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Abstract

In this paper we present a theory of dynamic congestion pricing for the day-to-day as well as
the within-day time scales. The equilibrium design problem emphasized herein takes the form
of an MPEC, which we call the Dynamic Optimal Toll Problem with Equilibrium Constraints,
or DOTPEC. The DOPTEC formulation we employ recalls an important earlier result that
allows the equilibrium design problem to be stated as a single level problem, a result which is
surprisingly little known. The DOPTEC maintains the usual design objective of minimizing the
system travel cost by appropriate toll pricing. We describe how an infnite dimensional math-
ematical programming perspective may be employed to create an algorithm for the DOTPEC.
A numerical example is provided.

Keywords: Dynamic congestion pricing; Dynamic user equilibrium; Differential Variational In-
equality; Optimal Control

1 Introduction

The advent of new commitments by municipal, state and federal governments to construct and
operate roadways whose tolls may be set dynamically has brought into sharp focus the need for a
computable theory of dynamic tolls. Moreover, it is clear from the policy debates that surround
the issue of dynamic tolls that pure economic efficiency is not the sole or even the most prominent
objective of any dynamic toll mechanism that will be implemented. Rather, equity considerations
as well as preferential treatment for certain categories of commuters must be addressed by such
a mechanism. Accordingly, we introduce in this paper the dynamic user equilibrium optimal toll
problem and discuss two plausible algorithms for its solution; we also provide detailed numerical
results that document the performance of the two algorithms.

The dynamic user equilibrium optimal toll problem should not be considered a simple dynamic
extension of the traditional congestion pricing paradigm associated with static user equilibrium and
usually accredited to Beckmann et al. (1955). Rather, the dynamic user equilibrium optimal toll
problem is most closely related to the equilibrium network design problem which is now widely rec-
ognized to be a specific instance of a mathematical program with equilibrium constraints (MPEC).
In fact it will be convenient to refer to the dynamic user equilibrium optimal toll problem as the
dynamic optimal toll problem with equilibrium constraints or DOTPEC, where it is understood
that the equilibrium of interest is a dynamic user equilibrium.

The relevant background literature for the DOTPEC includes a paper by Friesz et al. (2002) who
discuss a version of the DOTPEC but for the day-to-day time scale rather than the dual (within-
day as well as day-to-day) time scale formulation emphasized in this paper. Also pertinent are the
paper by Friesz et al. (1996) which discusses dynamic disequilibrium network design and the review
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by Liu (2004) which considers multi-period efficient tolls. Although the DOTPEC is not the same
as the problem of determining efficient tolls including the latter’s multiperiod generalization, the
exact nature of the differences and similarities is not known and has never been studied. To study
the DOTPEC, it is necessary to employ some form of dynamic user equilibrium model. We elect
the formulation due to Friesz et al. (2001), Friesz and Mookherjee (2006) and its varieties analyzed
by Ban et al. (2005) and others. The dynamic efficient toll formulation will be constructed by
direct analogy to the static efficient toll problem formulation of Hearn and Yildirim (2002).

The main focus of this paper is the formulation and solution of the DOTPEC. To this end, again
using the DUE formulation reported in Friesz et al. (2001) and Friesz and Mookherjee (2006), we
will form a Stackelberg game that envisions a central authority minimizing social costs through its
control of link tolls subject to DUE constraints with the potential for additional side constraints for
equity and other policy considerations. Also, since we will allow multiple target arrival times of the
users, the within-day scale model, we show how to easily extend the formulation to include the day-
to-day evolution of demand. Of course there are several ways such a model may be formulated. The
dual-time scale formulation we shall emphasize is based on our prior work on differential variational
inequalities and equilibrium network design and follows the qualitative theory conjectured (but not
analyzed) by Friesz et al. (1996).

Central to the study of the DOTPEC in this paper is the dynamic generalization of a result due
to Tan et al. (1979) and reprised by Friesz and Shah (2001) showing that a system of inequalities
expressing the relationship of average effective delay to minimum delay is equivalent to a static
user equilibrium. This system of inequalities allows one to state the equilibrium network design
problem as a single level mathematical program. Extension of this result to a dynamic setting
allows us in this paper to state the DOTPEC as an equivalent, non-hierarchical optimal control
problem. We consider two principal methods for solving this optimal control problem: (1) descent
in Hilbert space without time discretization, and (2) a finite dimensional approximation solved as a
nonlinear program. In both approaches we employ an implicit fixed point scheme like that in Friesz
and Mookherjee (2006) for dealing with time shifts in differential variational inequalities. In an
example provided near the end of this paper, we numerically study a small network and determine
its optimal dynamic tolls.

2 Notation and Model Formulation

In this section we purposely repeat key portions of the time-lagged DUE formulation given in Friesz
et al. (2001), because of its key role in this manuscript. The reader familiar with the notation and
time-shifted DUE model presented in Friesz et al. (2001) may skip this section of the present paper.

2.1 Dynamics, Delay Operators and Constraints

The network of interest will form a directed graph G (N ,A), where N denotes the set of nodes and
A denotes the set of arcs; the respective cardinalities of these sets are |N | and |A|. An arbitrary
path p ∈ P of the network is

p ≡
{
a1, a2, ..., ai, ..., am(p)

}
where P is the set of all paths and m (p) is the number of arcs of p. We also let te denote the time
at which flow exists an arc, while td is the time of departure from the origin of the same flow. The
exit time function τpai therefore obeys

te = τpai (td)
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The relevant arc dynamics are

dxpai (t)

dt
= gpai−1

(t)− gpai (t) ∀p ∈ P, i ∈ {1, 2, ...,m (p)} (1)

xpai (t) = xpai,0 ∀p ∈ P, i ∈ {1, 2, ...,m (p)} (2)

where xpai is the traffic volume of arc ai contributed by path p, gpai is flow exiting arc ai and gpai−1 is
flow entering arc ai of path p ∈ P. Also, gpa0 is the flow exiting the origin of path p; by convention
we call this the flow of path p and use the symbolic name

hp = gpa0

Furthermore

δaip =

{
1 if ai ∈ p
0 if ai /∈ p

so that
xa (t) =

∑
p∈P

δapx
p
a (t) ∀a ∈ A

is the total arc volume.
Arc unit delay is Da (xa) for each arc a ∈ A. That is, arc delay depends on the number of

vehicles in front of a vehicle as it enters an arc. Of course total path traversal time is

Dp (t) =

m(p)∑
i=1

[
τpai (t)− τpai−1

(t)
]

= τpam(p)
(t)− t ∀p ∈ P

It is expedient to introduce the following recursive relationships that must hold in light of the above
development:

τpa1(t) = t+Da1 [xa1(t)] ∀p ∈ P

τpai(t) = τpai−1
(t) +Dai

[
xai(τ

p
ai−1

(t))
]
∀p ∈ P, i ∈ {2, 3, ...,m (p)}

from which we have the nested path delay operators first proposed by Friesz et al. (1993):

Dp(t, x) ≡
m(p)∑
i=1

δaipΦai(t, x) ∀p ∈ P,

where
x = (xpai : p ∈ P, i ∈ {1, 2, ...,m (p)}

and

Φa1(t, x) = Da1(xa1(t))

Φa2(t, x) = Da2(xa2(t+ Φa1))

Φa3(t, x) = Da3(xa3(t+ Φa1 + Φa2))

...

Φai(t, x) = Dai(xai(t+ Φa1 + · · ·+ Φai−1))

= Dai

xai
t+

i−1∑
j=1

Φaj

 .
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To ensure realistic behavior, we employ asymmetric early/late arrival penalties

F [t+Dp (t, x)− tA]

where tA is the desired arrival time and

t+Dp(t, x) > tA =⇒ F (t+Dp(t, x)− tA) = χL(x, t) > 0
t+Dp(t, x) < tA =⇒ F (t+Dp(t, x)− tA) = χE(x, t) > 0
t+Dp(t, x) = tA =⇒ F (t+Dp(t, x)− tA) = 0

while
χL(t, x) > χE(t, x)

Let us further denote arc tolls by ya for each arc a ∈ A. We assume that users pay any toll imposed
on an arc at the entrance of the arc. Then the path tolls yp for each path p ∈ P are

yp (t) =

m(p)∑
i=1

δaipyai

t+

i−1∑
j=1

Φaj (t, x)

 ∀p ∈ P

where Φa0(t, x) = 0. If the tolls are paid when users exit arcs, then the path toll becomes

yp (t) =

m(p)∑
i=1

δaipyai

t+
i∑

j=1

Φaj (t, x)

 ∀p ∈ P

We now combine the actual path delays and arrival penalties to obtain the effective delay operators

Ψp(t, x) = Dp(t, x) + F (t+Dp(x, t)− TA) ∀p ∈ P (3)

Since the volume which enters and exits an arc should conserve flow, we must have∫ t

0
gpai−1

(t) dt =

∫ t+Dai (xai (t))

Dai (xai (0))
gpai (t) dt ∀p ∈ P, i ∈ [1,m(p)] (4)

where gpa0(t) = hp(t). Differentiating both sides of (4) with respect to time t and using the chain
rule, we have

hp (t) = gpa1(t+Da1(xa1(t)))(1 +D′a1(xa1(t))ẋa1) ∀p ∈ P (5)

gpai−1
(t) = gpai(t+Dai(xai(t)))(1 +D′ai(xai(t))ẋai) ∀p ∈ P, i ∈ [2,m(p)] (6)

These are proper flow progression constraints derived in a fashion that makes them completely
consistent with the chosen dynamics and point queue model of arc delay. These constraints involve
a state-dependent time lag Dai(xai(t)) but make no explicit reference to the exit time functions.
These flow propagation constraints describe the expansion and contraction of vehicle platoons;
they were presented by Friesz et al. (1995). Astarita (1995,1996) independently proposed flow
propagation constraints that may be readily placed in the above form.

The final constraints to consider are those of flow conservation and non-negativity:∑
p∈Pij

∫ tf

t0

hp(t)dt = Qij ∀ (i, j) ∈ W (7)

hp ≥ 0 ∀ (i, j) ∈ Pij (8)
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gpai ≥ 0 ∀p ∈ P, i ∈ [1,m(p)] (9)

gpai ≥ 0 ∀p ∈ P, i ∈ [1,m(p)] (10)

where W is the set of origin-destination pairs, Pij is the set of paths connecting origin-destination
pair (i, j), tf > t0, and tf − t0 defines the planning horizon. Furthermore, Qij is the travel demand
(a volume) for the period [t0.tf ]. In what follows h will denote the vector of all path flows, g the
vector of all arc exit flows. Finally, we denote the set of all feasible exit flow vectors (h, g) by Ω;
that is

Ω ≡ {(h, g) : (1) , (2) , (5) , (6) , (7) , (8) , (9) , (10) are satisfied} (11)

2.2 Dynamic User Equilibrium

Given the effective unit travel delay Ψp for path p, the infinite dimensional variational inequality
formulation for dynamic network user equilibrium itself is: find (g∗, h∗) ∈ Ω such that

〈Ψ (t, x (h∗, g∗)) , (h− h∗)〉 =
∑
p∈P

∫ tf

t0

Ψp [t, x (h∗, g∗)] ·
[
hp (t)− h∗p (t)

]
dt ≥ 0 (12)

for all (h, g) ∈ Ω, where Ψ denotes the vector of effective path delay operators. Friesz et al. (2001)
show all solutions of (12) are dynamic user equilibria1. In particular the solutions of (12) obey

Ψp (t, x (g∗, h∗)) > µij =⇒ h∗p (t) = 0 (13)

h∗p (t) > 0 =⇒ Ψp (t, x (g∗, h∗)) = µij (14)

for p ∈ Pij where µij is the lower bound on achievable costs for any ij-traveler, given by

µp = ess inf {Θp (t, x) : t ∈ [t0, tf ]} ≥ 0

and
µij = min {µp : p ∈ Pij} ≥ 0

We call a flow pattern satisfying (13) and (14) a dynamic user equilibrium. The behavior described
by (13) and (14) is readily recognized to be a type of Cournot-Nash non-cooperative equilibrium.
It is important to note that these conditions do not describe a stationary state, but rather a time
varying flow pattern that is a Cournot-Nash equilibrium (or user equilibrium) at each instant of
time.

3 The Dynamic Efficient Toll Problem (DETP)

Hearn and Yildirim (2002) studied the efficient toll in the static setting with the traveling cost
which is linear in the traffic flow. The objective of the efficient toll is to make the user equilibrium
traffic flow equivalent to the system optimum by appropriate congestion pricing. To study the
dynamic efficient toll problem (DETP), we introduce the notion of a tolled effective delay operator :

Θp(t, x, yp) = Dp(t, x) + F {t+Dp(x, t)− TA}+ yp (t) ∀p ∈ P

where yp denotes the toll for path p. Of course we have the relationship

Θp (t, x, yp) = Ψp (t, x) + yp (t) (15)

1Although we have purposely supressed the functional analysis subtleties of the formulation, it should be noted

that (12) involves an inner product in a Hilbert space, namely
(
L2 [0, T ]

)|P|
.
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3.1 Analysis of the System Optimum

The dynamic system optimum (DSO) is achieved by solving

min J1 =

∫ tf

t0

∑
p∈P

e−rtΨp (t, x)hp (t) dt

subject to
dxpai (t)

dt
= gpai−1

(t)− gpai (t) ∀p ∈ P, i ∈ {1, 2, ...,m (p)} (16)

xpai (t) = xpai,0 ∀p ∈ P, i ∈ {1, 2, ...,m (p)}

gpai−1
(t) = gpai(t+Dai(xai(t)))(1 +D′ai(xai(t))ẋai) ∀p ∈ P, i ∈ [1,m(p)] (17)∑

p∈Pij

∫ tf

t0

hp (t) dt = Qij ∀ (i, j) ∈ W (18)

x ≥ 0 g ≥ 0 h ≥ 0 (19)

where we have used the convention
gpa0 = hp

It will be convenient to employ the following shorthand for shifted variables:

ḡpai $ g
p
ai(t+Dai(xai(t))) ∀p ∈ P, i ∈ [0,m(p)]

Penaltizing (17) we obtain

J1 =

∫ tf

t0

∑
p∈P

e−rtΨp (t, x)hp (t) +
∑
p∈P

m(p)∑
i=1

µpai
2

[
gpai−1

(t)− ḡpai (t) (1 +D′ai(xai(t))ẋai)
]2

 dt

(20)
where µpai is the penalty coefficient. Let us then define the set of feasible controls

Λ ≡

(h, g) :
∑
p∈Pij

∫ tf

t0

hp (t) dt = Qij ∀ (i, j) ∈ W, h ≥ 0, g ≥ 0

 (21)

Optimal control problem (20) and (21) is an instance of the time-shifted optimal control problem
analyzed in Friesz et al. (2001). We also employ the following notation for the state vector and
control vector, respectively:

x =
(
xpai
)
p∈P,i∈[1,m(p)]

g =
(
gpai
)
p∈P,i∈[0,m(p)]

The DSO Hamiltonian is

H1 (t, x, h, g, λ;µ) ≡
∑
p∈P

e−rtΨp (t, x)hp (t) +
∑
p∈P

m(p)∑
i=1

µpai
2

{
gpai−1

(t)− ḡpai(t)(1 +D′ai(xai(t))ẋai)
}2

+
∑
p∈P

m(p)∑
i=1

λpai

(
gpai−1

(t)− gpai (t)
)
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Let us introduce the vector

F (t, x, h, g, λ;µ) =
(
F pai (t, x, h, g, λ;µ)

)
p∈P,i∈[0,m(p)]

where

F pa0 (t, x, h, g, λ;µ) =
∂H1 (t, x, h, g, λ;µ)

∂hp
∀p ∈ P (22)

F pai (t, x, h, g, λ;µ) = ∀p ∈ P, i ∈ [1,m(p)] (23)

∂H1 (t, x, h, g, λ;µ)

∂gpai
if t ∈ [t0, Dai (x (t0))]

∂H1 (t, x, h, g, λ;µ)

∂gpai
+

[
∂H1 (t, x, h, g, λ;µ)

∂ḡpai

1

1 +D′ai(xai(t))ẋai

]
sai (t)

if t ∈ [Dai (x (t0)) , tf +Dai (x (tf ))]

and each sai (t) is a solution of the fixed point problem

sai (t) = arg [s = t−Dai (x (s))]

We may write (22) and (23) in detail as

F pa0 (t, x, h, g, λ;µ) = e−rt
[
Ψp (t, x) +

∂Ψp (t, x)

∂hp
hp

]
+ µpa1

[
gpa0 (t)− ḡpa1(t)(1 +D′a1(xa1(t))ẋa1)

]
+ λpa1 ∀p ∈ P (24)

F pai (t, x, h, g, λ;µ) = ∀p ∈ P, i ∈ [1,m(p)− 1]

µpai+1

{
gpai (t)− ḡpai+1

(t)(1 +D′ai+1
(xai+1(t))ẋai+1)

}
− λpai + λpai+1

if t ∈ [t0, Dai (x (t0))]

µpai+1

{
gpai (t)− ḡpai+1

(t)(1 +D′ai+1
(xai+1(t))ẋai+1)

}
− λpai + λpai+1

−
[
µpai

{
gpai−1

(t)− ḡpai(t)(1 +D′ai(xai(t))ẋai)
}]

sai (t)
if t ∈ [Dai (x (t0)) , tf +Dai (x (tf ))]

F pai (t, x, h, g, λ;µ) = ∀p ∈ P, i = m(p)

−λpai if t ∈ [t0, Dai (x (t0))]

−λpai −
[
µpai

{
gpai−1

(t)− ḡpai(t)(1 +D′ai(xai(t))ẋai)
}]

sai (t)
if t ∈ [Dai (x (t0)) , tf +Dai (x (tf ))]

Then a necessary condition for
(
hS , gS

)
∈ Λ to be the system optimum is

0 ≤
∑
p∈P

m(p)∑
i=0

F pai
(
t, xS , hS , gS , λS ;µ

) (
gpai − g

pS
ai

)
∀ (h, g) ∈ Λ (25)

for each time instant t ∈
[
t0, supai∈A {tf +Dai (x (tf ))}

]
, together with the state dynamics (16)

and the following adjoint equations and boundary conditions

−dλ
p,S
ai

dt
=
∂HS

1

∂xpai
= e−rt

∂Ψp

(
t, xS

)
∂xpai

∀p ∈ P, i ∈ [1,m(p)]

λp,Sai (tf ) = 0 ∀p ∈ P, i ∈ [1,m(p)]

where the superscript S denotes a trajectory corresponding to a system optimum.
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3.2 Analysis of the User Equilibrium in the Presence of Tolls

However, a dynamic tolled user equilibrium must obey

∑
p∈P

∫ tf

t0

e−rt
{

Θp

[
t, x
(
hU
)
, yUp

]} [
hp (t)− hUp (t)

]
dt ≥ 0 for all (h, g) ∈ Λ (26)

where the state dynamics as well as all other state and control constraints are identical to those
introduced above for DSO. In particular, the set of feasible controls Λ referred to in (26) remains
unchanged. We formulate an optimal control problem2 from the above dynamic user equilibrium
variational inequality problem; its objective is

min J2 =
∑
p∈P

∫ tf

t0

e−rtΘp

[
t, x
(
hU
)
, yUp

]
hp (t) dt

with the same constraints introduced previously. As previously done for the system optimum
problem, we penaltize the flow propogation constraints to obtain the modified criterion

J2 =
∑
p∈P

∫ tf

t0

e−rtΘp

[
t, x
(
hU
)
, yUp

]
hp (t) +

∑
p∈P

m(p)∑
i=1

µpai
2

[
gpai−1

(t)− ḡpai(t)(1 +D′ai(xai(t))ẋai)
]2

 dt

(27)
Then we have another standard form time-shifted optimal control problem, although it is subtely
but importantly different than that for DSO. In particular, the Hamiltonian now becomes

H2 (t, x, h, g, λ;µ) ≡
∑
p∈P

e−rtΘp

[
t, x
(
hU
)
, yUp

]
hp (t) +

∑
p∈P

m(p)∑
i=1

µpai
2

{
gpai−1

(t)− ḡpai(t)(1 +D′ai(xai(t))ẋai)
}2

+
∑
p∈P

m(p)∑
i=1

λpai

(
gpai−1

(t)− gpai (t)
)

An analysis of necessary conditions similar to that for DSO is now possible. The key difference is
that the counterpart of (24) must in the user equilibrium case be written as follows:

Gpa0 (t, x, h, g, λ;µ) = e−rtΘp

[
t, x
(
hU
)
, yUp

]
+ µpa1

[
gpa0 (t)− ḡpa1(t)(1 +D′a1(xa1(t))ẋa1)

]
+ λpa1 ∀p ∈ P

Gpai (t, x, h, g, λ;µ) = F pai (t, x, h, g, λ;µ) ∀p ∈ P, i ∈ [1,m(p)]

Then a necessary condition for
(
hS , gS

)
∈ Λ to be a dynamic user equilibrium (DUE) is

0 ≤
∑
p∈P

m(p)∑
i=0

Gpai
(
t, xU , hU , gU , λU ;µ

) (
gpai − g

pU
ai

)
g ∈ Λ (28)

for each time instant t ∈
[
t0, supai∈A {tf +Dai (x (tf ))}

]
, together with the state dynamics (16)

and the following adjoint equations and boundary conditions:

−dλ
p,U
ai

dt
=
∂HU

2

∂xpai
= e−rt

∂Θp

[
t, x
(
hU
)
, yUp

]
∂xpai

∀p ∈ P, i ∈ [1,m(p)]

2may not be used for numerical computation as its statement depends on knowledge of the dynamic user equilib-
rium being sought. However, it may be employed for qualitative analyses like those which follow.
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λp,Uai (tf ) = 0 ∀p ∈ P, i ∈ [1,m(p)]

where the superscript U denotes a trajectory corresponding to a dynamic user equilibrium in the
presence of tolls.

3.3 Characterizing Efficient Tolls

It is the purpose of efficient tolls to make the criteria J1 amd J2 identical along solution trajectories
for which flow propagation and other constraints are satisfied, for then the system optimal total
costs are identical to the tolled user optimal total costs. Furthermore, the vectors of path flows
(departure rates) obey

hU (t) = hS (t) (29)

There are as well identical arc exit flows and identical arc volumes. Therefore, along solution
trajectories

λp,Sa1 =
∂J1

∂xp,Sa1
=

∂J2

∂xp,Ua1
= λp,Ua1 (30)

With (30) in mind and upon comparing (25) and (28), we find

e−rt

{
Ψp

(
t, xS

)
+
∂Ψp

(
t, xS

)
∂hp

hSp

}
= e−rt

{
Θp

[
t, x
(
hU
)
, yUp

]}
= e−rt

{
Ψp

(
t, xU

)
+ yUp (t)

}
which may be immediately re-stated as the following decision rule:

yUp (t) =
∂Ψp

(
t, xS

)
∂hp

hSp ∀t ∈ [t0, tf ] (31)

This result is completely analogous to that for an efficiently tolled static user equilibrium.

4 The Dynamic Optimal Toll Problem with Equilibrium Con-
straints (DOTPEC)

We now introduce the dynamic optimal toll problem with equilibrium constraints (DOTPEC). The
DOTPEC is a type of dynamic network design problem for which a central authority seeks to
minimize congestion in a transport network, whose flows obey a dynamic network user equilibrium,
by dynamically adjusting tolls. In particular the central authority seeks to solve the optimal control
problem

min J =

∫ tf

t0

∑
p∈P

Ψp (t, x)hp (t) dt (32)

subject to ∑
p∈P

∫ tf

t0

Θp [t, x (h, g) , yp] (wp − hp) dt ≥ 0 ∀ (w, g) ∈ Λ (33)

dxpai (t)

dt
= gpai−1

(t)− gpai (t) ∀p ∈ P, i ∈ {1, 2, ...,m (p)} (34)

xpai (t) = xpai,0 ∀p ∈ P, i ∈ {1, 2, ...,m (p)} (35)
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hp (t) = gpa1(t+Da1(xa1(t)))(1 +D′a1(xa1(t))ẋa1) ∀p ∈ P (36)

gpai−1
(t) = gpai(t+Dai(xai(t)))(1 +D′ai(xai(t))ẋai) ∀p ∈ P, i ∈ [2,m(p)] (37)∑

p∈Pij

∫ tf

t0

hp (t) dt = Qij ∀ (i, j) ∈ W (38)

xpai ≥ 0 gpai ≥ 0 hp ≥ 0 ∀p ∈ P, i ∈ {1, 2, ...,m (p)} (39)

where Λ is the set of feasible controls (exit flows) defined previously. In the DUE constraints (33),
we have introduced the notion of an effective delay operator in the presence of tolls, by which is
meant

Θp(t, x, yp) = Dp(t, x) + F {t+Dp(x, t)− TA}+ yp (t) ∀p ∈ P

where yp denotes the toll for path p. Of course we have the relationship

Θp (t, x, yp) = Ψp (t, x) + yp (t) (40)

where we recall from Friesz et al. (2001) that

yp (t) =

m(p)∑
i=1

δaipyai
(
t+ Φai−1(t, x)

)
∀p ∈ P

The variational-inequality constrained optimization problem (32) through (39) is a bi-level problem
that is intrinsically difficult to solve. Note in particular that, even for a single instant of time, the
number of constraints of the type (33) is uncountable.

In this paper, to numerically solve specific instances of (32)-(39), we may exploit the following
alternative to expressing the underlying DUE problem as an infinite dimensional variation inequal-
ity:

Theorem 1 Given that the effective travel delay for path p is Θp [t, x (t) , yp (t)], a nonnegative path
flow vector h ≥ 0 is a user equilibrium if and only if the conditions

Θp ≥
∑

p∈Pij

∫ tf
t0

Θp [t, x (t) , yp (t)]hp (t) dt∑
p∈Pij

∫ tf
t0
hp (t) dt

= µij ∀p ∈ Pij , (i, j) ∈ W (41)

are satisfied

Proof : The dynamic user equilibrium condition stated in (13) and (14) can be modeled as an
equivalent complementarity problem, that is

[Θp (t, x∗)− µij ]h∗p (t) = 0, Θp (t, x∗)− µij ≥ 0, h∗p (t) ≥ 0 (42)

for all t ∈ [t0, tf ] , p ∈ Pij , (i, j) ∈ W. To show necessity we integrate the complementarity condition
in (42) over the time horizon and summing for all paths, and obtain∑

p∈Pij

∫ tf

t0

[Θp (t, x∗)− µij ]h∗p (t) dt = 0 ∀ (i, j) ∈ W

or ∑
p∈Pij

∫ tf

t0

Θp (t, x∗)h∗p (t) dt = µij
∑
p∈Pij

∫ tf

t0

h∗p (t) dt ∀ (i, j) ∈ W (43)
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To show sufficiency we re-state (41) as

Θp − µij ≥
∑

p∈Pij

∫ tf
t0

Θp [t, x (t) , yp (t)]hp (t) dt∑
p∈Pij

∫ tf
t0
hp (t) dt

∀p ∈ Pij , (i, j) ∈ W (44)

and multiply both sides by path flow to obtain

0 = [Θp (t, x∗)− µij ]h∗p (t) ≥

[∑
p∈Pij

∫ tf
t0

Θp [t, x (t) , yp (t)]hp (t) dt∑
p∈Pij

∫ tf
t0
hp (t) dt

]
h∗p (t) ∀p ∈ Pij , (i, j) ∈ W

(45)
from which (42) follows immediately.�

By virtue of Theorem 1, we may replace the DUE constraint (33) by the equality and inequality
constraints (41) to obtain the following equivalent form of the DOTPEC:

min J =

∫ tf

t0

∑
p∈P

Ψp (t, x)hp (t) dt (46)

subject to

µij =

∑
p∈Pij

∫ tf
t0

Θp [t, x (t) , yp (t)]hp (t) dt∑
p∈Pij

∫ tf
t0
hp (t) dt

∀ (i, j) ∈ W (47)

Θp ≥ µij ∀p ∈ Pij , (i, j) ∈ W (48)

dxpai (t)

dt
= gpai−1

(t)− gpai (t) ∀p ∈ P, i ∈ {1, 2, ...,m (p)} (49)

xpai (t) = xpai,0 ∀p ∈ P, i ∈ {1, 2, ...,m (p)} (50)

hp (t) = gpa1(t+Da1(xa1(t)))(1 +D′a1(xa1(t))ẋa1) ∀p ∈ P (51)

gpai−1
(t) = gpai(t+Dai(xai(t)))(1 +D′ai(xai(t))ẋai) ∀p ∈ P, i ∈ [2,m(p)] (52)∑

p∈Pij

∫ tf

t0

hp (t) dt = Qij ∀ (i, j) ∈ W (53)

xpai ≥ 0 gpai ≥ 0 hp ≥ 0 ∀p ∈ P, i ∈ {1, 2, ...,m (p)} (54)

Note that the above formulation is an infinite dimensional mathematical program with inequality
and equality constraints in standard form, and that the number of constraints for any given instant
of time is countable.

5 Multiple Time Scales

We have investigated the within-day behavior of road network users so far. In this section we
describe a day-to-day adjust process that sets daily travel demand. Our perspective is is very
simple: if today commuters experiences a level of congestion above a threshold representing the
budget or tolerance for congestion of the typical commuter, travel demand will be less tomorrow
and more workers will elect to stay at home (telecommute). To operationalize this idea, we take
the perspective of evolutionary game theory to describe the day-to-day demand learning process in
terms of the moving average of congestion and difference equations.

11



Let τ ∈ Υ ≡ {1, 2, ..., L} be one typical discrete day within the planning horizon, and take
the length of each day to be ∆, while the continuous clock time t within each day is presented by
t ∈ [(τ − 1) ∆, τ∆] for all τ ∈ {1, 2, ..., L}. The entire planning horizon spans L consecutive days.
As noted above, we assume the travel demand for each day changes based on the moving average
of congestion experienced over previous days. In fact we postulate that the travel demands Qτij
for day τ between a given OD pair (i, j) ∈ W are determined by the following system of difference
equations:

Qτ+1
ij =

Qτij − sτij


∑
p∈Pij

τ−1∑
j=0

∫ (j+1)·∆

j·∆
Ψp [t, x (h∗, g∗)] dt

|Pij | · τ ·∆
− χij





+

∀τ ∈ {1, 2, ...L− 1} (55)

with boundary condition
Q1
ij = Q̃ij (56)

where Q̃ij ∈ R+ is the fixed travel demand for the OD pair (i, j) ∈ W for the first day and χij is
the representative threshold. The operator [x]+ is shorthand from max [0, x]. The parameter sτij is
related to the rate of change of inter-day travel demand.

6 Algorithms for Solving the DOTPEC

In this section, we provide two different algorithms for solving the DOTPEC: (1) descent in Hilbert
space without time discretization, and (2) a finite dimensional discrete time approximation solved
as a nonlinear program.

6.1 The Implicit Fixed Point Perspective

In both approaches, state-dependent time shifts must and can be accommodated using an implicit
fixed point perspective, as innovated for the dynamic user equilibrium by Friesz and Mookherjee
(2006). More specifically, in such an approach, one employs control and state information from a
previous iteration to approximate current time shifted functions. This perspective may be summa-
rized as follows:

1. Articulate the current approximate states (volumes) and controls (arc exit rates) by spline or
other curve fitting techniques as continuous functions of time.

2. Using the aforementioned continuous functions of time, express time shifted controls as pure
functions of time, while leaving unshifted controls as decision functions to be updated within
the current iteration.

3. Update the states and controls, then repeat Step 2 and Step 3 until the control controls
converge to a suitable approximate solution.

6.2 Descent in Hilbert Space

To articulate what is meant by descent in Hilbert space, it is much easier to study an abstract
problem rather than the DOTPEC because of the notational complexity of the underlying DUE

12



problem. To that end, let us consider an abstract optimal control problem with mixed state-control
constraints involving state-dependent time shifts from the point of view of infinite dimensional
mathematical programming:

min J =

∫ tf

t0

F (x, u, uD, t)dt (57)

subject to

x(u, uD, t) ∈ Λ =

{
x :

dx

dt
= f(x, u, uD, t), x(0) = 0, G(x, u, uD, t) = 0, x ≥ 0

}
∈ (H1[t0, tf ])n

where

u ∈ U ⊆ (L2[t0, tf ])m

uD ≡ u(t+D(x)) : (H1[t0, tf ])n × R1
+ −→ (L2[t0, tf ])m

f : (H1[t0, tf ])n × (L2[t0, tf ])2m × R1
+ −→ (L2[t0, tf ])m

F : (H1[t0, tf ])n × (L2[t0, tf ])2m × R1
+ −→ (L2[t0, tf ])m

G : (H1[t0, tf ])n × (L2[t0, tf ])2m × R1
+ −→ (L2[t0, tf ])m

In the above, (L2[t0, tf ])m is the m-fold product of the space of square integrable functions L2[t0, tf ]
and (H1[t0, tf ])n is the n-fold product of the Sobolev space H1[t0, tf ] for the real interval [t0, tf ] ⊂
R1

+. In applying descent in Hilbert space to this problem, it is convenient to use quadratic-loss
penalty functions and a logarithmic barrier function to create the unconstrained program:

min J1 =

∫ tf

t0

F (x, u, uD, t)dt+
1

2

∫ tf

t0

∑
i

ηi(Gi(x, u, uD, t))
2dt+

1

2

∫ tf

t0

∑
i

ρi min(0, xi)
2dt (58)

where it is understood that x denotes the operator

x(u, uD, t) ∈ Λ1 =

{
x :

dx

dt
= f(x, u, uD, t), x(0) = x0

}
∈ (H1[t0, tf ])n,

and ηi and ρi are penalty and barrier multipliers to be adjusted from iteration to iteration. The
resulting problem can be solved using a continuous time steepest descent method. For the penalized
criterion (), the algorithm can be stated as following:

Step 0. Initialization. Pick u0(t) ∈ U and set k = 1.
Step 1. Finding state variables. Solve the state dynamics

dx

dt
= f(x, uk−1, uk−1

D , t)

x(0) = x0

and call the solution xk(t), using curve fitting to create an approximation to xk(t) when necessary.
Step 2. Finding adjoint variables. Solve the adjoint dynamics

−dλ
dt

=
[
∇xH(x, uk−1, uk−1

D , λ, t)
]
x=xk

λ(tf ) = 0

13



where the Hamiltonian is given by

H(x, u, uD, λ, t) = F (x, u, uD, t) +
1

2

∑
i

ρi min(0, xi)
2 +

1

2

∑
i

ηi(Gi(x, u, uD, t))
2 + λT f(x, u, uD, t)

Call the solution λk(t), using curve fitting to create an approximation to λk(t) when necessary..
Step 3. Finding the gradient. Determine

∇uJk ≡
[
∇uH(xk, u, uk−1

D , λk, t)
]
u=uk

Step 4. Updating the current control. For a suitably small step size

θk ∈ R1
++

determine
uk(t) = uk−1(t)− θk∇uJk

Step 5. Stopping Test. For ε ∈ R1
++, a preset tolerance, stop if

||uk+1 − uk|| < ε

and declare
u∗ ≈ uk+1

Otherwise set k = k + 1 and go to Step1.

6.3 Discrete-time Approximation of DOTPEC

The optimal control problem (46)-(54) may be given the following discrete time approximation:

min J =
N∑
k=0

∑
p∈P

φ (k) Ψp [tk, x (tk)]hp (tk) ∆

subject to

µij =

∑
p∈Pij

∑N
k=0 φ (k) Θp [tk, x (tk) , yp (tk)]hp (tk) ∆∑

p∈Pij

∑N
k=0 φ (k)hp (tk) ∆

∀ (i, j) ∈ W

Θp (tk) ≥ µij ∀k ∈ [0, N ] , p ∈ Pij , (i, j) ∈ W

xpai (tk+1) = xpai (tk) + ∆
[
gpai−1

(tk)− gpai (tk)
]

∀k ∈ [0, N − 1] , p ∈ P, i ∈ [1,m(p)]

xpai (t0) = xpai,0 ∀p ∈ P, i ∈ {1, 2, ...,m (p)}
x (tk) ≥ 0 ∀k ∈ [0, N ]

hp (tk) = gpa1(tk +Da1(xa1(tk)))(1 +D′a1(xa1(tk))ẋa1) ∀k ∈ [0, N ] , p ∈ P
gpai−1

(tk) = gpai(tk +Dai(xai(tk)))(1 +D′ai(xai(tk))ẋai)

∀k ∈ [0, N ] , p ∈ P, i ∈ [2,m(p)]∑
p∈Pij

N∑
k=0

φ (k)hp (tk) ∆ = Qij ∀ (i, j) ∈ W

ya (tk) ≥ 0 ∀a ∈ A, k ∈ [0, N ]

x (tk) ≥ 0 g (tk) ≥ 0 h (tk) ≥ 0 ∀k ∈ [0, N ]
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Figure 1: 3-Arc 3-Node Traffic Network

where k takes non-negative integer values, ∆ is the discrete time step that divides the time interval
[t0, tf ] into N equal segments, φ (k) is the coefficient which arises from a trapezoidal approximation
of integrals, that is

φ (k) =

{
0.5 if k = 0 and N
1 otherwise

and
tk = k∆

One advantage of time discretization is that we can now completely eliminate state variables (arc
volumes) from the problem by noting that

xpai (tk+1) = xpai,0 +
k∑
r=0

∆
[
gpai−1

(tr)− gpai (tr)
]
∀k ∈ [0, N − 1] , p ∈ P, i ∈ {1, 2, ...,m (p)}

As a consequence, one obtains a finite dimensional mathematical program, which may be solved by
conventional algorithms developed for such problems. We employ GAMS/MINOS for the numerical
example of Section 7.1.

7 Numerical Example

In what follows, we consider a 3 arc, 3 node network shown in Figure 1. The arc labels and arc
delay functions for this network are summarized in the following table:

Arc name From node To node Arc delay, Da (xa (t))

a1 1 2 2 + (xa1/200)
a2 2 3 1 + (xa2/150)
a3 2 3 3 + (xa3/100)

There are 2 paths connecting the single OD pair formed by nodes 1 and 3, namely:

P13 = {p1, p2} , p1 = {a1, a2} , p2 = {a1, a3}

The controls (path flows and arc exit flows) and states (path-specific arc traffic volumes) associated
with the network are:

Path Path Flow Arc Exit Flow Traffic Volume of Arc

p1 hp1 gp1a1 , g
p1
a2 xp1a1 , x

p1
a2

p2 hp2 gp2a1 , g
p2
a3 xp2a1 , x

p2
a3

We consider three-day toll planning in which each day is 24 hours, hence, ∆ = 24 and L = 14
(two weeks). We assume there is the initial travel demand Q̃ = 150 units from node 1 (origin) to
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Figure 2: Path and arc exit flows for path p1.

node 3 (destination). The threshold for travel cost is χ = 20000 and the inter-day rate of change
in travel demand is s13 = 0.7. The desired arrival time for each day is tA = 12, and we employ the
symmetric early/late arrival penalty

F [t+Dp (x, t)− tA] = 5 [t+Dp (x, t)− tA]2

Further, without any loss of generality, we take

xpai (0) = 0 ∀i ∈ [1,m (p)] , p ∈ P

In what follows we forgo the detailed symbolic statement of this example, and, instead, provide
numerical results in graphical form.

7.1 DOTPEC Computation Based on Time Discretization and GAMS/ MINOS

Path flows and arc exit flows for paths p1 and p2 are presented in Figures 2 and 3, while path flows
and tolls for each arc are given in Figures 4, 5 and 6, for three days from the computed fourteen-day
results. We see that tolls tend to be proportional to the path flows. When, for path p1, we compare
the effective path delays (including tolls) with path flows (origin departure rates) by plotting both
for the same time scale, Figure 7 is obtained. This figure shows that departure rate peaks when the
associated effective path delay achieves a local minimum, thereby demonstrating that a dynamic
user equilibrium has been found. Similar comparisons are made for paths p2 in Figure 8. The daily
changes of travel demand from the origin to destination according to the difference equation (55)
are given in Figure 9.

7.2 DOTPEC Computation based on Descent in Hilbert Space

The same numerical example was also solved by descent in Hilbert space, a continuous-time nu-
merical scheme described in Section 6.2. While employing the implicit fixed point approach, we
penalize the flow propagation constraints, the travel demand constraint, and the DUE conditions
which are converted to a set of inequality constriants. We present the path tolls in Figures 10 and
11. As in the previous section we again show the resulting flows are a dynamic user equilibrium by
plotting the travel cost and departure flow on the same time axis in Figures 12 and 13.

16



	
  

Path Flow 2

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

Time

Tr
af

fic
 F

lo
w

h2 g1p2 g2p2

Figure 3: Path and arc exit flows for path p2.
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Figure 4: Path flows and toll at arc a1.

	
  

Path Flow and Toll at Arc 2

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

Time

Tr
af

fic
 F

lo
w

0
1
2
3
4
5
6
7
8
9

To
ll

g1p1 y2

Figure 5: Path flow and toll at arc a2.

	
  

Path Flow and Toll at Arc 3
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Figure 6: Path flow and toll at arc a3.
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Figure 7: Comparison of path flow and associated unit travel costs for path p1.
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Figure 8: Comparison of path flow and associated unit travel costs for path p2.
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Figure 9: Daily changes of travel demand from the origin (node 1) to the destination (node 3)
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Figure 10: Path flows and toll at path p1.
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Figure 11: Path flows and toll at path p2.

	
  

Path Flow vs. Travel Cost at Path 1
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Figure 12: Comparison of path flow and associated unit travel costs for path p1.
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Figure 13: Comparison of path flow and associated unit travel costs for path p2.

7.3 Comparison of Tolls

To compare, the tolls by DETP and DOTPEC with two algorithms of choice, we suggest a com-
putational scheme for DETP. Recall that the decision rule for the dynamic efficient toll is:

yUp (t) =
∂Ψp

(
t, xS

)
∂hp

hSp ∀t ∈ [t0, tf ]

Note that the partial derivative of Ψp

(
t, xS

)
with respect to the path flow hp is not zero, since

the state variable x is an implicit function of the control hp as the relationship is expressed in
the state dynamics. Further we cannot calculate the derivative directly due to the nested delay
operator appears in Ψp (·, ·). However, from the numerical study of the dynamic system optimum
traffic assignment, it is known that the controls are zero or singular. When the departure rate is
nonzero, it as well as the states obtained from it are smooth and the delay operator is differentiable,

although the derivative
∂Ψp(t,xS)

∂hp
does not exist at the time moments where there are kinks in the

controls. The derivative is numerically approximated as:

∂Ψp [t, x (h∗, g∗)]

∂hp
∼=

Ψp [t, x (h+ δ, g)]−Ψp [t, x (h, g)]

δ

A numerical comparison of the tolls found from the DETP with those from the DOTPEC is
given in Figure Figures 14 and 15. We see that the efficient toll has a more spike-like behavior
than that for the DOTPEC. It is also interesting to note that the total congestion cost for the
DETP is (26.43, 38.85) while the total congestion cost for the DOTPEC is (38.30, 46.85) by discrete
approximation and (43.09, 45.13) by descent in Hilbert spaces for paths (p1, p2).

8 Concluding Remarks

We have presented a mathematical formulation of the DOTPEC and have shown how it may be
directly solved using the notion of descent in Hilbert space for a small illustrative problem. We
have also computed solutions using the more familiar approach of time discretization combined
with off-the-shelf nonlinear programming software. Clearly, in-depth testing and comparison of
these solution methods is required before one can be recommended over the other.

We have not explored in this manuscript the difficult theoretical questions of algorithm conver-
gence, existence of solutions to the dynamic efficient toll and the DOTPEC problems, the Braess
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Figure 14: Comparison of Dynamic Tolls by DETP, DOTPEC solved by discrete time approxi-
mation (DOTPEC 1), and DOTPEC solved by descent in Hilbert spaces (DOTPEC 2) for path
p1

	
  

Comparison of Dynamic Tolls at Path 2

0

10

20

30

40

0 2 4 6 8 10 12 14 16 18 20 22 24

Time

To
ll

DETP DOTPEC 1 DOTPEC 2

Figure 15: Comparison of Dynamic Tolls by DETP, DOTPEC solved by discrete time approxi-
mation (DOTPEC 1), and DOTPEC solved by descent in Hilbert spaces (DOTPEC 2) for path
p2
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paradox and the price of anarchy. These topics are being addressed in a separate manuscript still
in preparation. Given that serious efforts are already under way to implement versions of the opti-
mal dynamic toll problem in the U.S. and elsewhere, our initial focus on computation seems fully
justified.

We close by commenting that analytical DUE models – in our opinion – are far and away the
best starting point for studies of the theoretical aspects of dynamic efficient tolls and dynamic
congestion pricing. In particular, we have shown in this paper that an intuitive generalization to a
dynamic setting of the efficient static toll rule is correct – something that could not be established
in such a definitive way with a simulation model.
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