
Inventory Rebalancing through Pricing in Public Bike Sharing

Systems

Zulqarnain Haider† Alexander Nikolaev‡ Jee Eun Kang‡ Changhyun Kwon∗†

†Department of Industrial and Management Systems Engineering, University of South Florida, Tampa, FL, USA
‡Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, NY, USA

February 20, 2018

Abstract

This paper presents a new conceptual approach to improve the operational performance

of public bike sharing systems using pricing schemes. Its methodological developments are

accompanied by experimental analyses with bike demand data from Capital Bikeshare program

of Washington, DC (USA). An optimized price vector determines the incentive levels that can

persuade system customers to take bikes from, or park them at, neighboring stations so as

to strategically minimize the number of imbalanced stations. This strategy intentionally makes

some imbalanced stations even more imbalanced, creating hub stations. This reduces the need for

trucks and dedicated staff to carry out inventory repositioning. For smaller networks, a bi-level

optimization model with a single level reformulation is introduced to minimize the number of

imbalanced stations optimally. The results are compared with a heuristic approach that adjusts

route prices by segregating the stations into different categories based on their current inventory

profile, projected future demand, and maximum and minimum inventory values calculated to

fulfill certain desired service level requirements. We use a routing model for repositioning trucks

to show that the proposed optimization model and the latter heuristic approach, called the

iterative price adjustment scheme (IPAS), reduce the overall operating cost while partially or

fully obviating the need for a manual repositioning operation.

Keywords: transportation; bike-sharing; shared-mobility; rebalancing; pricing; heuristics

1 Introduction

Increasingly, Public Bike Sharing Systems (BSS) are being adopted by many major cities throughout

the world. Bikes are being touted as a way to achieve sustainable mobility in an urban setting while

also helping to alleviate the last mile problem in urban transportation (Shaheen et al., 2010). As

∗Corresponding Author; E-mail: chkwon@usf.edu

1

of February 19, 2018, bike sharing systems are operating in 1560 cities worldwide and another

402 such systems are in planning or under construction with a growing interest in more and more

cities (Meddin and DeMaio, 2018). One of the major problems faced by these systems is the

operational issue of repositioning of bikes between different stations. Demand variability causes

certain stations to become too full or too empty to effectively service new customers. This not only

affects the desired service level but also incurs spurious operational costs. According to a report

by New York City Department of City Planning (2009) based on different case studies, the total

capital cost for a bike sharing system varies from $3000/bike to $4400/bike in different cities. When

averaged across programs, the yearly operating cost for a bike share program is around $1,600/bike.

The operating cost consists of system operations, administration, marketing and utility costs

associated with hardwired stations. System operation forms the largest share of these costs and

includes functions such as: maintenance of all equipment, rebalancing of bikes, customer service

operations, and IT support (The Pennsylvania Environmental Council, 2013). Clearly, the reposi-

tioning of bikes from stations too full to stations too empty is a huge operational overhead. In fact,

for Vélib system in Paris, the average cost of a single repositioning for a single bike is $3 (DeMaio,

2009). A system-wide snapshot of Capital Bikeshare at 9:30 a.m. on May 15, 2014 shows that 88

out of 202 stations are imbalanced considering 90% service level (see Section 3.1).

The contribution of this work lies in the development of methods - both exact and heuristic

- and algorithms that bike sharing system managers can use to reduce the number of imbalanced

stations by rebalancing their inventory through price incentives/disincentives. To do so, we will

intentionally make some imbalanced stations more imbalanced, making them function as hubs. If

only a few highly imbalanced stations exist in the system, bike redistribution can be handled with

a few regular short time truck trips. With the reduced number of imbalanced stations, the truck

redistribution operation becomes simpler and efficient resulting in operating cost reduction. This

observation is key to our idea of designing dynamic pricing policies. We seek to ensure that surplus

bikes are gathered predominantly at ‘surplus accumulation’ stations (hubs for bikes), and similarly,

the deficiency of bikes mainly occurs at ‘lack accumulation’ stations (hubs for docks).

We understand that the practical implementation of the pricing policy can be challenging and

must be discussed. Nowadays, many modern bike sharing stations are equipped with a computer

terminal with a touch screen. When a bike user tries to checkout a bike, the user will be asked to

choose his or her destination. Based on the current state of the system, the user will be provided

with alternate journey choices with information about the price to be charged for each choice at

the time of return. A mobile webpage or an application can also be used to provide on the go

information about the prices even before the bike user approaches a bike station.

We assume that bike users exhibit a homogeneous sensitivity to the price and always seek to

maximize their utility. Such indirect control by the system operator in the bi-level programming

context is also very common in the Stackelberg game (or leader-follower game) setting for economics

2

and policy studies (Bard, 1991). We also did not consider the demand elasticity of price. We

assumed that travel demand is fixed and users choose the lowest priced alternative to make the

journey.

To determine the price incentives, we formulate a bi-level optimization model in Section 3 and

provide a single-level reformulation that may be useful for small networks. In Section 4 we propose

a heuristic algorithm, called the Iterative Price Adjustment Scheme (IPAS), and compare its per-

formance with the single-level optimization model (P) solved by a commercial solver. We conclude

that we can successfully reduce the number of imbalanced stations, by giving travelers multiple

journey choices and changing the cost of those journeys through pricing. We also demonstrate that

the cost of the same degree of manual rebalancing outweighs the price incentives offered.

The performance of IPAS is demonstrated by computational experiments in Section 5. Using

the data from Capital Bikeshare in Washington, D.C., we show how our approaches manage to

successfully minimize the number of imbalanced stations. The efficacy of our heuristic approaches

vis-à-vis execution time, while bringing satisfactory improvement to the overall objective of mini-

mizing the number of imbalanced stations is also shown. In Section 5.3.2, we use a routing model

to show how the smaller number of imbalanced stations achieved as a result of a pricing scheme

translates into a simpler and more efficient static repositioning operation using trucks.

2 Literature Review

Bike sharing systems have recently garnered an increased interest from the research community due

to their growing importance in sustainable urban transport systems. DeMaio (2009) and Shaheen

et al. (2010) separately discuss the history, impacts, models of provision and the future of public

BSS. They identify improved redistribution of bikes as a key challenge facing BSS. Schuijbroek

et al. (2017) have an excellent and comprehensive description of BSS literature. They divide up the

BSS literature into four major streams including strategic design, demand analysis, service level

analysis, and rebalancing operations. We, thus, refer readers to Schuijbroek et al. (2017) for general

literature review, and limit this section to reviewing relevant literature on bike sharing systems, in

particular, rebalancing operations.

Rebalancing operations are a big part of operating costs of a bike sharing system (The Penn-

sylvania Environmental Council, 2013). Generally, bike sharing systems employ two methods to

redistribute the bikes: truck-based manual redistribution and pricing-based rebalancing.

Most bike sharing systems have a fleet of trucks that move around and pick and drop bikes.

Vélib has 20 trucks (Benchimol et al., 2011) operating 24 hours to carry out manual rebalancing.

Trucks and crew required to operate these have huge associated costs. Paul DeMaio of MetroBike,

LLC, mentions a conversation with Luud Schimmelpennick, a pioneer of bike sharing concept, in

DeMaio (2009). He reports that according to Schimmelpennick the cost for distribution of a single

bike for JCDecaux is $3 and that any scheme that offers incentives to customers would increase the

3

redistribution efficiency at a fraction of the current cost. Since some kind of manual balancing is

always required, most of rebalancing literature is focused on optimal truck routing.

Several papers have recently studied truck-based manual bike redistribution. Benchimol et al.

(2011) introduces several approximation algorithms for static rebalancing of bikes at the end of the

day. Raviv et al. (2013) introduced several formulations for static rebalancing problem with the

objective of minimizing the expected user dissatisfaction. Chemla et al. (2013) present an exact

model for the static rebalancing problem and two relaxations that they then solve using a branch-

and-cut algorithm in conjunction with tabu search. Dell’Amico et al. (2014) also propose several

MILP formulations for bike rebalancing problem and then propose a branch-and-cut algorithm to

solve these models. They apply their approach on 65 benchmark instances to compare the perfor-

mance of their MILP formulations. Contardo et al. (2012) introduce a dynamic public bike sharing

balancing problem (DPBSBP) to rebalance a BSS during daytime which constitutes peak hours.

They solve the DPBSBP problem using Dantzig-Wolfe decomposition and Benders decomposition

to derive lower bounds and fast feasible solutions. Caggiani and Ottomanelli (2012) construct a

modular Decision Support System (DSS) for dynamic bike redistribution. Shu et al. (2013) discuss

under-utilization of bike sharing systems in Chinese cities and propose a deterministic model to

optimally deploy bikes and docking capacity at different stations. They also evaluate the value of

redistribution and its impact on the number of trips supported by the system.

There is a recent trend in BBS literature to introduce a scheme of incentives to get users to

move bikes away from the crowded stations and into the less occupied stations. Vélib operates a

V+ scheme to induce users to avoid certain stations and prefer others. Users get 15 minutes of

added travel time if they place the bikes at one of the hundred uphill stations (Fricker and Gast,

2016). The incentives can be in the form of extra added time, as is the case with Vélib, or some

cash discounts. The literature on user incentive schemes is not as plentiful as that on rebalancing

through trucks (Fricker and Gast, 2016). Fricker and Gast (2016) present a two-choice model in

which each user is provided with two station choices at the time of a rental and is given an incentive

to choose the station with the lower load as a destination. They show that even if a fraction of the

users make the intended choice, the number of imbalanced stations comes down dramatically.

Waserhole et al. (2012) solve an optimization model for setting the trip prices through a Markov

Decision Process framework based on Continuous-Time Markov Chain. They present a Fluid Ap-

proximation approach and build a mathematical programming model for the fluid approximation of

the Stochastic VSS Pricing Problem with continuous prices. A simulation model is also implemented

to check the performance of fluid approximation heuristic. Pfrommer et al. (2014) introduced a

tailored algorithm for dynamic route planning for multiple trucks for redistribution of bikes and

then devised a system of price incentives computed based on Model Predictive Control (MPC) to

draw users away from full or empty stations.

The problem of inventory imbalance and subsequent need for redistribution also exists in car

4

sharing systems. While in bike sharing a user can make a trip on any origin destination pair

(DeMaio, 2009), most car sharing systems require users to return their vehicles back to the origin

to avoid inventory imbalance (Boyacı et al., 2015). Effective relocation policies are essential for

allowing one way trips and making car sharing systems more viable and user friendly.

Barth et al. (2004) use price incentives in a shared-use electric vehicle system called UCR

Intellishare to encourage user-based vehicle relocation. Kek et al. (2009) devise a three-phase

Optimization-Trend-Simulation (OTS) decision support system for vehicle relocation problem in

car sharing systems. The simulation results suggest that using the suggested parameters from

OTS can reduce the number of relocations by 37–41 %. Correia and Antunes (2012) recommend

relocation operations at the end of each day in one way car sharing systems. They present three

MIP models corresponding to three trip selection schemes. They suggest a scheme of price rate

discrimination to incentivize or disincentivize certain trips. Correia et al. (2014) determine the

added value of information and user flexibility for a one way car sharing system. Their approach

is similar to what we propose. They allow users the flexibility to choose neighboring stations other

than the intended origin and destination pair to address the stock imbalance problem.

In our paper, we aim to establish a system of cash discounts and penalties on user fee to influence

user decisions. The operators have real time status data on all stations and based on this data a

price vector can be calculated for all journeys. This information can be provided to users at Point

of Sale or through mobile applications. As described by Waserhole et al. (2012), price incentives

can be offered in discrete jumps with certain small increments, or they can be continuous within

a predefined range. In this paper, pricing policies are dynamically changed in real time depending

upon the current state of the system and the expected future demand. They can, however, be

static, i.e., independent of the system’s current state, and set in advance.

3 Model Formulation

The decision-making process for bike sharing systems is bi-level, as shown in Figure 1. Decisions

regarding the location and size of stations as well as pricing are made by the operator running

the system, while lower level journey decisions are made by the customers using the bikes. In this

paper, we are mainly concerned with the system level pricing decision alone. In our model, the

upper level (operator) objective is to minimize the total number of imbalanced stations. The lower

level customer objective is to make a journey between two points at the minimum possible cost.

The underlying assumption is that travelers will always take the minimum cost route. This section

works to develop a detailed formulation of the problem that exploits the idea of strategic customer

incentives. A few explanations, leading to the definition of imbalanced stations, are first in order.

5

Figure 1: Bilevel Decision Making Process

3.1 Service Level Requirements

As described earlier, bike sharing systems are subject to two demands. On one hand, there exists

the demand for bikes while on the other hand, there is the demand for empty docks, i.e., for parking

the bikes at the end of the journey. A bike procured from one station is eventually parked back

at the same station or any other station in the system. Every time a station is full or empty, a

service opportunity is wasted. Most bike sharing systems keep track of the station inventory level.

Some systems measure the number of instances (e.g. Capital Bikeshare in Washington, DC, USA)

while others measure the fraction of time (e.g. Vélib in Paris) that the stations are empty or full.

Operators do it for efficient rebalancing operations and to determine the need for expansion or

reduction in the number of docks available at a particular station.

Schuijbroek et al. (2017) define a measurable Type-2 service level: the fraction of demand

satisfied directly should be larger than β−i for pickups and larger than β+i for returns, assuming no

back-orders. We use the same definition:

E[Satisfied bike pickup demands]

E[Total bike pickup demands]
≥ β−i ,

E[Satisfied bike return demands]

E[Total bike return demands]
≥ β+i .

Schuijbroek et al. (2017) then go on to establish a method to evaluate the values of minimum and

maximum inventory for each station in the system, respectively designated as Imin
i and Imax

i for

given β−i and β+i . They model the inventory Ii at station i as an M/M/1/K queuing process

6

with customers in the queue for bikes or docks representing the inventory. We use their system

of equations to evaluate the values of Imin
i and Imax

i . For given β−i and β+i , starting inventory I0i
should ideally be rebalanced so that:

Imin
i ≤ Ii ≤ Imax

i .

If a station does not satisfy the above inequality, the station is termed imbalanced. Implicit in this

definition of an imbalanced station is the idea of service level requirements. Only those stations

that cannot fulfill the future demand for bikes and docks with a β−i , β+i service level are considered

imbalanced. It bears repeating that a station is lack-imbalanced when Ii ≤ Imin
i and surplus-

imbalanced when Ii ≥ Imax
i . It must be noted that Imin

i is always greater than or equal to 0 and

Imax
i is always less than or equal to the maximum capacity of station i, i.e., the number of docks

installed in station i. So a station can be imbalanced even when it is not completely full or empty.

The following parameters are required to calculate Imin
i and Imax

i for station i: β−i , β+i , number of

docks installed, arrival rate of users to pick up bikes, and arrival rate of users to return bikes.

3.2 A Bi-Level Formulation

This section presents the mathematical formulation of the bi-level problem. The first level repre-

sents the price change vector to minimize the number of imbalanced stations while the lower level

corresponds to a minimum cost network flow problem which determines the route choices made by

the travelers. Let S be the set of stations in the system. Let us assume that for a single journey, i

is the origin station and j is the destination station where i, j ∈ S. Let us also assume that (i, j)

is the OD pair for a single one way trip and W is the set of all possible OD pairs, i.e., (i, j) ∈ W.

If the number of stations in the network is |S| then the number of OD pairs is |S|2. The distance

between two stations is the distance along the shortest bike route and not the euclidean distance.

In an urban setting, each station has a number of neighborhood stations. We assume that two

stations less than 600 meters apart are neighborhood stations. On average, this accounts for about

6 minutes of walking (Bohannon, 1997). For every OD pair, both origin and destination have a

number of neighborhood stations as illustrated in Figure 2. The colored circles around the stations

represent the neighborhood radius.

Let us designate a full, directed network G(S,A,P) where S denotes the set of nodes (or

stations) in the network, A denotes the set of arcs and P denotes the set of paths. In this network

a direct arc between any two nodes is also the shortest path between them. For every single OD pair

in set W, we construct a directed network Gij(Sij ,Aij ,P ij). In this smaller network Sij is the set

of nodes that includes the origin station, the destination station and their respective neighborhood

stations. Aij is the set of directional arcs for every OD pair (i, j) and P ij is the set of multiple paths

from origin station to destination station. Observe that Sij ⊂ S but Aij 6⊂ A and P ij 6⊂ P. As

7

Figure 2: Network structure for every OD station pair

shown in Figure 2, a traveller intending to go from origin i to destination j can now take any one of

the many paths available to her. If Bi and Bj are the numbers of neighborhood points of origin and

destination, respectively, then the total number of alternate paths available is (Bi + 1)× (Bj + 1).

Each path can consist of one, two or three arcs. For example, path i → j consists of one arc,

while path i→ m2 → n1 → j consists of three arcs. A traveller taking the latter path walks from

origin i to its neighborhood point m2, rents a bike and bikes to destination’s neighborhood point

n1, then parks the bike at an empty dock and walks to the destination j. In Figure 2, bike links are

represented by black arrows, while red arrows represent walk links. Note that every path contains

only one bike link.

For a given OD pair (i, j), let cijmn be the cost matrix for all links (m,n) where (m,n) ∈ Aij and

m,n ∈ S. The cost cijmn of traversing a link consists of various subcosts. These include the cost of

walking, cost of biking, and the price of renting a bike to travel on a bike link. The rental price

is determined by the operator. Let these subcosts be denoted by wijmn, v
ij
mn and pmn, respectively.

The costs wijmn, v
ij
mn are calculated as

wijmn = ν3t
ij
mn and vijmn = ν2t

ij
mn.

In the above expressions tijmn is the time of travel between two stations m and n using a bike.

ν2 and ν3 are the coefficients that convert distance between stations to the cost depending upon

8

biking and walking travel times, respectively. As stated earlier, the price pmn is defined by the

operator. The price associated with a single given link (m,n) in multiple OD pair networks is the

same. For example, the value of p19,3 is the same for all (19, 3) links in all the feasible OD pair

networks. Hence, all pmn values in an OD pair network form a price vector associated with the OD

pair (m,n) and defined by the operator.

Also, for every OD pair (i, j), let (m,n) ∈ AijB be the links where a bike is used to traverse and

hence the cost of travel consists of pmn and vijmn. Similarly, let (m,n) ∈ AijW be the links where

a traveller walks and hence the cost of travel consists of wijmn alone. The price vector pmn further

consists of a fixed component and a variable component,

pmn = p0mn + qmn, (1)

where p0mn is the fixed base price set by the operator and depending on the time of the journey

(m,n) while qmn is the variable component capturing a penalty or incentive within a fixed range

[qmin
mn , q

max
mn], determined again by the operator, with

qmin
mn ≤ qmn ≤ qmax

mn . (2)

Note that all the costs mentioned above except qmn are fixed costs depending only on travel time.

By modifying the price change vector qmn, the operator can modify the cost matrix and influence

the traveller’s decision about which path to take. Here we introduce a binary variable xijmn which

is equal to 1 if link (m,n) is used to travel between OD pair (i, j), and 0 otherwise. Since for every

OD pair, one or more links (m,n) can be used to travel between origin i and destination j, one or

more variables xijmn can take on the value of 1. The outcome xijmn of the lower level program which

depends on traveller choices is used at the upper level to calculate the bike inventory Ii for each

station i at each instant. This information feeds into the upper level objective function to minimize

the number of imbalanced stations. To calculate the inventory, we only require links where a bike

is used. Let parametric vector αijmn have value 1 for a walk link and 0 for a bike link. Similarly, let

parametric vector δijmn have value 1 for a bike link and 0 for a walk link. Then the product δijmnx
ij
mn

is 1 only if a link (m,n) used to travel between an OD pair is a bike link and 0 if it is not a bike

link. Observe that for every OD pair combination, δijmnx
ij
mn is 1 for only one link (m,n). Table 1

details the mathematical notation used in the model.

The Upper Level Pricing Problem of the System Operator

Using the notation defined in Table 1, we formulate an upper level optimization problem to deter-

mine the price change vector qmn as follows:

(U) min
∑
i

yi +
∑
i

zi (3)

9

Table 1: Mathematical Notation

Sets
S Set of stations
W Set of Origin-Destination (OD) pairs
A Set of arcs in the directed network for every OD pair
P Set of Possible Paths for each OD pair
Parameters
Imax
i Maximum number of permissible bikes at a station i ∈ S, beyond which

the station is considered imbalanced; obtained from preprocessing steps
in Section 3.1

Imin
i Minimum number of permissible bikes at a station i ∈ S, beyond which

the station is considered imbalanced; obtained from preprocessing steps
in Section 3.1

I0i Starting level of bike inventory at station i ∈ S at the beginning of time
horizon considered

Ci Capacity of a station i ∈ S
M A very large number or big-M used for modeling if-else type and dis-

junctive constraints

δijmn Binary parameter, 1 if (m,n) ∈ Aij is a bike link and 0 if it is a walking
link

αijmn Binary parameter, 1 if (m,n) ∈ Aij is a walking link and 0 if it is a bike
link

dij Demand for OD pair (i, j) ∈ W during the time horizon considered
Bi The number of neighborhood stations for a station i ∈ S
Variables
Ii Variable representing the current (final) level of bike inventory at station

i ∈ S at the end of the time horizon considered

Ĩi Variable representing truncated level of bike inventory at station i ∈ S
at the end of the time horizon considered

yi Binary variable, 1 if a station i ∈ S is a surplus station where surplus
station is a station where Ii > Imax

i

zi Binary variable, 1 if a station i ∈ S is a lack station where lack station
is a station where Ii < Imin

i

qmn Variable representing price change (Incentive or penalty) for traversing
link (m,n) ∈ A

xijmn Binary variable, 1 when link (m,n) ∈ Aij is used to travel between OD
pair (i, j)

ai Auxiliary binary variable for a station i ∈ S
bi Auxiliary binary variable for a station i ∈ S

10

subject to

Ii − Imax
i ≤Myi ∀i ∈ S, (4)

Imin
i − Ii ≤Mzi ∀i ∈ S, (5)

Ii = I0i −
∑

(i,j)∈W

∑
n∈Sij

xijinδ
ij
ind

ij +
∑

(i,j)∈W

∑
n∈Sij

xijniδ
ij
nid

ij ∀i ∈ S, (6)

qmin
mn ≤ qmn ≤ qmax

mn ∀(m,n) ∈ A, (7)

where values of variables xijmn depend on the minimum cost route choice of bike users and is

determined by a lower level problem to be introduced later. It is possible in constraint (6) for the

inventory Ii to go beyond capacity Ci or fall below zero as we do not explicitly consider any bounds

on the inventory. However, we use a variable Ĩi to represent the truncated value of inventory if Ii

goes beyond capacity or below zero. Following inequalities are used as constraints in our model

to represent the relationship between the real final inventory and the truncated inventory. The

auxiliary binary variables ai and bi take a value of 1 when Ii is below zero or above capacity,

respectively. If one of these binary variables ai or bi is equal to 1, the corresponding truncated

inventory value Ĩi is equal to 0 or Ci, respectively. If Ii is between 0 and Ci, i.e., ai and bi are

both 0, the truncated counterpart is simply equal to Ii. The value Ii − Ĩi summed over all i is the

portion of demand that remains unsatisfied.

Ii ≤ Ci +Mbi ∀i ∈ S, (8)

Ii ≤M(1− ai) ∀i ∈ S, (9)

Ii ≥ Ci −M(1− bi) ∀i ∈ S, (10)

Ii ≥ −Mai ∀i ∈ S, (11)

ai + bi ≤ 1 ∀i ∈ S, (12)

Ĩi ≤ Ii +Mai +Mbi ∀i ∈ S, (13)

Ĩi ≥ Ii −M(ai + bi) ∀i ∈ S, (14)

Ĩi ≥M(1− ai) ∀i ∈ S, (15)

Ĩi ≥ Ci −M(1− bi) ∀i ∈ S, (16)

0 ≤ Ĩi ≤ Ci ∀i ∈ S, (17)

Using this approach, we avoid the possible infeasibility in our model by not considering any

explicit bounds on the final inventory Ii. At the same time, however, we make sure that any devia-

tions from the realistic range of [0, Ci] are accounted for. Later in our computational experiments,

we report the unsatisfied demand for comparison purposes between our pricing approaches and the

situation without pricing.

11

The Lower Level Routing Problem of the Bike Users

In the lower level problem bike users who want to travel from origin i to destination j use minimum

cost paths so the objective is,

(L) min
∑

(i,j)∈W

∑
(m,n)∈Aij

cijmnx
ij
mn (18)

subject to ∑
(m,n)∈Aij

xijmn −
∑

(n,m)∈Aij

xijnm = eijm ∀m ∈ Sij , (i, j) ∈ W, (19)

xijmn ∈ {0, 1} ∀(m,n) ∈ Aij , (i, j) ∈ W, (20)

where

cijmn =

p0mn + qmn + vijmn ∀(m,n) ∈ AijB
wijmn ∀(m,n) ∈ AijW .

(21)

In (19), eijm takes the value 1 (respectively, −1), if node m is the origin (respectively, destination)

of the trip, and 0 otherwise.

3.3 A Single Level Reformulation

In the lower level problem the integrality requirement for variables xijmn can be replaced by the

constraints xijmn ≥ 0. This is so because the lower level program is a minimum cost network flow

problem: its right hand side can only be integer and the coefficient matrix in the left hand side forms

a totally unimodular matrix. Now we can represent the lower problem by its optimality conditions

or Karush-Kuhn-Tucker (KKT) conditions of its LP relaxation. Since the lower-level problem is a

linear optimization problem, we can replace it by following KKT optimality conditions:

δijmn(p0mn + qmn + vijmn) + αijmnw
ij
mn − λijm + λijn − µijmn = 0 ∀(m,n) ∈ Aij , (i, j) ∈ W, (22)∑

(m,n)∈Aij

xijmn −
∑

(n,m)∈Aij

xijnm = eijm ∀m ∈ Sij , (i, j) ∈ W, (23)

xijmn ≥ 0 ∀(m,n) ∈ Aij , (i, j) ∈ W, (24)

µijmn ≥ 0 ∀(m,n) ∈ Aij , (i, j) ∈ W, (25)

λijm free ∀(m,n) ∈ Aij , (i, j) ∈ W, (26)

−µijmnxijmn = 0 ∀(m,n) ∈ Aij , (i, j) ∈ W, (27)

where the variables λijn and µijmn are the dual variables corresponding to constraints (19) and (20)

in the primal problem, respectively. The complementary slackness conditions (27) are non-convex,

and we can linearize them taking advantage of binary nature of xijmn. Suppose M is a very large

12

number then the linearized constraint would be:

µijmn ≤M(1− xijmn) ∀(m,n) ∈ Aij , (i, j) ∈ W. (28)

We state the final formulation of our single level optimization model here:

(P) min
∑
i

yi +
∑
i

zi (29)

subject to

Ii − Imax
i ≤Myi ∀i ∈ S, (30)

Imin
i − Ii ≤Mzi ∀i ∈ S, (31)

Ii = I0i −
∑

(i,j)∈W

∑
n∈Sij

xijinδ
ij
ind

ij +
∑

(i,j)∈W

∑
n∈Sij

xijniδ
ij
nid

ij ∀i ∈ S, (32)

qmin
mn ≤ qmn ≤ qmax

mn ∀(m,n) ∈ A, (33)

δijmn(p0mn + qmn + vijmn) + αijmnw
ij
mn − λijm + λijn − µijmn = 0

∀(m,n) ∈ Aij , (i, j) ∈ W, (34)∑
(m,n)∈Aij

xijmn −
∑

(n,m)∈Aij

xijnm = eijm, ∀m ∈ Sij , (i, j) ∈ W, (35)

xijmn ≥ 0 ∀(m,n) ∈ Aij , (i, j) ∈ W, (36)

µijmn ≥ 0 ∀(m,n) ∈ Aij , (i, j) ∈ W, (37)

λijm free ∀(m,n) ∈ Aij , (i, j) ∈ W, (38)

µijmn ≤M(1− xijmn) ∀(m,n) ∈ Aij , (i, j) ∈ W. (39)

In the final model represented by (29)–(39) alongside (8)–(17), the objective function represents

the total number of imbalanced stations. Constraints (30) and (31) make sure the corresponding

binary variables yi and zi take up a value of 1 when inventory bounds are violated. Constraint

(32) is the inventory update constraint while (33) bounds the price incentives or penalties that

can be given to riders. Constraints (34) and (35) are respectively the dual and primal feasibility

constraints and (39) is complementary slackness condition. Finally, (8)–(17) work to limit the

truncated inventory variable ITi between 0 and Ci. It is important to point out that our choice of

the objective function is an obvious departure from the functions that try to minimize the system-

wide number of unsatisfied demands. Rather than trying to minimize the system-wide service level,

we look at the service level for every single station and try to achieve a certain desirable value for

it for as many stations as possible. Also, the alternative objective functions may provide us a

price vector but they will naturally redistribute the unsatisfied demand between different stations

in equal measure. This outcome is unfavorable to our basic idea of trying to create hub stations

and concentrating the unsatisfied demand on those stations, thus making the subsequent manual

13

truck repositioning operation much easier and simpler.

In the single level model (P) that we use for numerical experiments, for every OD pair (i, j),

the number of decision variables is calculated as 2BiBj +3(Bi+Bj). For a network of 200 stations,

this amounts to approximately 1 million variables and 1 million constraints. Therefore, while

this formulation can be useful for a comparative evaluation of other methods (with small-scale

problems), more scalable solutions are desirable for practical purposes. Another issue that we face

is that for every OD pair (i, j), the optimal price vector prescribed by the single level model (P) is

prone to give us path costs that can be approximately equal to each other. We give an example of

this phenomenon in Appendix A of Supplementary Materials.

3.4 The Issue of Approximately Equal Path Costs

The issue of approximately equal path costs is instructive for anyone trying to optimally determine

a price vector. Since lower level decision makers are not explicitly aware of the upper level objective

of minimizing the number of imbalanced stations, given ambiguous choices, they are likely to make

decisions unfavorable to the upper level agency.

To take the effect of this fuzziness into account, we carry out some post processing steps after

getting the pricing vector from our model (P). We construct a new model called ¯(P), a slightly

modified version of the original model (P), and incorporate the price vector recommended by P,

designated as qoptmn, into the new model as a constraint. We state the formulation of the model ¯(P)

here:

¯(P) max
∑
i

yi +
∑
i

zi (40)

s.t.

(32), (34)–(39), (8)–(17),

Imax
i − Ii ≤M(1− yi) ∀i ∈ S, (41)

Ii − Imin
i ≤M(1− zi) ∀i ∈ S, (42)

qmn = qoptmn ∀(m,n) ∈ A, (43)

In the new model, the objective function is maximized, and constraints (30), (31) and (33) are

replaced by constraints (41), (42) and (43). As evident, (41) and (42) are modified to correspond

to the changed objective function. Constraint (43) assigns the optimal price vector values from

(P) to the price variables in the new model ¯(P). The rest of the constraints in ¯(P) are exactly

the same as the model (P). The new model ¯(P) does not try to determine a pricing vector. It

uses the optimal vector suggested by (P) to come up with an alternate set of lower level decisions

(x). These decisions correspond to people making choices, in response to the predetermined pricing

vector, that are unfavorable to the upper level objective (represented by maximization).

14

Using ¯(P), we are interested in the worst case scenario and answer the following question: What

happens if we apply the optimal pricing vector in reality, but rather than minimizing the number

of imbalanced stations (people making decisions favorable to the agency), we maximize the number

of imbalanced stations (people making decisions unfavorable to the agency)? What would be the

worst case result of applying the suggested price vector? The objective function value of ¯(P) thus

serves as a strict upper bound on the number of imbalanced stations if the optimal price vector

recommended by model (P) is to be implemented.

4 Iterative Price Adjustment Scheme

This section presents a novel heuristic method to solve the problem in model (P). Keeping the

upper level problem intact, we work with the lower level problem: starting with an initial price

vector, we use that vector to calculate, rather than optimally determine, the initial set of route

choices (x). Given these route choices, the upper level model is then used to calculate the value of

the objective function. Based on this value, the decisions about the subsequent modification in the

initial price vector are made. That is, instead of performing the exact minimum cost optimization

to determine the optimum price change vector qmn, we determine qmn heuristically. The overall

objective of minimizing the number of imbalanced stations remains the same. This section presents

an iterative heuristic method called the Iterative Price Adjustment Scheme (IPAS) that produces a

price change vector using discrete increments and decrements on the price between different station

categories.

The proposed heuristic scheme IPAS relies on a simple decision making process that classifies

the bike stations into different categories based on their starting inventory level I0i , the maximum

and minimum inventory values, and the demand in the next time period. Based on these factors

we divide the stations into six different types defined in Section 4.1. Although, we formally define

the categories in Section 4.1, the basic purpose of categorizing the stations is to identify station

pairs where price should increase in discrete jumps, decrease in discrete jumps or stay the same.

If a pair of stations m and n are both balanced stations (as defined in Section 4.1), there is no

need to change the price between them and hence the corresponding qmn = 0. Similarly, if a pair

of stations m and n are both “slightly” imbalanced stations (as defined in Section 4.1), it may

be advisable to change the price vector between them so as to reduce their respective imbalance.

Finally, if a station m is “highly” imbalanced (or hub station) (as defined in Section 4.1) such that

it is not possible to make it balanced through pricing changes, it may be desirable to make such a

station even more imbalanced for the sake of preserving the balance at other neighboring stations.

As the primary objective of the pricing problem lies in identifying the hub stations, while

simultaneously reducing the number of such stations, we will first develop a categorizing heuristic

to identify such stations where accumulation happens naturally. If a station is expected to have

a significant surplus and there are no stations in its neighborhood where lack accumulation is

15

Figure 3: Flow chart of the Iterative Price Adjustment Scheme (IPAS)

expected, then such a station is a suitable candidate for a surplus hub. For this kind of station, to

help further accumulation, we can decrease prices for bike returns to this station and simultaneously

increase regular prices on bike checkouts from the station. For a likely lack accumulation station

(Hub station for docks), we can do the opposite: increase regular prices on bike returns and

offer discounts for checkouts. Based on such selection of hub stations and price changes, we may

evaluate the objective function in (P) and iteratively adjust prices. This process is repeated until

the designated number of iterations. After the iterations run out, this scheme gives the price change

vector with minimum number of imbalanced stations as its output. Figure 3 shows a flow chart for

the proposed iterative price adjustment scheme.

Step 0 (Initialization): Define the Algorithm Parameters

First of all, we define some parameters that will be used in the proposed scheme. We borrow much

of our notation from Table 1 while we describe the new notation used for our heuristic method in

Table 2. The basic parameters are as follows: The parameters Imax
i , Imin

i , I0i , and Ii as defined in

Table 1; k is an integer number representing the running iteration of the algorithm; and qkmn is the

Price change (Incentive or Penalty) vector for traversing link (m,n) during iteration number k of

the algorithm where qmn for a given link (m,n) is the same for all OD pairs. The starting price

change vector called qkmn for k = 0 can generally have all values equal to 0.

Parameter θini describes the maximum number of bikes that can possibly come into a certain

16

Table 2: Mathematical Notation for IPAS

qkmn Price change (Incentive or penalty) value for traversing link (m,n) ∈ A
in iteration k

∆qmn The change (decrease or increase) in incentives for link (m,n) ∈ A be-
tween two consecutive iterations of the algorithm.

k An integer number representing the running iteration of the algorithm.
θini Parameter representing the maximum number of bikes that can possibly

arrive into a station i ∈ S
θouti Parameter representing the maximum number of bikes that can possibly

go out of a station i ∈ S
ρi Parameter representing the rank ratio of a station i ∈ S which is used

to rank the stations based on the quantum of their imbalance.
κ User determined parameter used to control the level of accumulation in

the network intended. The value of κ varies between 0 and 1 with larger
value giving smaller number of hub (accumulation) stations.

σs The parameter representing the small discrete jumps in the price vector.
σl The parameter representing the large discrete jumps in the price vector.

station i, which is the sum of the number of bikes coming in from all the other stations of the

network into the station i and the number of bikes coming in from all the other stations of the

network into the neighborhood stations of i. We assume that if big enough incentives were offered,

all the traffic coming into neighborhood points of i will be redirected to i and users will take rest

of the trip walking.

Parameter θouti describes the maximum number of bikes that can possibly go out of a certain

station i, which is the sum of the number of bikes going to all the other stations of the network

from the station i and the number of bikes going to all the other stations of the network from the

neighborhood stations of i. We assume that if big enough incentives were offered, all the traffic

heading from neighborhood points of i will be redirected through i and users will walk to i and

take a bike forward to their destinations.

The rank ratio, denoted by ρi for each i ∈ S, is the parameter used to rank different stations

based on their current inventory status,

ρi =
(Ii − Imax

i)2 + (Ii − Imin
i)2

(Imax
i − Imin

i)2
. (44)

The value of ρi varies from 0.5 to∞ with lesser values implying a more balanced station and larger

values implying a more imbalanced station. A station with value of ρi ≥ 1 implies that either of

the two inequalities Ii ≤ Imax
i and Ii ≥ Imin

i are unsatisfied. The metric ρi looks at the current

inventory and min-max range of a station to define the “distance” of the current inventory of the

17

station from its min-max extremes. If for a station i, Imin
i = 0, Imax

i = 10, and Ii= 5, then its

ρi value will be 0.5, which is the minimum possible. Any deviation from this middle value will

increase ρi and the station will be considered less balanced. We could very well have constructed

some other measures but the underlying logic would stay the same. The purpose of the rank ratio

is to sort stations that fall into one of the six categories listed below.

4.1 Step 1: Define Station Types

Each station falls in only one of the six subsets of stations based on the following definitions:

HUB Stations with Bikes Needed (HSBN) have very low bike inventory, so that we would

not have enough bikes to make this station balanced again, even if the incoming bike inventory

from all the neighboring stations were to be redirected; hence they become good candidates

for lack accumulation stations. Instead of making such a station balanced by gaining bikes,

we make it even more imbalanced by losing bikes further. Such a station must satisfy the

following inequality:

κImin
i − I0i > θini .

where κ is a constant with value ranging from 0 to 1. A higher value of κ means less HUB

stations and vice versa. For κ equal to 1, the above inequality implies that it will be impossible

to raise I0i to a value equal to or greater than Imin
i even if all the bikes from the neighborhood

stations of i were redirected to i.

HUB Stations with Docks Needed (HSDN) have very high bike inventory so that it is very

difficult to lose enough bikes to make the station balanced again, even if all the outgoing

bikes from its neighborhood stations were to be redirected through it. Hence these stations

become good candidates for surplus accumulation station. So instead of making it balanced

by losing bikes, we make it even more imbalanced by accumulating more bikes. Such station

must satisfy the following inequality

I0i − κImax
i > θouti .

Imbalanced stations with Bikes Needed (ISBN) are stations which cannot satisfy user de-

mand at β−i service level with their current bike inventory, although they might not be

completely vacant. Such station must satisfy the following two inequalities:

Ii < Imin
i ,

κImin
i − I0i ≤ θini .

18

The first inequality defines an imbalanced Station with Bikes Needed while the second makes

sure that the station is not an HSBN.

Imbalanced stations with Docks Needed (ISDN) are stations which cannot satisfy user de-

mand at β+i service level with their current inventory, although they might not be filled to

capacity. Such stations must satisfy the following two inequalities:

Ii > Imax
i ,

I0i − κImax
i ≤ θouti .

The first inequality defines an imbalanced Station with Docks Needed while the second makes

sure that the station is not an HSDN.

Balanced Stations with Bikes Needed (BSBN) are stations which satisfy the inequality Ii ≥
Imin
i , and hence, are balanced by definition but their current inventory is relatively closer to

Imin
i than Imax

i . Such stations must satisfy the following two inequalities:

Ii ≥ Imin
i ,

κImin
i − I0i ≤ θini .

Balanced Stations with Docks Needed (BSDN) are stations which satisfy the inequality Ii ≤
Imax
i , and hence, are balanced by definition but their current inventory is relatively closer to

Imax
i than Imin

i . Such stations must satisfy the following two inequalities:

Ii ≤ Imax
i ,

I0i − κImax
i ≤ θouti .

We denote each subset of stations by SHSDN, SHSDN, SISBN, SISDN, SBSBN, and SBSDN respec-

tively. Within each subset, we order stations from the most balanced to the least balanced.

4.2 Step 2: Update the Incentive Vector

After the network has been divided into six exclusive sets of stations, it is time to update the price

change vector based on the following equation:

qkmn = qk−1mn + ∆qmn,

where ∆qmn is the price update that we will calculate as follows.

For each link (m,n), the price change is updated in discrete jumps. We define σs and σl as

small and large discrete jumps. Their values are constant numbers. We use $0.017 and $0.1 for

19

Table 3: Calculating values of ∆qmn, where hm and hn are the order indices starting from zero within the
set SISBN of stations m and n, respectively—for example, if station m is the most balanced station in the set
SISBN, then hm=0—and similarly, gm and gn are the order indices starting from zero within the set SISDN.
We let ∆qmn = 0 for all m ∈ SBSBN and n ∈ SBSDN.

Type of Station n

Type of
Station
m

HSBN HSDN ISBN ISDN

HSBN 0 −σs −σl sin π·hn
|SISBN| σs sin π·gn

|SISDN|

HSDN σs 0 −σs sin π·hn
|SISBN| σl sin

π·gn
|SISDN|

ISBN σl sin
π·hm
|SISBN| σs sin π·hm

|SISBN|
σs
2

(
− cos π·hn

|SISBN| +

cos π·hm
|SISBN|

) σl sin
π·(hn+gm)

|SISBN|+|SISDN|

ISDN −σs sin π·gm
|SISDN| −σl sin π·gm

|SISDN| −σl sin π·(hn+gm)
|SISBN|+|SISDN|

σs
2

(
− cos π·gn

|SISDN| +

cos π·gm
|SISDN|

)

experimental purposes. As shown in Table 3 the discrete jumps can thus vary from −$0.017 to

$0.017 when σs is used or from −$0.1 to $0.1 when σl is used. The trigonometric distribution

functions used to calculate ∆qmn are plotted in Figure 4. We have not included stations of type

BSBN and BSDN in the table because the price change for travel between and to the balanced

stations is zero. The stations belonging to each of the described categories are sorted according to

their rank ratio values and stored as a sorted array. The stations in the beginning of the array are

more balanced (or less imbalanced) and those at the end are less balanced (or more imbalanced).

When deciding the prices between stations of each category, we take into account the position of

each station in their respective arrays.

We use trigonometric functions because their shape allows us to have smoothly increasing or

decreasing price changes based on the position of a station in an array. For instance, the value of

∆qmn between stations of HSBN and ISBN types follows the distribution in Figure 4a with stations

at both ends of the SISBN vector getting smaller decrements while those in the middle getting the

maximum decrements. This makes sure that our pricing favors the movement of bikes from stations

in the subset SHSDN to the middle stations of the subset SISBN. The reason for favoring middle

stations is that the stations at the start are substantially close to being balanced and hence do

not need large changes in price while the stations at the end are critically imbalanced and it is

difficult to make them balanced again using price changes. The middle stations in the array are

20

moderately imbalanced and hence are more prone to respond to price changes. Similarly, the value

of ∆qmn between stations of ISBN and ISDN types follows the distribution in Figure 4d. The

price increment is maximum for stations in the middle making it difficult for bikes to move from

stations in subset SISBN to stations in subset SISDN, so on and so forth. The logic behind using

trigonometric functions is their ability to give us two sided minima. Admittedly, we could have

used a simple triangle function for simpler situations in 4a and 4b but trigonometric functions are

better suited for constructing the more complex functions in 4c, 4d and 4e.

4.3 Step 3: Calculate the Number of Imbalanced stations

We use (U) to calculate the number of imbalanced stations given the price change vector qmn.

We store this value for every iteration. The upper level problem (U) is also used to calculate

the updated values of Ii. After this, Step 1 is repeated with updated Ii and stations are again

categorized into different types based on Step 1. This process is repeated until the designated

number of iterations.

4.4 Step 4: Find the Best Price Change Vector

The number of imbalanced stations calculated in Step 3 is compared to the minimum value. If the

current price change vector improves on the objective function, the vector and the objective value

are stored. After this, Step 0 is repeated with updated Ii and the values of some of the parameters

are calculated based on new Ii. Stations are again categorized into different types based on Step

1. This process is repeated until the designated number of iterations. After the iterations run

out, this scheme gives the price change vector with minimum number of imbalanced stations as

its output. We chose the number of iterations as our stopping criteria because of various reasons.

Generally, in the literature, the algorithms are stopped when the improvement between consecutive

iterations is very small. We do not use this stopping criterion in our paper. The objective that we

are comparing across iterations is the number of imbalanced stations which is an integer number

with a very small range. It is not possible to look at two consecutive iterations and decide to stop

the algorithm because no improvement was achieved. For most consecutive iterations of IPAS,

there is indeed no improvement in the objective function. Also the objective function value goes

up and down through the iterations. It does not linearly decrease. Hence, we run a large number

of iterations and record the iteration, and the corresponding pricing vector, that gave us the best

solution first. If the optimal iteration is very close to the allowable number of iterations, we can

simply choose to increase the number of iterations.

21

(a) − sin π·h
|SISBN| for h ∈ [0, |SISBN| − 1] (b) sin π·h

SISBN
for h ∈ [0, |SISBN| − 1]

(c) − sin π·(h+g)
|SISBN|+|SISDN| for h ∈ [0, |SISBN|−

1] and g ∈ [0, |SISDN| − 1]

(d) sin π·(h+g)
|SISBN|+|SISDN| for h ∈ [0, |SISBN|−1]

and g ∈ [0, |SISDN| − 1]

(e) (− cos π·h
|SISBN| + cos π·g

|SISBN|−1) for h, g ∈
[0, |SISBN| − 1]

Figure 4: Graphs of Different ∆qmn functions for |SISBN| = 10 and |SISDN| = 10

22

Table 4: Journey Data Sample

Start Time Station ID End Time Station ID bike ID

7/1/2013 12:02:00 a.m. 31250 7/1/2013 12:21:00 a.m. 31506 W20231
9/4/2013 4:27:00 p.m. 31247 9/4/2013 5:11:00 p.m. 31248 W01484
8/9/2013 3:54:00 p.m. 31253 8/9/2013 4:01:00 p.m. 31229 W20198
9/23/2013 5:34:00 p.m. 31004 9/23/2013 5:52:00 p.m. 31007 W20523

Table 5: Station Status Data Sample

Station ID Longitude Latitude No of bikes No of Empty Docks

31000 -77.0512 38.8561 4 7
31605 -77.0023 38.8851 1 10
31609 -77.0213 38.8767 7 12
31403 -77.0198 38.9566 8 7

5 Numerical Experiments

5.1 Data Description

The following publicly available data sets were retrieved from the Capital Bikeshare website:

1. Journey Data: The data of 0.85 million bike rides during the three months period starting

from July 1st to September 30th, 2013 (See Table 4).

2. Station Data: The data of longitude and latitude of all stations, their ID numbers and their

current inventory status retrieved from publicly available xml file (See Table 5).

Journey data is used to calculate the demand vector dij . Capital Bikeshare is a relatively newer

and smaller system. The number of journeys between each OD pair in a short enough time period is

rather small. At the Capital Bikeshare website, the station data with sample in Table 5 is available

in the form of an XML file and the current status of the stations in terms of inventory, check-ins and

checkouts is continuously updated on to the server. This data is used to calculate the position of

each station in the network. The longitude and latitude are used to calculate distances and time of

travel between all OD pairs. The distance calculated is not euclidean and represents actual biking

distance. We also get the number of bikes, number of empty docks and capacity of each station

using this data. The starting inventory I0i used in our calculations is the starting inventory of the

network. The distance matrix is also used to determine the neighborhood stations of each station.

We use 600 meters as a conservative measure with stations less than 600 meters apart becoming

each other’s neighbors.

23

Table 6: Inventory Status for Different Network Sizes.

Network
Name

No of
Stations

No of Total
Docks

No of
Avail-
able
Bikes

No of
Empty
Docks

System-
wide

Demand for
bikes

System-
wide

Demand for
Docks

Medium 60 1606 1240 366 907 907
Large 202 4498 1012 3486 2531 2531

We build the data sets for two sets of problems of different network size. A MEDIUM sized

network with 60 stations and a LARGE sized network with 202 stations in it. It should be taken

into account that the number of imbalanced stations cannot always be 0. In fact, our observations

show that during high demand periods, like the one we have used for experimentation, the total

inventory available in the system is much smaller than demand for the next time period. In Table 6

we present the inventory situation for each of our data sets. As evident, there is always a measure

of imbalance present in the system.

5.2 Experiments with Optimization Model and Heuristic Approaches

For our experimental setup, we divide each day into four equal intervals of six hours. The first three

intervals from 6:00 a.m. to 11:59 p.m. are used for price based repositioning while in the fourth

interval, from 12:00 a.m. to 6:00 a.m. the next day, the trucks carry out static repositioning. We

call these intervals Q1, Q2, Q3 and Q4, respectively. We use the demand data from 20th September

2013. We assume that the demand on this day in all three intervals is known at the beginning of

the intervals. At the beginning of each of the first three intervals, we use the single level model (P)

or the IPAS scheme to calcualte a price vector. The journey data is also used to determine service

level requirements and values of Imax
i and Imin

i at the beginning of the three intervals. We use β−i
and β+i values of 0.95 for our calculations. The starting inventory profile MEDIUM represents the

system status at 6 a.m. on 20th September, 2013 for the 60 station network. In the subsequent

intervals, the starting inventory is recursively updated. For second interval, the starting inventory

is equal to the final inventory at the end of the first interval. For the fourth interval beginning at

12 a.m., the starting inventory (for truck based repositioning) is the same as the ending inventory

for the third interval.

The objective function values for single level model (P), its maximization counterpart ¯(P), IPAS

scheme and the situation without pricing for different network sizes, and different time intervals,

are tabulated in Table 7. The second row in Table 7 reports the objective function value for the

maximization model ¯(P). The values in first and second rows provide us with a range in which

the objective function may lie for the given optimal price vector. For instance, if we use qoptmn in

24

Table 7: Value of Objective Function for different starting inventories with (P), ¯(P), and Iterative Price
Adjustment Scheme (IPAS) for the MEDIUM and LARGE networks

Number of Imbalanced Stations

Network Method Unsatisfied Demand Q1 Q2 Q3

Medium (P) 355/83 26 21 15
¯(P) 350/91 44 38 37

Ipas 294/19 37 30 25
N 252/48 47 46 38

Large (P) - - - -
¯(P) - - - -

Ipas 390/972 110 89 84
N 203/813 156 132 116

reality, the number of imbalanced stations for Q1 could be in the range (26-44), 26 in the best

case scenario and 44 in the worst case scenario. On the other hand, and very crucially, the IPAS

heuristic generates the price vector based on iterative increments and decrements and hence the

price vector thus generated is well differentiated. All the numerical experiments were done on a

machine with 2.30 GHz CPU clock speed, 8 GB RAM and 64-bit Windows 8 operating system.

The single level model (P) was solved using the Java API of CPLEX V12.4 while the coding for the

IPAS heuristic was also done in Java. The optimality gap for the single level model (P) was set at

4.0%. For IPAS, as mentioned earlier, the heuristic was run for a designated number of iterations.

We use 5000 iterations for our experiment. Mostly, our best result is found within the first 1000

iterations.

We find out that for the medium sized network, a single run of the single level model (P) is

solved by CPLEX in approximately two hours. However, CPLEX fails to solve the full network

model consisting of 202 stations in a reasonable amount of time. We see a huge improvement in

the objective function when price change vectors are generated through single level model (P) and

IPAS heuristic as compared with situation without pricing. Although the heuristic developed in

this paper may potentially underperform model (P) in terms of objective function, the price vector

generated by IPAS is well differentiated, and we may reasonably claim that IPAS can potentially

outperform the single level model (P) in terms of the objective function in scenarios close to the

worst case for (P). On the other hand, time is a critical factor in calculating and updating a real

time price vector. A single run of IPAS scheme only takes 40 seconds and 120 seconds for the 60

station and 202 station networks, respectively.

We also limit the maximum absolute value of price changes available to the operator. Table 8

shows the objective function values for different ranges of incentive and penalty values and different

ν3 values. Smaller values of ν3 underestimate the cost of walking and hence alternative paths become

25

Table 8: Value of Objective Function f(qmn) generated by IPAS for different qmn ranges and ν3 values for
a LARGE network when neighborhood radius is 600m

Range of qmn

[−5, 5] [−4, 4] [−3, 3] [−2.5, 2.5] [−2, 2] [−1.5, 1.5]

ν3=1/25 91 91 91 95 95 94
ν3=1/50 83 85 84 88 90 95
ν3=1/75 80 82 78 85 82 85

more suitable for travellers. We have used ν3=1/50 in our earlier calculations.

As evident, larger the price changes an operator is willing to introduce, the more balanced a

network becomes. We see that as the price change range increases the total price change offered

increases dramatically while offering much less in terms of objective function improvement. It is

always better to offer smaller price changes first and gradually increase them if doing so provides

considerable advantage.

5.3 Models for Cost Comparison

To prove the efficacy of our model (P) and the IPAS scheme in delivering cost advantages, we

discuss two approaches in this paper. The first approach is a naive method based on a simple

costing heuristic for repositioning of bikes. The second approach, which we discuss in relative

detail, is a routing model that we borrow from Raviv et al. (2013).

5.3.1 Naive Method

In Table 9, we use the naive method for cost comparison between manual and price-induced repo-

sitioning schemes. The values in column A represent the total positive price change which is the

amount of incentives doled out to customers. The values in column B are the total negative price

change which is the total penalties levied on the travellers to stop them from making undesirable

journey choices. Naturally, due to the price change vector, the travellers automatically move cer-

tain bikes between stations to make them balanced. The sum of A and B values is the total cost

to the system for moving a certain number of bikes automatically. Column C indicates the cost of

moving the same number of bikes using manual trucks and crew. Simply, column C is the cost that

is saved as a result of pricing scheme. To find the cost values in column C, we use the average $3.5,

inflation adjusted value of the estimate from DeMaio (2009), as a conservative measure for cost

of a single manual repositioning and multiply it with the total number of bikes moved as a direct

result of our pricing scheme. As long as A+B ≤ C, price induced repositioning is more viable than

manual repositioning.

26

Table 9: Using the Naive Method for Comparison of Cost(in Dollars) to the System for Price Induced
Repositioning (P) and Manual Repositioning (No pricing), A=Total Incentives given, B= Total Penalties
levied, A+B= Cost of Price Based Repositioning, C= Cost of Manual Repositioning

ν3=1/25 ν3=1/50 ν3=1/75

Range of qmn A B A+B C A B A+B C A B A+B C

[−5, 5] 1311 −1955 −644 744 913 −1426 −513 1183 690 −1102 −412 1148
[−4, 4] 1251 −1742 −491 605 894 −1361 −467 1134 742 −1095 −337 1235
[−3, 3] 1039 −1337 −298 399 726 −1078 −352 952 604 −919 −315 1123
[−2.5, 2.5] 983 −1162 −181 224 668 −973 −305 896 537 −804 −267 1039
[−2, 2] 820 −954 −134 168 520 −829 −309 822 480 −697 −217 945
[−1.5, 1.5] 590 −724 −134 63 476 −689 −213 592 376 −577 −201 801

Note that if the range of incentives increases, the number of imbalanced stations comes down.

Also, the number of bikes ‘automatically’ moved as a direct result of the pricing scheme increases

and hence we see greater values in column A, B and C. Naturally, if the range of price change is

larger, greater cost is saved.

5.3.2 Arc-Indexed Formulation for Repositioning Vehicle Routing

To evaluate the impact of pricing on repositioning costs we use, with minor modifications, the

arc-indexed formulation presented in Raviv et al. (2013). The modified formulation has the same

constraints, with minor modifications, for inventory conservation, flow conservation, station capac-

ity, repositioning vehicle capacity and upper bounds on loading, unloading and total vehicle travel

times among others. Let S be the set of stations, S0 the set of stations including the depot, V the

set of repositioning vehicles, and tij the truck travel time from station i to station j. The objective

function, consisting of a penalty term and a travel cost term, is given by the following expression:

min
∑
i∈S

ζi + α
∑
i∈S

∑
j∈S

∑
v∈V

tijxijv (45)

In our modified model, however, we modify the definition of the first term (penalty term) of the

objective function. Since we have already calculated Imin
i and Imax

i in Section 3.1, we already have

the inventory range that will ensure a 95% service level for a station taking into account the future

demand. Given this range, we do not need to calculate the convex penalty function values for all

inventory levels considering shortage costs and service costs as Raviv et al. (2013) do. Instead, we

assume the penalty to be 0 if the inventory Ii lies between Imin
i and Imax

i and we use a simple linear

function to calculate the penalties for all possible deviations from this range as shown in Figure 5.

27

−10 0 10 20 30 40 50
0

20

40

60

80

100

120

140

160
Linear Penalty Function

Inventory Level

P
en

al
ty

 V
al

ue

Imax

i
Imin

i Ci

Figure 5: Linear Objective Function as a function of Inventory

The complete modified formulation for the problem along with the notation is provided in

Appendix B. The static or truck-based repositioning operation discussed in the model starts at 12

a.m. and continues for a specific period of time (We use 9000sec and 18000sec). The purpose of

repositioning operation is to improve the starting conditions of the next day. This is done through

adjusting the initial inventory levels before the start of the next day (at 6am) using the truck-based

static repositioning. The dynamic pricing scheme, which precedes static repositioning, in turn

adjusts the inventory level at 12 a.m. before the start of static repositioning. To compare the two

situations i.e. with and without pricing, we compare the performance of the static respositioning

model vis-à-vis its objective function given the different starting inventory situations at 12 a.m.

Using the arc-indexed formulation presented in Appendix B, we compare the objective function

of the routing problem with four different 12 a.m. inventory situations: one reached with optimal

pricing considering the best case scenario (P), second reached with optimal pricing considering

the worst case scenario ¯(P), third reached without pricing, and the fourth reached as a result of

IPAS pricing. We use Java API of CPLEX to solve the routing problem. We use setting of 4.0%

for optimality gap and set the solver time to be 1 day. A sample of results is tabulated in table

10. We actually solve a large number of instances of the Routing Model. We solve the 60 station

network with different settings for number of vehicles, the total repositioning time available, the

total travelling time available, the capacity of the repositioning vehicle(s), the time it takes to

load/unload a single bike, the value of constant α in the objective function, and the type of pricing

28

Table 10: No of Vehicles = 1, No of Stations = 60 Total Time = 9000 sec, Travel Time = 9000 sec, Pricing
Scheme: (P) = Optimal Pricing Best case scenario, ¯(P) = Optimal Pricing Worst case scenario (with number
of imbalanced stations maximized), N = No Pricing, IPAS = IPAS Pricing, L/U Time = Loading/Unloading
time per vehicle, T1 = Travel Time Used, T2 = Total Time Used

Vehicle
Capacity

L/U
Time

Pricing
Scheme

No. of
Stations
Visited

Bikes
Added/

Removed

T1/T2 Objective
Function

Average no.
of Bikes

moved per
Station

Maximum
Bikes

carried

Optimality
gap (%)

20 20 (P) 16 30/50 4594.0/6194.0 76 5.000 20.0 3.3%
¯(P) 32 80/99 6276.0/9856.0 93 5.594 20.0 4.0%

N 39 81/101 6966.0/10606.0 120 4.667 20.0 4.0%
IPAS 25 62/77 5927.0/8807.0 89 5.560 20.0 4.0%

20 60 (P) 18 32/49 4695.0/9555.0 77 4.500 17.0 4.0%
¯(P) 34 72/92 6225.0/16065.0 92 4.824 20.0 3.6%

N 39 76/96 6373.0/16693.0 124 4.410 20.0 3.8%
IPAS 28 51/70 5792.0/13232.0 88 4.321 20.0 3.7%

40 20 (P) 16 33/62 4278.0/6178.0 43 5.938 29.0 3.7%
¯(P) 31 60/87 5608.0/8548.0 56 4.742 31.0 3.7%

N 37 79/120 6215.0/10255.0 62 5.378 39.9 3.4%
IPAS 26 58/90 5321.0/8320.0 53 5.692 31.9 1.8%

40 60 (P) 16 28/52 4298.0/9098.0 43 5.000 29.0 3.6%
¯(P) 31 61/88 5770.0/14710.0 58 4.806 31.0 3.9%

N 37 60/100 5968.0/15568.0 70 4.324 40.0 2.0%
IPAS 28 48/81 5420.0/13220.0 54 4.607 32.0 3.8%

scheme employed.

We find considerable improvement in the overall objective function value when we use the

final (12 a.m.) inventory situation which was achieved as a result of a pricing scheme. We also

find improvement in other critical to performance factors, like the number of stations visited by

the repositioning vehicle, the travel time used for repositioning and the total time used in the

repositioning operation. As is evident in table 10, IPAS outperforms the situation without pricing

by a considerable margin. This is especially true when full repositioning is allowed to happen,

allowing for sufficient time for all the stations to become balanced, as is the case for data in table

(10). Not only were smaller numbers of stations visited (up to 55% less), the vehicle had to move

smaller number of bikes. The travel time and the overall time used for respositioning were also

smaller by a margin of up to 16% and 30%, respectively. We were not able to solve the problem

with acceptable optimality gap within the set time limit for the large network of 202 stations. This

is consistent with the findings by Raviv et al. (2013).

Furthermore, we also compare the improvements provided by the pricing schemes for different

values of the parameters as explained earlier. We postulate that the value of the objective function

and, in turn, the improvement due to the pricing scheme should depend on the following factors:

29

20 40
50

100

150

200

250

300

350
Average Penalty Function Value Vs Vehicle Capacity

Repositioning Vehicle Capacity

A
ve

ra
ge

 P
en

al
ty

 F
un

ct
io

n
V

al
ue

WithoutPricing
OptimalPricingWorstCase
IPASPricing
OptimalPricingBestCase

(a) Penalty Function vs repositioning vehi-
cle capacity

20 60
50

100

150

200

250

300

350
Average Penalty Function Value Vs Loading/Unloading Time

Loading/Unloading Time (s)

A
ve

ra
ge

 P
en

al
ty

 F
un

ct
io

n
V

al
ue

WithoutPricing
OptimalPricingWorstCase
IPASPricing
OptimalPricingBestCase

(b) Penalty Function vs loading/unloading
time

Figure 6: This figure shows how the Penalty Function varies with different parameters. Penalty Function
is smaller if vehicles of larger capacity are used. If the overall carrying capacity is the same, larger number
of small vehicles are better than smaller number of large vehicles. Similarly, repositioning is more effective
when the loading/unloading operation is faster.

• The size of the repositioning vehicle: We postulate that larger the capacity of the repositioning

trucks used, smaller (better) will be the objective function.

• The value of loading/unloading time for a single bike: If loading/unloading of individual bikes

is faster, there is more time for vehicles to travel to different stations and objective function

value is smaller.

We test our results for different values of the mentioned parameters for all four pricing arrange-

ments, i.e. Optimal Pricing in best case scenario (P), Optimal pricing in worst case scenario ¯(P),

IPAS Pricing, and Without Pricing situations. The results are plotted in Figure 6.

As evident from Figure 6, as the capacity of the repositioning vehicle increases, the objective

function value decreases. This is expected because of two reasons. Firstly, a larger vehicle can

carry more bikes at a time so it can afford to choose a route that minimizes the penalty function.

Secondly, a larger capacity vehicle can travel between different hub stations and easily carry a larger

inventory between surplus and lack accumulation hubs. Similarly, smaller loading/unloading time

gives us better value of the objective function. Since total time is limited and is divided between

travel time and loading/unloading time, smaller value of loading/unloading time leaves more time

for the vehicle to travel and choose a longer route thus minimizing the objective function. In all

these instances however, the objective function and other critical to performance factors are always

better for instances with (P) or IPAS pricing as compared to those with no pricing.

30

6 Conclusion

At the start of this paper, we set out to prove the efficacy of a pricing scheme for partially or fully

rebalancing a BSS. This paper explores pricing and incentive schemes as a way to rebalance the

network of a public bike sharing system. As already stated, the objective is to minimize the number

of imbalanced stations to fully or partially obviate the need for a manual repositioning operation

using trucks and crew. We develop a bi-level optimization model and its subsequent single level

reformulation (P) that works well for relatively smaller networks to deliver the optimal pricing

scheme. We develop heuristics to solve the issue of time while still improving the objective function.

We set out to develop a more intuitive heuristic approach based on the classification of different

stations using the data available. This heuristic called iterative price adjustment scheme (IPAS)

delivers much better computing time. For the full network, the IPAS takes only 120 seconds. The

value of objective function is also markedly better than the situation without pricing. We conclude

that this time is small enough to make it feasible for BSS operators to update their price vector in

real time. The cost of offering incentives is also much smaller than the cost reduction from smaller

number of imbalanced stations, smaller crew and trucking fleet. We use a routing model to show

that the overall cost of repositioning, consisting of a linear penalty function penalizing the deviation

from the min-max range for starting inventory at the beginning of the next day and an operating

cost term, is markedly lesser when we employ a pricing scheme. The repositioning operation itself

is easier to carry out and faster.

The demand vector we use is based on actual rides data after the fact. One obvious improvement

is to model the demand more accurately using demand forecasting taking into account various

factors that affect the demand for bikes. The values of coefficients for deriving cost of travel have

also been roughly determined. We assume the value of time to be the same for all customers which

is obviously not the case. The values of these coefficients can be better estimated using insights

into customer behavior. We also assumed that bike users are homogeneous and have the same level

of sensitivity to price changes. In further research, we can consider heterogeneous probabilistic

behavior or bounded rationality of bike users. As an extension of this work, we can also create a

model in which the price based and dynamic manual repositioning happen side by side through out

the day, complementing each other. We conclude that a real time dynamic pricing scheme cannot

only solve the problem of system wide imbalance in BSS but also cut down on operating costs

of controlling that imbalance. As a practical solution to the repositioning problem, based on our

findings, we recommend to have a dynamic pricing scheme during the day time complementing a

static repositioning at the end of the day when the bike system is closed to the riders.

31

Acknowledgement

The fourth author’s research was partially supported by the University Transportation Research

Center (UTRC) under Grant Number 49997-34-24.

References

Bard, J. F. 1991. Some properties of the bilevel programming problem. Journal of optimization

theory and applications 68(2) 371–378.

Barth, M., M. Todd, L. Xue. 2004. User-based vehicle relocation techniques for multiple-station

shared-use vehicle systems .

Benchimol, M., P. Benchimol, B. Chappert, A. De La Taille, F. Laroche, F. Meunier, L. Robinet,

et al. 2011. Balancing the stations of a self-service bike hire system. RAIRO-Operations Research

45(1) 37–61.

Bohannon, R. W. 1997. Age and ageing 26(1) 15–19.

Boyacı, B., K. G. Zografos, N. Geroliminis. 2015. An optimization framework for the development

of efficient one-way car-sharing systems. European Journal of Operational Research 240(3) 718–

733.

Caggiani, L., M. Ottomanelli. 2012. A modular soft computing based method for vehicles reposi-

tioning in bike-sharing systems. Procedia-Social and Behavioral Sciences 54 675–684.

Chemla, D., F. Meunier, R. W. Calvo. 2013. Bike sharing systems: Solving the static rebalancing

problem. Discrete Optimization 10(2) 120–146.

Contardo, C., C. Morency, L.-M. Rousseau. 2012. Balancing a dynamic public bike-sharing system.

URL https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2012-09.pdf.

Correia, G. H. d. A., A. P. Antunes. 2012. Optimization approach to depot location and trip

selection in one-way carsharing systems. Transportation Research Part E: Logistics and Trans-

portation Review 48(1) 233–247.

Correia, G. H. D. A., D. R. Jorge, D. M. Antunes. 2014. The added value of accounting for users’

flexibility and information on the potential of a station-based one-way car-sharing system: An

application in lisbon, portugal. Journal of Intelligent Transportation Systems 18(3) 299–308. doi:

10.1080/15472450.2013.836928. URL http://dx.doi.org/10.1080/15472450.2013.836928.

Dell’Amico, M., E. Hadjicostantinou, M. Iori, S. Novellani. 2014. The bike sharing rebalancing

problem: Mathematical formulations and benchmark instances. Omega 45 7–19.

32

DeMaio, P. 2009. Bike-sharing: History, impacts, models of provision, and future. Journal of Public

Transportation 12(4) 3.

Fricker, C., N. Gast. 2016. Incentives and redistribution in homogeneous bike-sharing systems with

stations of finite capacity. EURO Journal on Transportation and Logistics 5(3) 261–291.

Kek, A. G., R. L. Cheu, Q. Meng, C. H. Fung. 2009. A decision support system for vehicle relocation

operations in carsharing systems. Transportation Research Part E: Logistics and Transportation

Review 45(1) 149–158.

Meddin, R., P. DeMaio. 2018. The Bike-sharing World. URL http://www.bikesharingmap.com/.

Accessed on February 19, 2018.

New York City Department of City Planning. 2009. Bike-share opportunities in New York City.

http://www.nyc.gov/html/dcp/pdf/transportation/bike_share_complete.pdf.

Pfrommer, J., J. Warrington, G. Schildbach, M. Morari. 2014. Dynamic vehicle redistribution and

online price incentives in shared mobility systems. Intelligent Transportation Systems, IEEE

Transactions on 15(4) 1567–1578.

Raviv, T., M. Tzur, I. A. Forma. 2013. Static repositioning in a bike-sharing system: models and

solution approaches. EURO Journal on Transportation and Logistics 2(3) 187–229.

Schuijbroek, J., R. C. Hampshire, W.-J. Van Hoeve. 2017. Inventory rebalancing and vehicle routing

in bike sharing systems. European Journal of Operational Research 257(3) 992–1004.

Shaheen, S. A., S. Guzman, H. Zhang. 2010. Bikesharing in europe, the americas, and asia.

Transportation Research Record: Journal of the Transportation Research Board 2143(1) 159–

167.

Shu, J., M. C. Chou, Q. Liu, C.-P. Teo, I.-L. Wang. 2013. Models for effective deployment and

redistribution of bicycles within public bicycle-sharing systems. Operations Research 61(6) 1346–

1359.

The Pennsylvania Environmental Council. 2013. Philadelphia bike share strategic business plan.

URL http://www.bikesharephiladelphia.org/PhilaStudy/CompleteBusinessPlan.pdf.

Waserhole, A., V. Jost, et al. 2012. Vehicle sharing system pricing regulation: A fluid approxima-

tion. URL http://hal.archives-ouvertes.fr/hal-00727041/.

33

