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Abstract

In this paper we take the point of view that there is a formalism for modeling a within-day dynamic user equi-
librium (DUE) that is an extension of traditional differential game theory to accomodate the natural formulation
of DUE as an infinite dimensional differential variational inequality (DVI) involving explicit state-dependent time
shifts, explicit control variables and explicit equations of state. We also show how a second time scale (day-to-
day) may be included to model the learning process behind the formation of demand. An example based on
both time scales is included.
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1 Introduction
In this paper we take the point of view that there is a formalism for modeling dynamic user equilibrium (DUE)
that is not widely understood or applied. That formalism is the extension of traditional differential game theory
to accomodate the natural formulation of DUE as an infinite dimensional variational inequality involving explicit
state-dependent time shifts, explicit control variables and explicit equations of state. We call this the differential
variational inequality (DVI) formalism (Friesz and Mookherjee (2006)). We begin with some foundation material
from the theory of deterministic optimal control, and mathematical programming in function spaces. From there
we show how time shifts may be considerd by appeal to the notion of G-differentiability. Next we show how dy-
namic Cournot-Nash-Bertrand games may be formulated as differential variational inequalities, leading to necessary
conditions for such dynamic games that are static variational inequalities. We then discuss how functional fixed
point algorithms whose subproblems are tractable optimal control problems – without time shifts even when the
original dynamic game has time shifts – may be constructed and implemented.
We then show how a well-known DUE model, proposed by Friesz, Bernstein, Smith, Tobin and Wie (1993),

may be treated using the apparatus of differential variational inequalities (DVIs). In particular, the DVI formalism
is shown to accomodate both path-based and arc-based formulations of DUE, as well as alternative models of
delay and explicit queue spill-back constraints. We observe that the DVI formalism allows a direct and quite
simple treatment of the first-in-first-out queue discipline. We also observe that the formalism may be extended to
account for stochastic phenomena, including both imperfect and incomplete information. We conclude this paper
by applying the formalism to create two entirely new formulations of dynamic user equilibrium when: (1) there are
dual time scales (day-to-day and within-day); and (2) demand information is uncertain.

2 Differential Variational Inequality with State Dependent Time Shifts
Dynamic systems comprised of game-theoretic agents having control of their own (but not necessarily anyone else’s)
strategic variables are self-organizing if observable, persistent behavioral patterns and hierarchies emerge with the
passage of time. Moreover, time-shifted variational inequalities with explicit state dynamics and explicit controls are
∗This paper supplies the mathematical background and a more rigorous theoretical development missing from Friesz and Mookherjee

(2006), which is mainly concerned with computation and is largely based on intuitive arguments. The present paper purposely subsumes
the previous Friesz and Mookherjee (2006) paper to provide a self-contained reference.
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known to arise in the modeling of such systems if the game-theoretic agents have a forward-looking or anticipatory
perspective and the emergent behavior is some variety of Cournot-Nash-Bertrand equilibrium, be it static or moving
in nature.
Here we take the point of view that infinite dimensional variational inequalities with state dynamics among their

constraints and having explicit control variables are direct generalizations of optimal control problems. Because such
problems contain ordinary differential equations of state among their constraints, they are one variety of differential
variational inequality (DVI) that we refer to as a differential variational inequality with controls (DVIC). It stands
to reason that the study of DVICs should involve the derivation of a generalized version of the Pontryagin maximum
principal as well as other necessary conditions similar to those encountered in optimal control theory — as we do in
Section 2.2. We know of no other manuscripts that use the optimal control perspective taken herein for the study
of time-shifted infinite dimensional (dynamic) variational inequalities with state dynamics and explicit controls.
In particular, we will consider the notion of a variational inequality in Hilbert space that includes state dynamics

as constraints in the form of a two-point boundary value problem depending parametrically on control variables.
Both the principal operator of the variational inequality and the dynamics themselves will involve time shifts that
are state-dependent. In fact we consider the following operator

x (u, uD, t) = arg

½
dx

dt
= f (x, u, uD, t) , x (t0) = x0,Γ [x (tf ) , tf ] = 0

¾
∈
¡
H1 [t0, tf ]

¢n
(1)

where t0 and tf are given and
[t0, tf ] ⊆ <1+

Furthermore uD (t) is a shorthand for the shifted control vector

uD (t) =

⎛⎜⎝ u1 (t+D1 (x1))
...

um (t+Dm (xm))

⎞⎟⎠
where Di :

¡
H1 [t0, tf ]

¢n −→ H1 [t0, tf ] for each i ∈ [1,m]. The other relevant mappings are

f :
¡
H1 [t0, tf ]

¢n × ¡L2 [t0, τ ]¢m × ¡L2 [t0, tf ]¢m ×<1+ −→ ¡
L2 [t0, tf ]

¢n
Γ :

¡
H1 [t0, tf ]

¢n ×<1+ −→ ¡
H1 [t0, tf ]

¢r
u ∈ U ⊆

¡
L2 [t0, tf ]

¢m
; uD :

¡
H1 [t0, tf ]

¢n ×<1+ −→ ¡
L2 [t0, t1]

¢m
where

t1 = tf +max {Di [x (tf )] : i ∈ [1,m]} (2)

In the above
¡
L2 [t0, tf ]

¢m
is the m-fold product of the space of square-integrable functions L2 [t0, tf ], while¡

H1 [t0, tf ]
¢n
is the n-fold product of the Sobolev space H1 [t0, tf ].

Additionally we invoke the following regularity condition for the two-point boundary value problem (1):

Definition 1 Regular Dynamics. We shall say the state dynamics operator x (u, uD, t) given by (1) is
¡
x0, U,Γ

¢
-

regular if the terminal state constraint Γ [x (tf ) , tf ] = 0 is reachable from the given initial state x0 for all u ∈ U .

The notation x (u, uD, t) is a direct generalization of that used by Minoux (1986) to describe how the Pontryagin
minimum principle of optimal control theory may be derived using notions from infinite dimensional mathematical
programming; it denotes an operator which determines the state vector for any pair of shifted and un-shifted control
vectors. In order to use the operator notation x (u, uD, t), we will invoke

¡
x0, U,Γ

¢
-regularity to ensure that the

parametric boundary value problem (1) is well posed. Such a regularity condition should not be interpreted as an
a priori stipulation that the variational inequality to be introduced below has a solution; rather it is a stipulation
that the constrained dynamics of (1) have a solution for all controls that are considered pertinent to the problem
of interest.
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2.1 A Related Optimal Control Problem

Before studying differential variational inequalities with state-dependent time shifts, we need to derive necessary
conditions for a related optimal control problem. That derivation relies on the notion of a so-called G-derivative:

Definition 2 (G-differentiable, Minoux (1986)) Let V be a normed vector space and J be a functional on V . If
for all ϕ ∈ V the limit δJ (v, ϕ) defined by

δJ (v, ϕ) ≡ lim
θ→0

J (v + θϕ)− J (v)

θ

exists, then J is said to be differentiable in the sense of Gateaux (G-differentiable) at v ∈ V.

With the preceding background, we consider the following optimal control problem:

minΓ [x (tf ) , tf ] +

Z tf

t0

G(x, u, uD, t)dt (3)

subject to

dx

dt
= f (x, u, uD, t) ; x (t0) = x0 (4)

u ∈ U (5)

This is a non-standard optimal control problem, and we will need its necessary conditions. In fact we will state and
prove the following result:

Theorem 3 (Necessary Conditions for Optimal Control with State-Dependent Time Shifts) If (i) u ∈ U ⊆
¡
L2 [t0, τ ]

¢m
;

(ii) uD ∈
¡
L2 [t0, tf ]

¢m
; (iii) the operator x (u, uD, t) :

¡
L2 [t0, tf ]

¢m×¡L2 [t0, τ ]¢m −→ ¡
H∞1 [t0, tf ]

¢n
is
¡
x0, U,Γ

¢
-

regular, continuous and G-differentiable with respect to u and uD; (iv) Di (xi) :
¡
H1 [t0, tf ]

¢n −→ H1 [t0, tf ] is
continuously differentiable with respect to xi for each i ∈ [1,m]; (v) Γ [x, t] :

¡
H1 [t0, tf ]

¢n × <1+ −→ H1 [t0, tf ] is
continuously differentiable with respect to x; (vi) G(x, u, uD, t) :

¡
H1 [t0, tf ]

¢n×¡L2 [t0, τ ]¢m×¡L2 [t0, τ ]¢m×<1+ −→
L2 [t0, tf ] is continuously differentiable with respect to x, u and uD; (vii) f (x, u, uD, t) :

¡
H1 [t0, tf ]

¢n×¡L2 [t0, τ ]¢m×¡
L2 [t0, τ ]

¢m×<1+ −→ ¡
L2 [t0, tf ]

¢n
is continuously differentiable with respect to x, u and uD; (viii) U ⊆

¡
L2 [t0, τ ]

¢m
is convex and compact; and (ix) x0 ∈ <n

then any solution u∗ ∈ U of the optimal control problem (3) through (5) obeys the following necessary conditions:
1. the finite dimensional variational inequality principle:

mX
i=1

∂H∗1
∂ui

(ui − u∗i ) ≥ 0 ∀t ∈ [t0, Di (x (t0))] , u ∈ U

mX
i=1

⎧⎪⎨⎪⎩∂H∗1
∂ui

+

⎡⎣ ∂H∗1
∂ (uD)i

1

1 +
Pm

j=1
∂Di(x∗)
∂xj

dx∗j
dt

⎤⎦
si(t)

⎫⎪⎬⎪⎭ (ui − u∗i ) ≥ 0 ∀t ∈ [Di (x
∗ (t0)) , tf +Di (x

∗ (tf ))] , u ∈ U

where si (t) = arg [s = t−Di (x (s))] ∀t ∈ [Di (x
∗ (t0)) , tf +Di (x

∗ (tf ))] , i ∈ [1,m] and
H∗1 = H1 (x

∗, u∗, u∗D, λ
∗, t) = G(x∗, u∗, u∗D, t) + (λ

∗)
T
f (x∗, u∗, u∗D, t) ∀t ∈ [t0, tf ];

2. the state dynamics
dx∗

dt
= f (x∗, u∗, u∗D, t) ; x

∗ (t0) = x0; and

3. the adjoint dynamics

(−1) dλ
∗

dt
= ∇x (λ

∗)
T
f (x∗, u∗, u∗D, t) ; λ

∗ (tf ) =
∂Γ [x∗ (tf ) , tf ]

∂x
.
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Proof. The below proof extends the fixed time shift analysis of ? to state-dependent time shifts. Note that

x (u, uD, t) = x (t0) +

Z t

t0

f [x (u, uD, t) , u, uD, t] dt

It is immediate that

x (u+ θρ, uD + θρD) = x (t0) +

Z t

t0

f [x (u+ θρ, uD + θρD) , u+ θρ, uD + θρD, t] dt

Consequently,

δx (u, ρ;uD, ρD) =

Z t

t0

½
∂f [x (u, uD, t) , u, uD, t]

∂x
δx (u, ρ;uD, ρD) +

∂f [x (u) , u, uD, t]

∂u
δu (ρ)

+
∂f [x (u) , u, uD, t]

∂uD
δuD (ρD)

¾
dt

where the G-derivatives of u and uD obey

δu (ρ) = lim
θ−→0

(u+ θρ)− u

θ
= ρ; δuD (ρD) = lim

θ−→0

(uD + θρD)− uD
θ

= ρD

Employing the shorthand y = δx (u, ρ;uD, ρD), we have the integral equation

y =

Z t

t0

∙
∂f

∂x
y +

∂f

∂u
ρ+

∂f

∂uD
ρD

¸
dt (6)

It is of course immediate from this integral equation that y obeys

dy

dt
=

∂f

∂x
y +

∂f

∂u
ρ+

∂f

∂uD
ρD; y (t0) = 0 (7)

which is recognized as an initial value problem, verifying that the G-derivative of x is well defined. The G-derivative
of J obeys

δJ (u, ρ;uD, ρD) =

∙
∂Γ [x (t) , t]

∂x
δx (u, ρ;uD, ρD)

¸tf
t0

+

Z tf

t0

∙
∂G

∂x
δx (u, ρ;uD, ρD) +

∂G

∂u
δu (ρ) +

∂G

∂uD
δu (ρD)

¸
=

∂Γ [x (tf ) , tf ]

∂x
y (tf ) +

Z tf

t0

∙
∂G

∂x
y +

∂G

∂u
ρ+

∂G

∂uD
ρD

¸
dt

We introduce adjoint variables λ defined by the final value problem

−dλ
dt
=

µ
∂f

∂x

¶T
λ+

µ
∂G

∂x

¶T
; λ (tf ) =

∂Γ [x (tf ) , tf ]

∂x
(8)

so that

δJ (u, ρ;uD, ρD) =

Z tf

t0

"
−
µ
dλ

dt

¶T
y − λT

∂f

∂x
y +

∂G

∂u
ρ+

∂G

∂uD
ρD

#
dt (9)

Note that h
λT y

itf
t0

= [λ (tf )]
T y (tf )− [λ (t0)]T y (t0)

=
∂Γ [x (tf ) , tf ]

∂x
y (tf )
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due to (8) and the fact that y (t0) = 0, so an integration by parts yieldsZ tf

t0

−
µ
dλ

dt

¶T
ydt =

Z tf

t0

λT
dy

dt
dt−

h
λT y

itf
t0

=

Z tf

t0

λT
dy

dt
dt− ∂Γ [x (tf ) , tf ]

∂x
y (tf )

=

Z tf

t0

λT
∙
∂f

∂x
· y + ∂f

∂u
· ρ+ ∂f

∂uD
ρD

¸
dt− ∂Γ [x (tf ) , tf ]

∂x
y (tf ) (10)

It follows that

δJ (u, ρ;uD, ρD) =
∂Γ [x (tf ) , tf ]

∂x
y (tf ) +

Z tf

t0

½
λT
∙
∂f

∂x
· y + ∂f

∂u
· ρ+ ∂f

∂uD
ρD

¸
−λT ∂f

∂x
y +

∂G

∂u
ρ+

∂G

∂uD
ρD

¾
dt− ∂Γ [x (tf ) , tf ]

∂x
y (tf )

=

Z tf

t0

∙
λT

∂f

∂u
+

∂G

∂u

¸
ρdt+

Z tf

t0

∙
λT

∂f

∂uD
+

∂G

∂uD

¸
ρDdt

Defining H1 (x, u, uD, λ, t) = G (x, u, uD, t) + λT f (x, u, uD, t), we have

δJ (u, ρ;uD, ρD) =

Z tf

t0

∙
∂H1

∂u
ρ+

∂H1

∂uD
ρD

¸
dt (11)

as an expression for the G-derivative of the criterion with respect to both u and uD. Moreover, terms of the formZ tf

t0

∂H1

∂ (uD)i
(ρD)i dt =

Z tf

t0

∂H1

∂ (uD)i
δui (t+Di (xi)) dt

may be re-expressed by making the change of variables

∆i = t+Di (x (t))⇐⇒ t = ∆i −Di (x (t))

Because the Di (x) are differentiable with respect to xi, the implicit function theorem gives

dt

d∆i
= −∂ [t−∆i +Di (x)] /∂∆i

∂ [t−∆i +Di (x)] /∂t
=

1

1 +
Pm

j=1
∂Di(x)
∂xj

·
xj

or,

dt =
1

1 +
Pm

j=1
∂Di(x)
∂xj

·
xj

d∆i (12)

Note that
t = t0 =⇒ ∆i = t0 +Di (x (t0)) ; Putting t = tf =⇒ ∆i = tf +Di (x (tf ))

Furthermore, without loss of generality, we may take δ (uD)i = 0 for any time t < Di (x (t0)) and δ (u)i = 0 for any
time t > Di (x (t0)). A change of variables based on (12) leads toZ tf

t0

∂H1

∂ (uD)i
(ρD)i dt =

Z tf+Di(xi(tf ))

Di(xi(t0))

∂H1

∂ (uD)i
δ (uD)i dt

=

Z tf+Di(xi(tf ))

Di(xi(t0))

⎡⎣ ∂H1

∂ (uD)i

1

1 +
Pm

j=1
∂Di(x)
∂xj

·
xj

⎤⎦
si(t)

δ (u)i dt

=

Z tf+Di(xi(tf ))

Di(xi(t0))

⎡⎣ ∂H1

∂ (uD)i

1

1 +
Pm

j=1
∂Di(x)
∂xj

·
xj

⎤⎦
si(t)

ρidt (13)
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where si (t) obeys si (t) = arg [s = t−Di (x (s))] for any given instant of time t at which the term

∂H1

∂ (uD)i

1

1 +
Pm

j=1
∂Di(x)
∂xj

·
xj

must be evaluated. Note that the change of variables in (13) has re-expressed the G-derivative of uD as a derivative
of u. We next note that Z tf

t0

∂H1

∂ui
ρidt =

Z Di(xi(t0))

t0

∂H1

∂ui
ρidt+

Z tf+Di(xi(tf ))

Di(xi(t0))

∂H1

∂ui
ρidt (14)

This last result means that for the change of variables introduced above the G-derivative is expressible in terms of
ρ; that is

δJ (u, ρ;uD, ρD) = δJ (u, ρ;u, ρ) ≡ δJ (u, ρ)

Using (13) and (14) we obtain

[δJ (u, ρ)]i =

Z Di(x(t0))

t0

∂H1

∂ui
ρidt+

Z tf+Di(x(tf ))

Di(x(t0))

⎧⎨⎩∂H1

∂ui
+

⎡⎣ ∂H1

∂ (uD)i

1

1 +
Pm

j=1
∂Di(x)
∂xj

·
xj

⎤⎦
t=si

⎫⎬⎭ ρidt

Note that in the above each component of δJ (u, ρ) has a different upper limit of integration and thereby we cannot
give an inner product representation of the G-derivative in terms of a gradiemt and a direction vector. However,
without loss of generality we may define δ (u)i = 0 for any t > tf +Di (x (tf )). Since δ (u)i = ρi we may write

[δJ (u, ρ)]i =

Z Di(x(t0))

t0

∂H1

∂ui
ρidt+

Z t1

Di(x(t0))

⎧⎨⎩∂H1

∂ui
+

⎡⎣ ∂H1

∂ (uD)i

1

1 +
Pm

j=1
∂Di(x)
∂xj

·
xj

⎤⎦
t=si

⎫⎬⎭ ρidt

where t1 is defined by (2) and the same for all i ∈ [1,m], which has the effect of defining the G-derivative of the
criterion as

δJu, ρ) =

Z t1

t0

∙
∂H1

∂u
ρ

¸
dt

Optimality requires u∗ ∈ U to obey
δJ (u∗, ρ) ≥ 0 ∀ρ ≥ 0 (15)

which directly yields the desired necessary conditions when it is observed that each direction may be stated as
ρ = (u− u∗) for some u ∈ U .
The following result, stemming directly from the above proof, is also important:

Corollary 4 (Gradient of the Criterion in the Presence of Time Shifts) For regularity in the sense of Definition
5, the gradient of the criterion (3) is defined by

[∇J (u)]i =

⎧⎪⎨⎪⎩
∂H1

∂ui
if t ∈ [t0, Di (xi (t0))]

∂H1

∂ui
+

"
∂H1

∂(uD)i

1

1+ m
j=1

∂Di(x)

∂xj

·
xj

#
si(t)

if t ∈ [Di (x
∗ (t0)) , tf +Di (x

∗ (tf ))]

for i = [1,m].

Proof. By the Riesz representation theorem we know

δJ (u∗, ρ) = h∇J (u∗) , (u− u∗)i ∀u ∈ U (16)

The result is then immediate. ¥
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2.2 Statement of a DVI with State Dependent Time Shifts

With the above background we are now ready to study the following problem:

find u∗ ∈ U such that

hF (x (u∗, u∗D) , u∗, u∗D, t) , u− u∗i ≥ 0 for all u ∈ U (17)

where

x (u, uD, t) = arg

½
dx

dt
= f (x, u, uD, t) , x (t0) = x0, u ∈ U,Γ [x (tf ) , tf ] = 0

¾
∈
¡
H1 [t0, tf ]

¢n
(18)

We refer to (17) as a differential variational inequality with explicit controls and time shifts, abbreviatedDV IC(F, f,Γ, D, U, x0).

2.2.1 Necessary Conditions

To develop necessary conditions for solutions of (17) we will rely on the following notion of regularity:

Definition 5 [Regularity of DV IC(F, f,Γ, D, U, x0)] We call DV IC(F, f,Γ, D, U, x0) regular if: (i) u ∈ U ⊆¡
L2 [t0, τ ]

¢m
; (ii) uD ∈

³
t2f [t0, tf ]

´m
; (iii) the operator x (u, uD, t) :

¡
L2 [t0, tf ]

¢m×¡L2 [t0, τ ]¢m −→ ¡
H∞1 [t0, tf ]

¢n
is
¡
x0, U,Γ

¢
-regular, continuous and G-differentiable with respect to u and uD; (iv) Di (x) :

¡
H1 [t0, tf ]

¢n −→
H1 [t0, tf ] is continuously differentiable with respect to xi, for each i ∈ [1,m]; (v) Γ (x, t) :

¡
H1 [t0, tf ]

¢n × <1+ −→¡
H1 [t0, tf ]

¢r
is continuously differentiable with respect to x; (vi) F (x, u, uD, t) :

¡
H1 [t0, tf ]

¢n × ¡L2 [t0, τ ]¢m ×¡
L2 [t0, tf ]

¢m × <1+ −→ ¡
L2 [t0, tf ]

¢m
is continuous with respect to x and u; (vii) f (x, u, uD, t) :

¡
H1 [t0, tf ]

¢n ×¡
L2 [t0, τ ]

¢m× ¡L2 [t0, tf ]¢m×<1+ −→ ¡
L2 [t0, tf ]

¢n
is continuously differentiable with respect to x, u and uD; (viii)

U ⊆
¡
L2 [t0, τ ]

¢m
is convex and compact; and (ix) x0 ∈ <n.

We next note that (17) may be restated as the following optimal control problem

min γTΓ [x (tf ) , tf ] +

Z tf

t0

[F (x∗, u∗, u∗D, t)]
T udt (19)

subject to

dx

dt
= f (x, u, uD, t) ; x (t0) = x0 (20)

u ∈ U (21)

where x∗ = x (u∗, u∗D) is the optimal state vector and γ ∈ <r is the vector of dual variables for the terminal
constraints Γ [x (tf ) , tf ] = 0. We point out that this optimal control problem is a mathematical abstraction and of
no use for computation, since its criterion depends on knowledge of the variational inequality solution u∗. In what
follows we will need the Hamiltonian for (19) through (21), namely

H2 (x, u, uD, λ, t) = [F (x
∗, u∗, u∗D, t)]

T u+ λT f (x, u, uD, t) (22)

where λ (t) is the adjoint vector that solves the adjoint equations and transversality conditions for given state
variables and controls. It is now a relatively easy matter to derive the necessary conditions stated in the following
theorem:

Theorem 6 [Necessary Conditions for DV IC(F, f,Γ, D, U, x0)] When regularity in the sense of Definition 5 holds,
solutions u∗ ∈ U of DV IC(F, f,Γ,D,U, x0) must obey:
1. the finite dimensional variational inequality principle:

mX
i=1

⎡⎣Fi (x∗, u∗, u∗D, t) + mX
j=1

λj
∂fi (x

∗, u∗, u∗D, t)

∂ui

⎤⎦ (ui − u∗i ) ≥ 0 ∀t ∈ [t0,Di (x (t0))] , u ∈ U
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mX
i=1

⎧⎨⎩Fi (x
∗, u∗, u∗D, t) +

mX
j=1

λj
∂fj (x

∗, u∗, u∗D, t)

∂ui

+

⎡⎣λj ∂fj (x∗, u∗, u∗D, t)
∂ (uD)i

1

1 +
Pm

j=1
∂Di(x∗)
∂xj

fj (x∗, u∗, u∗D, t)

⎤⎦
si(t)

⎫⎪⎬⎪⎭ (ui − u∗i ) ≥ 0

∀t ∈ [Di (x
∗ (t0)) , tf +Di (x

∗ (tf ))] , u ∈ U

2. the state dynamics
dx∗

dt
= f (x∗, u∗, u∗D, t) ; x

∗ (t0) = x0; and

3. the adjoint dynamics

(−1) dλ
∗

dt
= ∇x (λ

∗)
T
f (x∗, u∗, u∗D, t) ; λ

∗ (tf ) = νT
∂Γ [x∗ (tf ) , tf ]

∂x

where ν ∈ <r is the vector of dual variables for the terminal constraints Γ [x (tf ) , tf ] = 0.

Proof. DV IC(F, f,Γ, D, U, x0) is equivalent to the optimal control problem

min νTΓ [x (tf ) , tf ] +

Z tf

t0

[F (x∗, u∗, u∗D, t)]
T
udt

subject to

dx

dt
= f (x, u, uD, t) ; x (t0) = x0

u ∈ U

with Hamiltonian H2 (x, u, uD, λ, t) = [F (x
∗, u∗, u∗D, t)]

T u+ λT f (x, u, uD, t) .By virtue of regularity we may apply
Theorem 3; the necessary conditions follow immediately.

2.3 Fixed Point Formulation and Algorithm

Furthermore, there is a fixed point form of DV IC(F, f,Γ, D, U, x0). In particular we state and prove the following
result:

Theorem 7 (fixed point formulation of DV IC(F, f,Γ, D, U, x0)) When regularity in the sense of Definition 5 holds
and f (x, u, uD, t) :

¡
H1 [t0, tf ]

¢n×¡L2 [t0, τ ]¢m×¡L2 [t0, tf ]¢m×<1+ −→ ¡
L2 [t0, tf ]

¢n
is convex, DV IC(F, f,Γ, D, U, x0)

is equivalent to the following fixed point problem:

u = PU [u− αF (x (u, uD, t) , u, uD, t)]

where PU [.] is the minimum norm projection onto U ⊆
¡
L2 [t0, τ ]

¢m
and α ∈ <1++.

Proof. The fixed point problem considered requires that

u = argmin
v

½
1

2
ku− αF (x (u, uD, t) , u, uD, t)− vk2 : v ∈ U

¾
(23)

where α ∈ <1++ is any strictly positive real number. That is, we seek the solution of the optimal control problem

min
v

γTΓ [x (tf ) , tf ] +

Z tf

t0

1

2
[u− αF (x, u, uD, t)− v]

2
dt
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subject to

dx

dt
= f (x, v, vD, t) ; x (t0) = x0

u ∈ U

where u and uD are treated as fixed vectors. Because of regularity and the assumed convexity of f (x, v, vD, t), a
necessary and sufficient condition for a solution v∗ ∈ U of this optimal control problem is

[∇vH3 (x
∗, v∗, v∗D, η

∗, t)]T (v − v∗) ≥ 0 ∀v ∈ U (24)

where H3 (x, v, vD, η, t) =
1
2 [u− αF (x, u, uD, t)− v]

2
+ ηT f (x, v, vD, t) and for given x and v

η = arg

½
(−1) dη

dt
= ∇xH3 (x, v, vD, η, t) , η (tf ) = γT

∂Γ [x (tf ) , tf ]

∂x (tf )

¾
Note that ∇vH3 (x, v, vD, η, t) = −u+αF (x, u, uD, t) + v+∇vη

T f (x, v, vD, t). Because u = v by virtue of (23) we
have

∇uH3 (x, v, vD, η, t) = αF (x, u, uD, t) +∇uη
T f (x, u, uD, t) (25)

Now if we set λ = η
α ; we haveh

F (x∗, u∗, u∗D, t) +∇u (λ
∗)
T
f (x∗, u∗, t)

iT
(u− u∗) ≥ 0 ∀v ∈ U

which is identical to the finite dimensional variational inequality principle of Theorem 6. The other optimality
conditions are also identical. This completes the proof.
Naturally there is an associated fixed point algorithm based on the iterative scheme

uk+1 = PU
£
uk − αF

¡
x
¡
uk, ukD

¢
, uk, ukD, t

¢¤
The detailed structure of the fixed point algorithm is:
Step 0. Initialization: identify an initial feasible solution u0 ∈ U and set k = 0.
Step 1. Solve optimal control problem: call the solution of the following optimal control problem uk+1.

min
v

Jk (v) = γTΓ [x (tf ) , tf ] +

Z tf

t0

1

2

£
uk − αF

¡
xk, uk, ukD, t

¢
− v

¤2
dt (26)

subject to
dx

dt
= f (x, v, vD, t) ; x (t0) = x0 (27)

v ∈ U (28)

Step 2. Stopping test: if
°°uk+1 − uk

°° ≤ ε where ε ∈ <1++ is a preset tolerance, stop and declare u∗ ≈ uk+1.
Otherwise set k = k + 1 and and go to Step 1.
The convergence of this algorithm is guaranteed by the following result:

Theorem 8 When DV IC(F, f,Γ, D, U, x0) is regular in the sense of Definition 5 and f (x, u, uD, t) :
¡
H1 [t0, tf ]

¢n×¡
L2 [t0, τ ]

¢m×¡L2 [t0, tf ]¢m×<1+ −→ ¡
L2 [t0, tf ]

¢n
is convex, while additionally F (x, u, uD, t) is strongly monotonic

for u ∈ U , the fixed point algorithm presented above converges.

Proof. Consider

uk+1 − u∗ = PU
£
uk − αF

¡
x
¡
uk, ukD

¢
, uk, ukD, t

¢¤
− PU [u

∗ − αF (x (u∗, u∗D) , u
∗, u∗D, t)]

and note that PU is a contraction; that is, the projection of a vector is never greater in length than the length of
the vector itself. Thus

kPU (v)k ≤ kvk
for any v ∈ U ⊆

¡
L2 [t0, τ ]

¢m
. Define

F k = F
¡
x
¡
uk, ukD

¢
, uk, ukD, t

¢
; F ∗ = F (x (u∗, u∗D) , u

∗, u∗D, t)
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Because F obeys a strong monotonicity condition, we have

hF k − F ∗, uk − u∗i ≥ ε
°°uk − u∗

°°
where ε ∈ <1++. We also know that both

°°F k − F ∗
°° and °°uk − u∗

°° are bounded, by virtue of the boundedness of
U and the continuity of F . Consequently, there must exist β ∈ <1++ such that°°F k − F ∗

°°2 ≤ β
°°uk − u∗

°°2 (29)

The contractive property of PU and the strong monotonicity of F together with property (29) mean°°uk+1 − u∗
°°2 ≤

°°¡uk − u∗
¢
− α

¡
F k − F ∗

¢°°2
=

°°uk − u∗
°°2 + α2

°°F k − F ∗
°°2 − 2αhF k − F ∗, uk − u∗i

≤ (1 + β − 2αε)
°°uk − u∗

°°2
Note that we may chose α > 0 such that 1 + β − 2αε < 1 which is equivalent to α > β

2ε a condition ensuring°°uk+1 − u∗
°°2 < °°uk − u∗

°°2
Consequently, the algorithm is a strict contraction mapping and convergence is assured.

2.4 Descent in Hilbert Space for the Projection Sub-Problems

It is important to realize that the fixed point algorithm of Section 2.3 can be carried out in continuous time
provided we employ a continuous time representation of the solution of each subproblem (26)-(28) from Step 1 of
the fixed point algorithm. This may be done using a continuous time gradient projection method. For our present
circumstances, that algorithm may be stated as

Descent Algorithm in Hilbert Space for the Projection Sub-Problems

Step 0. Initialization. Pick vk,0 (t) ∈ U and set j = 0.
Step 1. Finding state variables. Solve the state dynamics

dx

dt
= f

³
x, vk,j , vk,jD , t

´
(30)

x (t0) = x0 (31)

Call the solution xk,j (t) .In the event a discrete time method is used to solve the state dynamics (30) and (31),
curve fitting is used to obtain the continuous time state vector xk,j (t) .
Step 2. Finding adjoint variables. Solve the adjoint dynamics

(−1) dλ
dt
= ∇xH

k |x=xk,j ; λ (tf ) =
∂Γ
£
xk,j (tf ) , tf

¤
∂x (tf )

(32)

where
Hk =

1

2

£
uk − αF

¡
xk, uk, ukD, t

¢
− v

¤2
+ λT f

³
x, vk,j , vk,jD , t

´
Call the solution λk,j(t).In the event a discrete time method is used to solve the adjoint dynamics (??) and (32),
curve fitting is used to obtain the continuous time adjoint vector λk,j(t).
Step 3. Finding the gradient. Determine

∇vJ
k,j (t) = ∇vH

k

Step 4. Stopping test. For a fixed and suitably small fixed step size

θk ∈ <1++
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determine
vk,j+1 (t) = PU

£
vk,j (t)− θk∇vJ

k,j
¤

(33)

In the event a discrete time method is used to solve the above projection subproblem, curve fitting is used to obtain
the continuous time control vector (33).
Step 5. Stopping test. For ε2 ∈ <1++, a pre-set tolerance, stop if

°°vk,j+1 − vk,j
°° < ε1and declare vk∗ ≈ vk,j+1.

Otherwise set j = j + 1 and go to Step 1.
This gradient projection algorithm in Hilbert space has known convergence properties. In fact the following result
obtains:

Theorem 9 If DV IC(F, f,Γ, D, U, x0) is regular in the sense of Definition 5 while the conditions

hv − v0 + λT [∇vf (x, v, vD, t)−∇vf (x, v
0, v0D, t)] , v − v0i ≥ ξ kv − v0k (34)

and °°°v − v0 + λT [∇vf (x, v, vD, t)−∇vf (x, v
0, v0D, t)]

°°° ≤ δ kv − v0k (35)

are satisfied for some ξ, δ ∈ <1++ and all v, v0 ∈ U , then the gradient projection algorithm for the fixed point
sub-problem converges.

Proof. Note that
∇vJ

k (v) = v − uk + αF
¡
xk, uk, ukD, t

¢
+ λT∇vf (x, v, vD, t)

From (34) we have D
v − uk + αF

¡
xk, uk, ukD, t

¢
+ λT∇vf (x, v, vD, t)−h

v0 − uk + αF
¡
xk, uk, t

¢
+ λT∇vf (x, v

0, v0D, t)
i
, v − v0

E
≥ ξ kv − v0k

or
h∇vJ

k (v)−∇vJ
k (v0) , v − v0i ≥ ξ kv − v0k

which is recognized as a coerciveness condition. Also (35) can be similarly re-stated as°°∇vJ
k (v)−∇vJ

k (v0)
°° ≤ δ kv − v0k

which is recognized as a condition. Of course

vk,j+1 − vk∗ = PU
£
vk,j − θk∇vJ

k
¡
vk,j

¢¤
− PU

£
vk∗ − θk∇vJ

k
¡
vk∗
¢¤

Because of the contractive nature of the projection operator, we have immediately that°°vk,j+1 − vk∗
°°2 ≤

°°vk,j − vk∗ − θk
¡
∇vJ

k
¡
vk,j

¢
−∇vJ

k
¡
vk∗
¢¢°°2

=
°°vk,j − vk∗

°°2 + (θk)2 °°∇vJ
k
¡
vk,j

¢
−∇vJ

k
¡
vk∗
¢°°2

−2θkh∇vJ
k
¡
vk,j

¢
−∇vJ

k
¡
vk∗
¢
, vk,j − vk∗i

Because of coerciveness and the Lipschitz assumption, we have°°vk,j+1 − vk∗
°°2 ≤

°°vk,j − vk∗
°°2 + (θkδ)2 °°vk,j − vk∗

°°2 − 2θkξ °°vk,j − vk∗
°°2

=
h
1 + (θkδ)

2 − 2θkξ
i °°vk,j − vk∗

°°2
We may select θk such that 1+(θkδ)

2−2θkξ < 1 which is equivalent to a non-zero step obeying θk < 2ξ
δ2
,a condition

ensuring the algorithm is a strict contraction mapping.
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3 Brief Overview of Friesz, Bernstein, Suo and Tobin (2001) DUE
Model

Most of the dynamic network user equilibrium (DUE) models proposed to date are comprised of four essential
submodels:

1. a model of path delay;

2. flow dynamics;

3. flow propagation constraints; and

4. a route/departure-time choice model.

Peeta and Ziliaskopoulos (2001), in a comprehensive review of DTA and DUE research, note that there are several
published models comprised of the four submodels named above.

3.1 Choice of Formulation

Recently Friesz and Mookherjee (2006) have shown how the DUE formulations by Friesz et al. (1993) and Friesz
et al. (2001) may be numerically solved using infinite dimensional mathematical programming and a fixed point
algorithm in Hilbert space. The Friesz et al. (1993) and Friesz et al. (2001) formulations are more computationally
demanding than most if not all other DUE models because of the complicated path delay operators, equations of
motion and time lags they embody. As such the algorithmic results they report and which are reviewed in this
paper should work as well or better when adapted to other DUE models, including those for which path delay is
determined by a nonlinear response surface or by simulation for a so-called rolling horizon. In the balance of this
subsection, we closely follow Friesz et al. (2001) in presenting the DUE formulation emphasized in this paper.
The network of interest will form a directed graph G (N ,A), where N denotes the set of nodes and A denotes

the set of arcs; the respective cardianlities of these sets are |N | and |A|. An arbitrary path p ∈ P of the network is

p ≡
©
a1, a2, ..., ai, ..., am(p)

ª
where P is the set of all paths and m (p) is the number of arcs of p. We also let te denote the time at which flow
exists an arc, while td is the time of departure from the origin of the same flow. The exit time function τpai therefore
obeys

te = τpai (td)

The relevant arc dynamics are

dxpai (t)

dt
= gpai−1 (t)− gpai (t) ∀p ∈ P , i ∈ {1, 2, ...,m (p)}

xpai (t) = xpai,0 ∀p ∈ P, i ∈ {1, 2, ...,m (p)}

where xpai is the traffic volume of arc ai contributed by path p, gpai is flow exiting arc ai and gpai−1 is flow entering
arc ai of path p ∈ P. Also, gpa0 is the flow exiting the origin of path p; by convention we call this the flow of path p
and use the symbolic name

hp = gpa0

Furthermore

δaip =

½
1 if ai ∈ p
0 if ai /∈ p

so that
xa (t) =

X
p∈P

δapx
p
a (t) ∀a ∈ A

is the total arc volume.
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Arc unit delay is Da (xa) for each arc a ∈ A. That is, arc delay depends on the number of vehicles in front of
an auto as that auto enters an arc. Of course total path traversal time is

Dp (t) =

m(p)X
i=1

h
τpai (t)− τpai−1 (t)

i
= τpam(p)

(t)− t ∀p ∈ P

It is expedient to introduce the following recursive relationships that must hold in light of the above development:

τpa1(t) = t+Da1 [xa1(t)] ∀p ∈ P

τpai(t) = τpai−1(t) +Dai

h
xai(τ

p
ai−1(t))

i
∀p ∈ P, i ∈ {2, 3, ...,m (p)}

from which we have the nested path delay operators first proposed by Friesz et al. (1993):

Dp(t, x) ≡
m(p)X
i=1

δaipΦai(t, x) ∀p ∈ P ,

where
x = (xpai : p ∈ P, i ∈ {1, 2, ...,m (p)}

and

Φa1(t, x) = Da1(xa1(t))

Φa2(t, x) = Da2(xa2(t+ Φa1))

Φa3(t, x) = Da3(xa3(t+ Φa1 + Φa2))

...

Φai(t, x) = Dai(xai(t+ Φa1 + · · ·+ Φai−1))

= Dai(xai(t+
i−1X
j=1

Φaj )).

To ensure realistic behavior, we employ asymmetric early/late arrival penalties

F [t+Dp (t, x)− tA]

where tA is the desired arrival time and

t+Dp(t, x) > tA =⇒ F (t+Dp(t, x)− tA) = χL(x, t) > 0
t+Dp(t, x) < tA =⇒ F (t+Dp(t, x)− tA) = χE(x, t) > 0
t+Dp(t, x) = tA =⇒ F (t+Dp(t, x)− tA) = 0

χL(t, x) > χE(t, x)

We now combine the actual path delays and arrival penalties to obtain the effective delay operators

Ψp(t, x) = Dp(t, x) + F {t+Dp(x, t)− TA} ∀p ∈ P (36)

Since the volume which enters and exits an arc should satisfy the conservation law, we must haveZ t

0

gpai−1 (t) dt =

Z t+Dai
(xai (t))

Dai
(xai (0))

gpai (t) dt ∀p ∈ P, i ∈ [1,m(p)] (37)

where gpa0(t) = hp(t). Differentiating the both sides of (37) with respect to time t and using the chain rule, we have

hp (t) = gpa1(t+Da1(xa1(t)))(1 +D0
a1(xa1(t))ẋa1) ∀p ∈ P

gpai−1 (t) = gpai(t+Dai(xai(t)))(1 +D0
ai(xai(t))ẋai) ∀p ∈ P , i ∈ [2,m(p)]

These are proper flow progression constraints derived in a fashion that make them completely consistent with
the chosen dynamics and point queue model of arc delay. These constraints involve a state dependent time lag
Dai(xai(t)) but make no explicit reference to the exit time functions. These flow propagation constraints describe
the expansion and contraction of vehicle platoons; they were first presented by Friesz, Tobin, Bernstein and Suo
(1995), Astarita (1995), Astarita (1996) independently proposed flow propagation constraints that may be readily
placed in the above form.
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3.2 Recast of DUE as a DVI with State Dependent Time Shifts

Given the traveling cost Θp for path p, the infinite dimensional variational inequality formulation for dynamic
network user equilibrium itself is: find (g∗, h∗) ∈ Ω such that

hΘ (t, x (h∗)) , (h− h∗)i =
X
p∈P

Z tf

t0

Θp [t, x (h
∗)]
£
hp (t)− h∗p (t)

¤
dt ≥ 0 (38)

for all (g, h) ∈ Ω, all of whose solutions ? show are dynamic user equilibria1. In particular the solutions of (38)
obey

Θp (t, x
∗) > µij =⇒ h∗p (t) = 0 (39)

h∗p (t) > 0 =⇒ Θp (t, x∗) = µij (40)

for p ∈ Pij where µij is the lower bound on achievable costs for any ij-traveler, given by

µp = ess inf {Θp (t, x) : t ∈ [t0, tf ]} ≥ 0

and
µij = min

©
µp : p ∈ Pij

ª
≥ 0

We call a flow pattern satisfying (39) and (40) a dynamic user equilibrium. The behavior described by (39) and
(40) is readily recognized to be a type of Cournot-Nash non-cooperative equilibrium. It is important to note that
these conditions do not describe a stationary state, but rather a time varying flow pattern that is a Cournot-Nash
equilibrium (or user equilibrium) at each instant of time.

4 Extensions

4.1 Dual Time Scales (day-to-day and within-day)

Let τ ∈ Υ ≡ {1, 2, ..., L} be one typical day within the planning horizon, and take the length of each day to be ∆,
while the clock time within each day τ is presented by t ∈ [(τ − 1)∆, τ∆] for all τ ∈ {1, 2, ..., L}. The planning
horizon consists of L consecutive days. We assume the travel demand for each day changes based on the moving
average of congestion experienced over previous days. We postulate that the travelling demand Qτ

ij for day τ
between a given O-D pair (i, j) ∈W determined by the following system of difference equations:

Qτ+1
ij =

⎡⎢⎢⎢⎢⎢⎣Qτ
ij − ητij

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X
p∈Pij

τ−1X
j=0

Z (j+1)·∆

j·∆
Ψp [t, x (h

∗, g∗)] dt

|Pij | · τ ·∆
− χij

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦

+

∀τ ∈ {1, 2, ...L− 1} (41)

Q1ij = Q̃ij

where Q̃ij ∈ R+ is the fixed traveling demand for the O-D pair (i, j) ∈ W for the first day. The operator [x]+ is
equivalent to max [0, x].

4.2 Uncertain Travel Demand Information

Once again let us assume τ ∈ Υ ≡ {1, 2, ..., L} be one typical day within the planning horizon, and take the length of
each day to be ∆, while the clock time within each day τ is presented by t ∈ [(τ − 1)∆, τ∆] for all τ ∈ {1, 2, ..., L}.
where the planning horizon consists of L consecutive days. Here we assume that the travel demand for each day is
a random variable in the following multiplicative form

Q̂τ
ij = Qτ

ij · zij
1Although we have purposely supressed the functional analysis subtleties of the formulation, it should be noted that (38) involves

an inner product in a Hilbert space, namely L2 [0, T ]
|P|.
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where Q̂τ
ij is the realized travel demand on day τ between the OD pair (i, j) where as zij is the random variable. To

keep exposition simple we assume that distribution of zij is known exactly, however, it can further be generalized
to have only partial information (e.g., first and second moments) about zij . The average travel volume, Qτ

ij may
be computed from (41).

5 Numerical Example
In what follows, we consider a 5 arc, 4 node traffic network shown below. The forward star array and arc delay
functions Da (xa (t)) for all 5 arcs of the network are contained in the following table:

Arc name From node To node Arc Delay, Da (xa (t))

a1 1 2 1
2 +

xa1
70

a2 1 3 1 +
xa2
150

a3 2 3 1
2 +

xa3
100

a4 2 4 1 +
xa4
150

a5 3 4 1
2 +

xa5
100

2

1 4

3

a4a1

a3

a5a2

2

1 4

3

a4a1

a3

a5a2

2

1 4

3

a4a1

a3

a5a2

Fig 1 : The 5-arc 4-node traffic network with (1, 4) being the OD-
pair

There is a travel demand of Q1
14 = 75 units from node 1 (origin) to node 4 (destination) on day 1. There are 3

paths connecting nodes 1 through 4, namely

P14 = {p1, p2, p3}
p1 = {a1, a4}
p2 = {a2, a5}
p3 = {a1, a3, a5}

We consider the planning horizon to be 4 days (i.e., L = 4) and the length of each day is ∆ = 24 hours. The desired
arrival time for commuters is TA = 13 (1:00 PM of every day).The controls (path flows and arc exit flows) and
states (arc traffic volumes) are enumerated in the following table:

Paths Path Flows Arc Exit Flows Traffic Volume of Arcs
p1 hp1 gp1a1 , g

p1
a4 xp1a1 , x

p1
a4

p2 hp2 gp2a2 , g
p2
a5 xp2a2 , x

p2
a5

p3 hp2 gp3a1 , g
p3
a3 , g

p3
a5 xp3a1 , x

p3
a3 , x

p3
a5

We consider the symmetric early/late arrival penalty

F [t+Dp (x, t)− TA] = [t+Dp (x, t)− TA]
2

Furthermore, without any loss of generality, we take the initial traffic volumes on every arc to be zero:

xpai (0) = 0 ∀p ∈ P, i ∈ [1,m (p)]
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We forgo the detailed symbolic statement of this example and instead provide numerical results in graphical form
for an essentially exact solution achieved after 29 iterations of the fixed point algorithm. Figures 2, 3 and 4 depict
departure rates and arc exit flows for paths p1, p2 and p3 respectively.
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Fig 2 : Path and arc exit flows for path 1
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Fig 3 : Path and arc exit flows for path 2
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Fig 4 : Path and arc exit flows for path 3

Cumulative traffic volumes on the 5 different arcs are plotted against time in Figure 5 where

xa1 (t) = xp1a1 (t) + xp3a1 (t)

xa2 (t) = xp2a2 (t)

xa3 (t) = xp3a3 (t)

xa4 (t) = xp1a4 (t)

xa5 (t) = xp2a5 (t) + xp3a5 (t)
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for all time t ∈ [0, L∆].
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Fig 5 : Cumulative arc volume vs. time

Note that the effective path delay operator in (36) gives the unit travel cost along a path p at time t. Figure 6
analyzes the effective delay and flow for path p2 by plotting both for the same time scale which shows that path
flow is maximal when the associated unit travel cost (effective path delay) is at its well defined minimum.
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Fig 6 : Comparison of path flows and associated unit travel costs for path p2

Net travel demand and demand reduction are plotted below against the same time scale (day) which clearly demon-
strates that more commuters switch to alternative mode (e.g., telecommuting) as their rolling average experience
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of congestion increases with passage of time.
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Fig 7 : Net travel demand and demand reduction

6 Concluding Remarks
We have explained how traditional non-cooperative differential game theory may be extended to accomodate the
natural formulation of DUE as an infinite dimensional variational inequality involving explicit state-dependent time
shifts. We show that such a perspective is not only useful for analysis but also leads to simple yet effective algorithms
for the computation of DUE solutions. We also apply this formalism to create two entirely new formulations of
dynamic user equilibrium when: (1) there are dual time scales (day-to-day and within-day); and (2) demand
information is uncertain. Our future DUE reserach will provide a more in-depth analysis of the stochastic DUE
problem in the presence of incomplete traffic information.
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