2-Step EDO appears to be promising as

a useful algorithm that can obtain quite good approximate solutions in significantly less amount

of time. Therefore, for finding a locally optimal solution to problem (GTS), we suggest using the

2-Step EDO approach.
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Figure 4: Sioux Falls Network

Furthermore, we notice that although, in majority of the test problems, the most risky arcs are

subject to hazmat tolls, no tolls are paid by the carriers. In fact, one may misinterpret that hazmat

tolls only serve to prohibit the carriers from using the corresponding arcs similar to the road ban

policy. Thus, to avoid ambiguity, we provide an illustrative example in Appendix B. We show that

the dual-toll policy has the advantage of not completely restricting the use of road segments and

yet efficiently directing the drivers to less risky arcs based on their own considerations.

6 Case Study on Sioux Falls Network

As a basis for our case study, we use a network based on the roads of the city of Sioux Falls,

South Dakota, consisting of 24 nodes and 76 arcs, as shown in Figure 4. We use the same network

parameters of Suwansirikul et al. (1987, Table X) as the input parameters of the travel delay function

cij(vij). We also consider the original 552 OD pairs for the regular vehicles with the corresponding

travel demands as displayed in Suwansirikul et al. (1987, Table XI). The Census site information

provides an effective framework for estimating each arc (i, j) population. Since there is no reliable

record of the actual OD pairs used by the hazmat carriers in the region, hazmat shipments including

origin, destination and demand are randomly generated assuming that all trucks contain the same

hazmat type and pose the same level of exposure to the network.

6.1 The Two-Stage Process

We solved problem (TS) by the two-stage process depicted in Figure 2. To estimate parameters σR

and σH , a reasonable assumption is to consider the inverse of the Value of Time (VoT) of regular

drivers and hazmat carriers, respectively. Various measures of VoT can be found in the literature

each incorporating different travel cost factors. In particular, Litman (2009) estimates the travel
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time cost of a regular vehicle as $20.4/hr incorporating fuel cost, maintenance cost and insurance

cost whereas Park et al. (2014) consider the operational cost of a truck to be $24.44/hr assuming

the similar travel cost factors. According to this, the parameters σR and σH were set to 0.05 and

0.04, respectively.

In order to better analyze the performance of the dual-toll policy, we compute the population

exposure (risk), regular total travel delay and hazmat total travel delay for the unregulated network

where no toll is charged to regular vehicles and hazmat trucks, i.e., no-toll case. For doing so, we

identify the untolled UE flow pattern of regular vehicles, vno-toll, satisfying the following VI:∑
(i,j)∈A

cij(v
no-toll
ij )(vij − vno-tollij ) ≥ 0 ∀v ∈ V, (28)

as well as the untolled hazmat flow pattern, xno-toll, by solving the shortest path problem as below:

xno-toll = arg min
x∈X

∑
s∈S

∑
(i,j)∈A

nscij(v
no-toll
ij )xsij . (29)

Consequently, under the no-toll case, the network performance can be characterized by the following

measures:

z(vno-toll, xno-toll) =
∑
s∈S

∑
(i,j)∈A

nscij(v
no-toll
ij )ρijx

s
ij
no-toll,

DR(vno-toll) =
∑

(i,j)∈A

cij(v
no-toll
ij )vno-tollij ,

DH(vno-toll, xno-toll) =
∑
s∈S

∑
(i,j)∈A

nscij(v
no-toll
ij )xsij

no-toll,

where z,DR, and DH denote the risk, regular vehicles delay and hazmat trucks delay, respectively.

For the dual-tolled case, we let (v∗, x∗) denote the minimum-risk flow solution obtained from

the post-iteration step, and (τ∗, t∗) be the dual-toll policy determined by RTP(v∗) and HTP(x∗).

Equipped with the above definitions, to compare the dual-tolled network with its no-toll

counterpart, we compute the % change in risk, regular travel delay and hazmat travel delay using

the following metrics:

% Change of Risk =
z(v∗, x∗)− z(vno-toll, xno-toll)

z(vno-toll, xno-toll)
× 100

% Change of Delay (Regular) =
DR(v∗)−DR(vno-toll)

DR(vno-toll)
× 100

% Change of Delay (Hazmat) =
DH(v∗, x∗)−DH(vno-toll, xno-toll)

DH(vno-toll, xno-toll)
× 100

For the dual-tolled problem, we also report the average amount of tolls collected from an individual,

namely,
∑

(i,j)∈A τ
∗
ijv
∗
ij∑

w∈W dw and
∑

s∈S
∑

(i,j)∈A n
st∗ijx

s
ij
∗∑

s∈S n
s for regular drivers and hazmat carriers, respectively.
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Table 4: Dual-toll performance when compared with no-toll case under different numbers of regular
and hazmat OD pair with first-stage problem as (MR)

No. of OD pairs % Change % Change of Delay Avg. Tolls per Individual

Case Regular Hazmat of Risk Regular Hazmat Regular Hazmat

1 10 2 −25.35 304.43 16.63 0+ 0
2 10 5 −15.07 84.33 10.81 0.96 0
3 10 10 −12.65 214.77 11.97 1.43 0
4 20 10 −12.64 170.32 11.96 0.36 0
5 20 15 −8.43 116.91 8.55 1.57 0
6 20 20 −6.23 94.04 11.35 1.95 0.12
7 50 20 −6.68 65.84 10.68 0.53 0.12
8 100 20 −7.27 207.81 8.28 4.50 0.12
9 200 20 −12.55 1679.94 2.61 174547.38 0.09

10 400 20 −41.60 31709.63 -33.20 29383941.26 0.11
11 552 10 −63.36 18471.56 -60.30 15526713.71 0

The results of our numerical experiments under different numbers of regular and hazmat OD

pairs are reported in Table 4. From Table 4, it is evident that the exposure to hazmat transportation

can be significantly reduced under the dual-toll policy. However, this requires the regular vehicles to

incur an increase in their travel time comparing to the no-toll scenario. Although one may predict a

similar behavior for hazmat carriers’ travel delay, from case 11 we notice that when all regular OD

pairs are considered, i.e., the congested network case, a higher decrease in the risk can be achieved

at the expense of substantial increase in regular travel delay, whereas the hazmat travel delay is

reduced to less than the half of its value in the no-toll case.

It is important to note that the change of delay for hazmat carriers is affected by the network

congestion. In particular, for the cases with lower congestion, we observed that the dual-toll

policy detours the hazmat carriers into longer routes which are not being used by regular vehicles.

Therefore, it leads to an increase in the carriers travel delay since the congestion induced by regular

vehicles in the no-toll case is negligible. Cases with positive % change of delay for hazmat carriers

refer to such situation. On the other hand, when the network is highly congested, the dual-toll

deviates hazmat carriers into less congested routes to mitigate the risk exposure, and consequently

results in a decrease in their travel delay.

One can also see from Table 4 that the reduction of risk is often achieved by collecting tolls from

the regular vehicles. Nevertheless, when the number of hazmat OD pairs is large enough (above

15 for the network considered), owing to the similar reasoning described in Appendix B for the

illustrative example, such reduction is obtained by collecting tolls from both types of traffic.

So far, our results indicate that the dual-toll policy, motivating the regular and hazmat traffic

to use divergent routes, is an effective tool for risk-mitigation which produces attractive solutions

for the regulator. However, since the regulator does not directly incorporate the users’ viewpoint in

its decision-making process, some users may have to incur unbearable time and financial burdens
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Table 5: Dual-toll performance when compared with no-toll case under different numbers of regular
and hazmat OD pair, with first-stage problem as equation (30) and the weight parameters as
ω1 = 0.5, ω2 = 0.5, and ω3 = 0

No. of OD pairs % Change % Change of Delay Avg. Tolls per Individual

Case Regular Hazmat of Risk Regular Hazmat Regular Hazmat

1 10 2 −25.12 0 17.02 0 0
2 10 5 −14.95 0 10.99 0 0
3 10 10 −12.57 0 12.09 0 0
4 20 10 −12.53 0 12.14 0 0
5 20 15 −8.35 0 8.65 0 0
6 20 20 −6.17 0 11.44 0 0.12
7 50 20 −6.51 −0.50 10.89 0.02 0.12
8 100 20 −6.62 −0.69 10.88 0.18 0.11
9 200 20 −10.61 −1.05 6.56 0.45 0.09

10 400 20 −27.10 0.03 −19.11 1.20 0
11 552 10 −24.39 −0.01 −5.55 1.32 0

under the dual-tolled network. Note the substantially increased travel delay as well as the average

tolls paid by an individual regular vehicle in Table 4. Clearly, such policies would not be feasible to

the users and the regulator has to ensure their satisfaction in the implementation phase. Hence, to

obtain solutions that can be more acceptable to the network users, we suggest replacing equation

(17) with a new administrator’s problem of the following form:

min
v∈V,x∈X

J(v, x) = ω1

∑
s∈S

∑
(i,j)∈A

nscij(vij)ρijx
s
ij + ω2

∑
(i,j)∈A

cij(vij)vij + ω3

∑
s∈S

∑
(i,j)∈A

nscij(vij)x
s
ij (30)

with problems (R) and (H) being the same as in Section 3.1 in the second-stage, and ω1, ω2, ω3 ∈ [0, 1],∑
i ωi = 1, the weight parameters, addressing the relative significance of each term.

As one can note, other than the risk exposure term, in equation (30), we incorporate the

regular total travel delay, network congestion, and the hazmat total travel delay, hoping to obtain

implementable solutions wherein the administrator compromises its risk mitigation targets for the

sake of the users’ travel time.

To evaluate the efficiency of the provided dual-toll under the new administrator’s problem, we

repeated all the experiments of Table 4, with equation (17) being replaced with (30) in the two-stage

process of Figure 2. Note that due to having similar structural properties as (MR), an approximate

solution to equation (30) can still be found by the Modified Frank-Wolfe algorithm. Table 5 presents

the results of our computational tests based on the aforementioned metrics.

An interesting observation, when comparing each problem instance of Table 5 with its counterpart

in Table 4, is that a slightly less reduction of risk is achieved with no increase in regular travel delay

and slightly higher increase in hazmat travel delay. In fact, with a few number of regular OD pairs

considered, the congestion is very low leading to no change in the UE flow pattern and no tolls
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being collected from regular vehicles. However, now hazmat carriers have to incur higher travel

times to avoid risky arcs. For cases with higher congestion, i.e., starting from case 7, the dual-toll

policy has the advantage of directing the regular vehicles to the less risky arcs while reducing their

travel delay at the expense of viable tolls paid by the drivers. Similar argument to low congestion

cases applies for hazmat carriers travel delay. Nonetheless, when the network is highly congested,

i.e., cases 10 and 11, hazmat travel delay also decreases since hazmat carriers are directed into less

congested areas compared with the no-toll case.

It is important to notice that for all problem instances of Table 5 we consider ω3 = 0 due to the

assumption that congestion induced by hazmat carriers is negligible. Consequently, the dual-tolled

transportation network is in favor of regular vehicles. In a real application, being aware of the

potential risk imposed by hazmat trucks to the network, it might be acceptable to the corresponding

transportation companies to use more expensive routes. However, more attractive solutions for

hazmat carriers can be obtained by considering a nonzero ω3 ∈ (0, 1], at the cost of deteriorating

risk mitigation targets and regular vehicles’ viewpoint.

In summary, our numerical experiments have shown that with the inclusion of the network users’

travel delay within the first-stage problem, i.e., equation (30), other than congestion minimization,

the risk is significantly reduced and is only slightly higher than that obtained under equation (17).

Therefore, the two-stage process with the new administrator’s problem becomes more interesting

for implementation because it produces far less expensive solutions for the network users (regular

vehicles in our case) which are yet attractive to the regulator.

We also experiment the case where tolls are only charged to hazmat carriers, i.e., single-toll case,

to further evaluate the impact of the dual-toll policy with respect to the single-toll policy. Table 6

presents our results under two different scenarios of the leader’s objective for cases 9, 10 and 11

of Tables 4 and 5. We utilize a two-stage procedure analogous to the one introduced by Marcotte

et al. (2009) to solve the single-toll problem, and compute the percentage changes in population

exposure (risk), hazmat total travel delay, and the average toll collected from each hazmat carrier

from single-toll to dual-toll case. Note that for regular vehicles the percentage change of the total

travel delay and the average tolls collected are identical to the ones illustrated in Tables 4 and 5,

thereby such results are not reported again.

As one can predict the single-toll policy can reduce the hazmat transport risk at the cost of tolls

paid by the carriers. Whereas the regular vehicles follow the UE flow pattern without paying tolls.

From Table 6, it is evident that, when the regulator’s objective is solely to minimize the population

exposure, the dual-toll policy can achieve significantly higher reductions in the associated transport

risk, hazmat travel delay as well as the tolls paid by the carriers comparing to the single-toll policy.

The regular vehicles, however, experience unbearable increases in their travel time and the paid

tolls. When the administrator incorporates the regular travel delay in its decision making process,

the dual-toll still produces more attractive solutions than the single-toll policy in terms of risk,

travel delay and the paid tolls incurred by hazmat carriers. Furthermore, this involves no increase

in regular travel delay at the expense of feasible tolls paid by the drivers.
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Table 6: Dual-toll performance with respect to the single-toll policy under two considerations of the
first-stage problem and different numbers of regular and hazmat OD pair

First-Stage No. of OD pairs % Change % Change of Delay % Change in Avg. Tolls

Problem Regular Hazmat of Risk for Hazmat Collected from Hazmat

Eq. (17)a
200 20 −5.80 −7.09 −1.35
400 20 −33.21 −39.98 −32.29
552 10 −57.75 −63.55 0

Eq. (30)b
200 20 −3.70 −3.51 0.78
400 20 −16.62 −27.32 −100
552 10 12.80 −13.26 0

aRefers to the case where the administrator’s only concern is the risk exposure, i.e., problem (MR)
bRefers to the case where the administrator’s concern is not only the risk exposure but also the regular total travel

delay and the hazmat total travel delay. The weight parameters are set to ω1 = 0.5, ω2 = 0.5, and ω3 = 0.

Table 7: Performance of the dual-toll policy provided by the 2-step EDO algorithm versus the
no-toll case

Change Change of Delay Change of Delay Avg. Tolls per Individual

of Risk (%) (Regular)(%) (Hazmat)(%) Regular Hazmat

−20.79 23.57 −14.33 0.19 0

6.2 The 2-Step EDO

We solve problem (GTS) using the 2-Step EDO heuristic depicted in Figure 3 as a true bilevel model.

For our testing, all 552 OD pairs as displayed in Suwansirikul et al. (1987, Table XI) were considered

for the regular vehicles, whereas 10 hazmat trips including origin, destination and demand were

generated randomly. Also, we assumed that 18 arcs are subject to charge by separate tolls for

regular and hazmat users with 20 and 30 being the upper bounds on regular and hazmat tolls,

respectively. Tollable link numbers in Figure 4 are: 7, 10, 13, 16, 19, 23, 27, 31, 32, 35, 41, 44, 62,

64, 65, 69, 70, and 72. Also, we let σR = 0.05, σH = 0.04 as in the previous section, and ϕ = 0.1.

With these assumptions, the 2-Step EDO heuristic was employed to obtain a dual-toll policy. The

results are presented in Table 7 according to the similar metrics defined in Section 6.1.

It is important to note that due to the inclusion of a fraction of the carriers’ cost within the

leader’s objective of problem (GTS), the reduction in risk is not as high as the one produced by

problem (TS). Note the difference between the results of Table 7 and the ones in case 11 of Table 4.

Further, when some road segments are free of toll charges, i.e., second-best pricing, the optimal

value of the risk objective function is likely to deteriorate. Nonetheless, it is evident from Table

7 that the exposure to hazmat transportation can be still substantially reduced by the dual-toll

policy obtained from problem (GTS). Also, for such reduction, the regular vehicles incur far less

increase in their travel delay and paid tolls. Hazmat carriers, on the other hand, are directed into

less congested routes and thus experience shorter travel times without paying tolls.
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For our test problem, we also obtained the single-toll policy by solving the single-level MIP

reformulation. We observed that although the dual-toll policy involves similar impacts on the regular

travel delay and the paid tolls as in Table 7, the reductions in the risk and the hazmat travel time

under such policy are respectively 16% and 19% higher than those obtained from single-toll policy.

In summary, the dual-toll obtained from the 2-Step EDO heuristic, can effectively encourage

regular vehicles and hazmat carriers to use dissimilar routes, and thus can achieve considerable

reductions in the associated transport risk and the travel delay experienced by hazmat carriers while

collecting much less tolls from the users. The results imply that, by combining the risk and the paid

tolls, problem (GTS) can yield attractive solutions for the regulator which are also economically

feasible to the users. Although, it might be perceived as less fair from regular users in terms of the

travel delay, when the leader’s objective of problem (GTS) also allows for minimizing the congestion

induced by regular vehicles, the 2-Step EDO heuristic can produce more acceptable solutions to the

regular vehicles at the cost of compromising the risk and the paid tolls.

7 Conclusion and Future Research

This paper has considered dual-toll setting, with a nonlinear BPR travel delay function, as an

efficient policy for mitigating the population exposure to dangerous goods transportation. We

demonstrated that the bilevel problem (TS), first-best pricing, is equivalent to a two-stage problem

with (MR) being in the first-stage and regular/hazmat inverse optimizations in the second-stage.

It is important to stress that, under the nonlinear BPR function, a numerical solution to problem

(MR) may be sub-optimal; thus the existence of a nonnegative valid toll vector pair may not be

guaranteed. Based upon analytical properties, this paper has proposed a post-iteration to the

numerical solution to (MR) which always ensures obtaining a nonnegative dual-toll policy inducing

the minimum hazmat risk. We suggested using the Modified Frank-Wolfe heuristic to determine an

approximate solution to problem (MR). Further, to study the quality of this solution, we transformed

the nonlinear problem (MR) to two MILPs that assure global optimality and serve to justify the

approximate solution obtained by the heuristic. Numerical results show that the heuristic algorithm

converges to the optimal solution of the administrator’s problem (MR) with reduced computational

effort.

We also studied a general dual-toll setting problem, namely (GTS), where the regulator wishes

to minimize a combination of hazmat transport risk and paid tolls in a framework that permits

constraints on toll charges, second-best pricing. A 2-Step EDO heuristic is proposed to solve (GTS),

by decomposing it into interacting univariate subproblems for each arc and applying simultaneous

line searches. The (GTS) problem was also solved using LINGO as an exact method to verify

heuristic results. Our experiments revealed that the 2-Step EDO is computationally more efficient

than LINGO and converges to the local optimal solution of (GTS).

To illustrate the effectiveness of the dual-toll policies provided by problems (TS) and (GTS),

we carried out experiments with the Sioux Falls problem. We observed that, under the dual-toll
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obtained from (TS), the exposure to hazmat transportation can be significantly reduced, yielding

attractive scenarios for the regulator. Nevertheless, our numerical tests showed that such scenarios

are substantially expensive from the users’ perspective in terms of both the travel delay and the paid

tolls; thus they would likely not be acceptable by users in the implementation phase. To overcome

this, we suggest incorporation of a fraction of the users’ travel delay within the administrator’s

objective function. We demonstrated that the new (TS), while compromising risk-mitigation targets

to minimize the travel delay, is still able to achieve significant reductions in risk, and can produce

win-win scenarios for both the regulator and the network users. Another observation relates to

problem (GTS). Although combining the risk and the paid tolls most likely deteriorates the risk

reduction when compared with (TS), we show that the solutions obtained under such dual-toll are

not only likely to be attractive for the regulator but also likely to be financially acceptable to users.

One limitation of our work is the impossibility of including the regular traffic flow rate in the

number of people exposed to a hazmat accident due to incompatible units. Although our experiments

showed that, with the current risk measurement, hazmat carriers are implicitly avoiding highly

congested areas due to incorporation of the travel delay function, a valid future extension would be

to also account for the regular vehicles exposure in the risk assessment model.

A challenging problem in hazmat transportation is equity in distributing the risk among the

different population centers. Hence, a suggested future refinement of our model is to obtain a

dual-toll setting policy which also includes equity concerns of the public. Another important issue

pertinent to network regulation is the inevitable increase in the users’ travel cost. Although the

dual-toll setting model, by incorporating the network users’ cost concerns, can substantially reduce

the overall travel cost imposed to the users, such benefit is not equitably distributed. In fact, a

detailed analysis of the solution shows that, while being more fair to some users, some individuals

have to sacrifice for the sake of total system satisfaction. Therefore, another fruitful direction is to

integrate cost equity among the network users in the decision-making process.
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