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Abstract

Free-floating electric vehicle sharing (FFEVS) systems require nightly relocation and recharging opera-
tions to better meet the next day’s spatial demand with sufficient battery levels. Such operations involve
not only a crew of drivers to move the shared electric vehicles (EVs), but also a fleet of shuttles to
transport those drivers. Comprehensive studies for relocating/recharging EVs and routing shuttles are
limited in the literature, and many important operational questions such as an optimal mix of shuttles
and drivers remain unanswered. Thus motivated, we first formulate mixed integer programs to model the
relocation operations in two different approaches: i) the sequential approach where relocation/recharging
decision is made first followed by the shuttle routing decision; and ii) the synchronized approach where
all decisions are made simultaneously and synchronously. To solve large-scale problems, we also devise
an efficient algorithm, called the exchange-based neighborhood-search method (EBNSM). A case study
using real-life data from car2go in Amsterdam shows that the EBNSM-based approaches are capable
of solving those large-scale instances within 10 minutes on a generic computer, and the synchronized
approach saves the operational costs up to 15% compared to our sequential approach. Comprehensive
numerical experiments show that when the service area is large, increasing the number of shuttles is more
cost efficient than increasing the number of drivers. On the contrary, when the service area is small, the
charging infrastructure is scarce, or the recharging requirements are low, increasing the number of drivers
becomes more beneficial.
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1 Introduction

An important goal in the development of smart cities is improving efficiency and flexibility in resource

utilization. In transportation sector, with the rapid advancements of mobile technologies and devices, on-

demand vehicle sharing platforms have emerged as a viable alternative to the notion of car ownership,

potentially leading to an efficient utilization of vehicles and urban land. Currently, several key players,

such as car2go and DriveNow, are gaining traction with their on-demand free-floating car sharing services,

leading fast expansion of the industry. As of 2020, Share Now, the world’s largest carsharing company based

in Germany which was formed from the merger between car2go and DriveNow, operates in 18 cities across

Europe with over four million registered members and a total fleet of over 14,000 vehicles.

Unlike station-based car sharing models like ZipCar, free-floating car sharing systems let users pick an

available car and drop it off at any legally permissible parking location within a large designated service

area. As a result, users can make customized one-way trips in conjunction with other mobility options,

directly addressing the first-mile last-mile problem in urban mobility.1 For this reason, free-floating car

sharing systems have the potential to be a promising alternative to private car ownership, with much higher

adoption than traditional car sharing (Formentin et al., 2015). In North America, for example, it is estimated

that a single car sharing vehicle can potentially reduce the need for 6 to 23 cars, substantially reducing the

total number of vehicles held by households (Shaheen and Cohen, 2007; Martin et al., 2010). Moreover,

free-floating car sharing systems can also facilitate more efficient use of urban infrastructure and land by

reducing the need for perennially occupied or “locked” parking spots in the city centers with 36–84 m2 of

public spaces freed-up per vehicle (Loose, 2010).

Car sharing systems with electric vehicle (EV) fleets are also projected to play a crucial role in making

urban transportation systems more sustainable (Firnkorn and Müller, 2011; Le Vine and Polak, 2019). Al-

though EVs are often proposed as one of the most promising solutions to curbing green house gas emissions

from the transportation sector, their mass adoption has yet to come—in 2017, EVs make up only 1.15% of

total U.S. car sales (Bellan, 2018). In particular, their short driving range and high fixed costs create psy-

chological concerns to the potential drivers, known as range anxiety and resale anxiety, imposing barriers to

the adoption (Lim et al., 2015). By relieving the burden of car ownership, free-floating EV sharing (FFEVS)

systems can effectively mitigate these psychological barriers to EV adoption: With EVs owned by the ser-

vice provider rather than the individuals, FFEVS systems relieve the drivers’ concerns about technological

risks, future resale value, as well as maintenance (He et al., 2017). In fact, car2go has already deployed full

EV fleets in four major cities in Europe with more than 2,000 EVs, and DriveNow operates mixed fleets of

EVs and combustion engine cars in over ten European cities.

Despite these potential social benefits, the free-floating nature of the FFEVS systems also engender

operational challenges. In FFEVS systems, customers’ rental activities may place the vehicles at less fa-
1It refers to the problem of unavailability of public transit for the first and last mile of commute, forcing commuters to opt for

private modes of transit over public ones.
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vorable locations and cause a spatial and temporal mismatch between supply and demand, and users are

only willing to walk up to 500 meters to the available vehicle (Weikl and Bogenberger, 2015). Indeed, the

distance to an available vehicle is shown to be an important determining factor in a booking decision for

car2go users (Herrmann et al., 2014). Hence, for successful operations of FFEVS systems, it is essential

to have the fleets available in the right place at the right time, which raises two key operational challenges

to the service providers: i) accurate prediction of the the spatial and temporal demands; and ii) timely and

efficient relocation of the fleets to the predicted demand locations.

To deal with the first challenge, FFEVS service providers have been putting a great deal of efforts into

improving demand prediction accuracy. For instance, in their white paper, car2go explains that “With the

data which car2go has collected over the years, the company is able to predict demand extremely accurately

using complex, proprietary algorithms” (car2go, 2017). The second challenge, however, still demands care-

ful academic attention. To address that, one would need a comprehensive modeling and computational

framework applicable to the optimization problem of relocation/recharging operations of EVs in FFEVS

systems, but studies on relocating EVs are limited in the literature. This is the key motivation as well as

the main focus of this paper: We develop an optimization framework for timely and efficient EV reloca-

tion/recharge operations in FFEVS systems. In particular, we aim to develop algorithms that are capable of

solving real size problems.

In practice, the relocation operation in FFEVS systems are typically carried out with shuttles to transport

the drivers, and therefore the relocation decisions should be made at two levels: i) EV relocation decision;

and ii) Service shuttle routing decision.2 Given the input of predicted demand level, current EV locations,

and their fuel levels, the EV relocation decision determines which EVs should be moved to which target

locations and how much and where they should be recharged. The shuttle routing decision is to determine

how the shuttles should pick-up and drop-off the drivers to fulfill the EV relocation plan. Ideally, it would

be desirable to develop a framework where the two decisions are made jointly and synchronously. Most of

the existing studies in this context approach the two decision problems separately.

In this paper, we focus on the relocation, recharging, and routing decisions to serve the given demand

for the next day in the static environment during the night. Accordingly, we develop a comprehensive mod-

eling and computational framework applicable to the joint optimization of nightly relocation/recharging

operations and shuttle routing. Then, based on the computational framework, we conduct a case study using

actual data to address important operational questions regarding the relocation operations of FFEVS sys-

tems. Since the two levels of decisions for EV relocation and shuttle routing have been studied separately in

the literature, it is natural to first construct a sequential approach that solves the EV relocation problem first

and then solves the shuttle routing problem with the fixed EV relocation decision. This paper devises formu-
2In practice, different FFEVS systems use service shuttles of different size and type to carry out the relocation operation.

Therefore, we use service shuttle or “shuttle” as an all encompassing term, which could describe a van with a large capacity, or a
car with relatively limited capacity, or even single person mobility options like scooters and foldable bicycles that can be loaded into
an EVs trunk (Weikl and Bogenberger, 2015). Our flexible modeling approach works for shuttles of various types and capacities
by varying the maximum number of drivers allowed on board each shuttle.
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lations and algorithms for faster computation that are suitable for handling the nature and the complexity of

the two levels of decisions in the sequential approach. Furthermore, as a main goal, we also develop a joint

and simultaneous decision making method, which we call the synchronized approach. Such a truly joint de-

cision has rarely been studied in the literature. Our unique sequential approach and algorithm is shown to be

capable of providing solutions to real size problems, and our synchronized approach reveals much enhanced

performance both in terms of solution quality and computation time relative to our sequential approach.

We believe that the decision tool presented in this paper would be of great academic and practical

significance because of the following reasons. First, vehicle relocation operations can be very costly and

typically, they are a bottleneck that limits service efficiency as well as asset utilization. The relocation must

be planned well in advance and be carried out efficiently as delays in relocation operations often results

in lost demand. Unlike other shared mobility services such as bikes or scooters, the vehicle relocation

operation in FFEVS systems cannot be done by moving multiple vehicles at a time, making it complex and

costly—the cost of vehicle relocation in a free-floating car sharing system can be as much as 15 euros per

movement (Chianese et al., 2017).

Second, the vehicle relocation problem in FFEVS systems is computationally very hard as it frequently

involves charging the EVs during the relocation. Studies show users exhibit range anxiety even for short

rental decisions in FFEVS systems (Weikl and Bogenberger, 2015), and there is a strong evidence that

demand for FFEVS service is sensitive to the vehicles’ battery levels (Kim et al., 2020). This additional layer

of recharging the vehicles to a sufficient level, which requires available charging stations nearby and at least

a few hours of charging time, drastically increases the complexity of the relocation problem. Indeed, vehicle

unavailability and range anxiety were cited as main reasons when car2go had to cease its EV operations in

San Diego by replacing the EV fleets with combustion engine vehicles of the same model (Garrick, 2016).

Third, there are many important yet unanswered operational and managerial questions for FFEVS sys-

tems. For example, how would operational resource allocation decisions impact the efficiency of EV relo-

cation operations in FFEVS systems? More specifically, with a given number of available drivers, which

would be a better operational strategy: running more shuttles or having more drivers available for reloca-

tion? Although FFEVS systems have already been operated in many cities for years, comprehensive studies

for the EV relocation problem considering the actual relocation operations are limited in the literature. In

this paper, we apply our computational framework to conduct a case study and address these operational

questions using actual data.

Overall, our key findings and contributions are summarized as follows.

• We present a combined MIP formulation for the problem of EV relocation for given demand and

charging level considerations and the subsequent shuttle routing problem to carry out the recom-

mended relocation. The MIP formulation can be directly applied to small-scale problems and solved

by off-the-shelf optimization solvers such as CPLEX and Gurobi. To present practical optimization

methods for large-scale problems, this paper makes the following important methodological contribu-
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tions.

1. To solve the standalone EV relocation problem, we present a path-based formulation that mod-

els each EV route as a separate variable and improves the computability of the EV relocation

problem significantly, whereas the existing link-based formulations for EV relocation problem

have suffered from increasing complexity as the problem size increases.

2. For large-scale problems (as in our case study), the exact solution method cannot even pro-

vide feasible solutions. We develop an efficient heuristic algorithm for large-scale problems

that can obtain a quality synchronized solution in a few minutes. To derive synchronized deci-

sions, our heuristic algorithm integrates the path-based EV relocation problem with the shuttle

routing problem, which is a unique variant of dial-a-ride-problem (DARP) (Psaraftis, 1983) in-

volving charging stops for EVs. The heuristic algorithm, which we call the exchange-based

neighborhood-search method (EBNSM), draws upon clustering, exchange based neighborhood

search, and a customized exchange algorithm for multiple precedence-constrained DARP.

• This work is the first in the literature that considers a synchronized EV routing and shuttle routing

problem with general cases of charging infrastructure availability. Our extensive numerical study

using real FFEVS data shows that the synchronized decision making improves the total shuttle route

length up to 15% relative to the sequential approach. This is when both the approaches use our

efficient path-based formulation. Therefore, it is expected that the performance gap could be higher

if compared with a sequential approach using other computationally less efficient formulation such as

link-based ones. When accumulated over time, this improvement can be a significant benefit for the

operation.

• We conduct a case study using real data from the car2go service in Amsterdam, the Netherlands. Our

findings from extensive full-scale numerical experiments, summarized below, inform several impor-

tant operational decisions.

1. Our results suggest that, in most cases, increasing the number of shuttles is more cost effective

than increasing the number of drivers on each shuttle. In particular, it is especially the case when

the service area is large or when the charging requirements are low (e.g., the initial battery levels

are high). In many cases, we find that pairing a separate shuttle with each driver and have the

shuttle only to support that driver’s movement, is optimal.

2. Our results also show that reducing the number of shuttles, and therefore, increasing the number

of drivers per each shuttle can be beneficial when the service area is small, and the charging

requirement is high. In particular, when the charging requirement is high (e.g., the initial battery

levels are low), adding more shuttles may not be cost effective as it can only increase each

shuttle’s wait time to pick up the drivers.
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2 Literature Review

In this section, we focus mainly on reviewing the literature on operational aspects of the relocation problem

in vehicle-sharing systems to highlight our contributions. We refer the reader to Laporte et al. (2015) for a

more comprehensive review of other relevant operational problems.

The problem of relocation has been well recognized in one-way car sharing and bike sharing systems.

The current vehicle relocation strategies fall into two broad categories. The user-based relocation strategies

include incentives, pricing mechanisms and policy interventions to influence user behavior (Weikl and Bo-

genberger, 2013). In one-way car sharing systems, repositioning can be carried out either through operator

intervention, e.g., using relocation personnel (Kek et al., 2009; Jian et al., 2016; Bruglieri et al., 2014) and

using a trip choice mechanism (de Almeida Correia and Antunes, 2012) or through customers by controlling

their actions, e.g., through incentives (Pfrommer et al., 2014). Similarly, in case of bike sharing systems,

the problem of system-wide imbalance is further compounded by the two-sided demand for bicycles to rent

and empty racks to return. The focus of repositioning is to achieve certain desirable inventory levels either

through manual rebalancing using trucks (Raviv et al., 2013) or through incentive mechanisms designed to

influence customer behavior (Fricker and Gast, 2016; Haider et al., 2018).

In an initial conceptual paper, Weikl and Bogenberger (2013) present and evaluate several user-based

and operator-based relocation strategies for free-floating car sharing systems. In a subsequent paper, Weikl

and Bogenberger (2015) propose a practice ready six step relocation model for a mixed free-floating car

sharing system with traditional and electric vehicles. Based on historical data, the area is categorized into

macro zones and an optimization model is used to achieve desired macro level relocation. Rule based

methods are used for making intra zone micro-level relocation and refueling/recharging decisions. A similar

model for demand-based relocation in free-floating car sharing systems is presented by Schulte and Voß

(2015) and Herrmann et al. (2014). Caggiani et al. (2017) propose dynamic clustering method to identify

the size and number of flexible zones in which to perform repositioning operations. He et al. (2020) study

robust repositioning strategies in dynamic environments.

Only a few papers, however, have considered a unique and critical component of EV relocation opera-

tions: shuttle routing. Gambella et al. (2018) present a time-space-network-based formulation for relocating

the vehicles in car sharing systems given some demand and battery considerations, but they only consider

station-based car sharing systems. In their work, the relocation is carried out by the so called relocators

(drivers) who are on board the vehicle itself when traveling between a pair of stations. Kypriadis et al.

(2018) propose a minimum-walking car repositioning problem for FFEVS systems. In their model, the

drivers walk between the relocation assignments as opposed to traveling on board a shuttle. The problem

of shuttle routing to carry out the recommended relocation for free-floating car sharing systems is also un-

derserved. Maintaining a dedicated fleet of shuttles and drivers can be expensive and minimizing the cost

of relocation operation is one of the key system objectives. For an free-floating car sharing system, Santos
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et al. (2017) consider the problem of shuttle routing given a fleet of shuttles and drivers and provided a set of

pre-determined relocation assignments; hence their approach is sequential, rather than joint or synchronized.

Closely related to our work, Folkestad et al. (2020) consider joint decision making for EV relocation

and shuttle routing. The modeling approach, formulation, and algorithms in our paper, however, are distinct.

In Folkestad et al. (2020), EVs are moved to charging stations rather than close to actual demand points,

assuming a situation with ubiquitous charging infrastructure whereby a charging station can be blocked

indefinitely. In case of non-availability of charging stations, postponement of charging is considered. This

makes their relocation model similar to the one for station-based systems rather than free-floating systems,

especially when charging infrastructure is scarce. Many cities and free-floating car sharing systems can

have saturated charging infrastructure and station blocking may not be an option. Considering access to

limited charging infrastructure in recharging planning is a key factor for success of FFEVS systems (He

et al., 2019). Our work models the charging process more explicitly and flexibly. Specifically, our model can

handle partial recharging, and therefore the operator can achieve different charging levels in different service

zones, to better respond to battery level sensitive customers. The operator can also choose to partially charge

all fleet vehicles up to desired charging levels as opposed to charging only a subset of vehicles fully while

postponing the charging operation for others. We also note that Folkestad et al. (2020) only relocate EVs

with battery levels below a certain threshold whereas our model is flexible to different charging / relocation

requirements: Our model can handle purely demand based relocation (i.e., a fully charged EV may need

to be relocated to fulfill demand requirements) or a purely recharging based relocation (i.e., a low charged

EV needs charging but must stay in its current neighborhood). Also, whereas a hybrid genetic algorithm is

proposed in Folkestad et al. (2020), we employ the exchange-based neighborhood search method to address

computational challenges in joint decision making. Lastly, our case study provides important managerial

insights for running the relocation operation more efficiently.

3 The Model

In this section, we present a MIP formulation for our problem. Our MIP formulation is divided into three

distinct, but related, sub-problems: namely, the EV relocation and recharging problem, the shuttle routing

problem, and the synchronization problem. These sub-problems are put together into a single model in

Section 3.5.

3.1 Modeling Demand and Charging Satisfaction for Each Neighborhood

The relationship between location and demand is incorporated into our model to ensure the optimal place-

ment of the EV fleet across the study area. To incorporate the demand information into our relocation

decision, we divide the service area into small neighborhoods h ∈ H. The size of the neighborhoods is

small enough—less than 250 000 m2—so that assumptions of demand uniformity and similarity of demand
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Figure 1 – Conversion of an original network to an extended network with dummy nodes shown in blue. In the extended
network, nodes are shown with their respective designations as supplier, demander and charger nodes

characteristics throughout the neighborhood hold reasonably well. We find the neighborhood level status

data at 12 am to find the initial inventory levels, I0h. The average values of historical demand data from 6 am

to 9 am the subsequent day are calculated for the neighborhood specific desired inventory levels, Idh .

Besides the requirements for demand fulfillment, we also consider the relationship between charging

levels and the location of a vehicle. We posit that neighborhoods located in different areas of a town may

have different charging level requirements for the vehicles located therein. For example, users in downtown

could be more sensitive to the vehicles battery levels than those in the suburbs possibly because of the

uncertainty in road traffic conditions. The system manager can thus have neighborhood specific charging

requirements. The initial battery level of EVs, denoted by c0, can be found using system status data. We use

historical trip data and average the battery levels at the beginning of all trips originating in a neighborhood

h to find the desired charging level cf for all nodes located in the neighborhood. The system manager

can, however, update the desired charging level for any neighborhood or decide to charge all vehicles fully.

Later, these charging levels are used in determining crucial parameters for our path based electric vehicle

relocation and recharging problem.

Let us consider a set of permissible parking spots in the service area. We associate two boolean char-

acteristics with every node in the original network: the occupancy of the node (occupied or unoccupied)

and the availability of charging infrastructure at the node (Yes or No). An occupied node without charging

infrastructure, called Type 1 node, is designated as a supplier node and represents current EV locations. An

unoccupied node without charging infrastructure, called Type 2 node, is designated as a demander node.

An unoccupied node with charging infrastructure, called Type 3 node, is designated as a charger node. In

the special case where an occupied node may also be a charging node, called Type 4 node, we create two

nodes at the same location; a supplier node for the occupancy and a charger node for the charging station.

A demand relocation happens when an EV moves from one of the occupied spots, a supplier to one of the

empty spots, or demander. In case the EV needs to be charged, the EV must first visit a charging node.

Since the charging process takes time, we create a dummy node for each charging node called a dummy

charger node. The EV movement between a charger and its sister dummy charger represents the charging

process. In Figure 1, we show the process of conversion to an extended network.
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Algorithm 1: Procedure for removing nodes from the network

Input: Ŝ, Ĉ, Ĉd, D̂, I0h, Idh ,
Output: S , C, Cd, D

1 for h ∈ H do
2 removeCounth = 0 ;
3 for i ∈ Ŝh do
4 if c0i > cfh then
5 removeCounth = removeCounth + 1 ;

6 if I0h ≤ Idh then
7 Srh = {i ∈ Ŝh | c0i > cfh} ;
8 for k ← 1 to removeCounth do
9 Ŝh ← Ŝh \ Srh[k], Ĉh ← Ĉh \ Ĉh[1], D̂h ← D̂h \ D̂h[1] ;

10 if I0h > Idh then
11 Srh = {i ∈ Ŝh : c0i > cfh} ;
12 for k ← 1 to min{removeCounth, Idh} do
13 Ŝh ← Ŝh \ Srh[k] , Ĉh ← Ĉh \ Ĉh[1], D̂h ← D̂h \ D̂h[1] ;

14 S ←
⋃
h∈H
Ŝh, D ←

⋃
h∈H
D̂h ;

15 C ←
⋃
h∈H
Ĉh ;

In the extended network, the nodes are designated as supplier, demander, charger or dummy charger

based on their functions. Let us call the initial sets of these nodes Ŝh, D̂h, Ĉh and Ĉdh for each neighborhood

h and Ŝ, D̂, Ĉ and Ĉd for the whole network, respectively. The supplier nodes correspond to the initial

location of electric vehicles in each neighborhood, i.e., |Ŝ| =
∑
h∈H

I0h. Since street level parking spots are

very close and virtually indistinguishable, we use the central measure of all the spots in a neighborhood and

create as many demander nodes in a neighborhood as the size of desired inventory in each neighborhood,

i.e., |D̂| =
∑
h∈H

Idh . It is worth noting that we assume no new demand arrives during the night as we

model the nighty static relocations. This ensures that the current EV locations and the desired inventory in

each neighborhood stay unchanged throughout the relocation operation. Indeed, many FFEVS systems in

practice close their operations at night, and even when one stays operational, the demand levels are typically

insignificant relative to day time demands. For instance, in the case study we consider, the night time demand

is only 4% of the peak demand. Finally, each neighborhood can also have dozens of closely located charging

stations. If the number of charging stations is greater than max
(
|Ŝh|, |D̂h|

)
, we use central measure of all

charging stations to create as many charging nodes as the larger of the number of demanders or the number

of suppliers in a neighborhood, i.e., |Ĉh| = max
(
|Ŝh|, |D̂h|

)
. In case the number of these charging stations

is less than max
(
|Ŝh|, |D̂h|

)
, number of charging nodes created is equal to the number of charging stations

for each neighborhood.
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(a) A traditional Relocation Decision
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(b) An EV Relocation and Recharging Decision

Figure 2 – In a traditional demand-based relocation problem, a single relocation operation involves movement between two
nodes. In a demand and recharging based relocation model, a single relocation operation can involve a charging stopover at a
pair of intermediate charger-dummy charger nodes

We can further reduce the size of this network by deleting certain nodes depending on neighborhood-

level desired inventory and desired charging level using Algorithm 1. In all neighborhoods, only suppliers

with initial battery level greater than the desired charging level can be removed, since the rest requires

charging. For neighborhoods where I0h ≤ Idh , suppliers that do not require charging can be removed. An

equal number of chargers and demanders can also be removed, while the rest are kept for suppliers which

require charging and suppliers incoming from other neighborhoods to satisfy the leftover demand. On the

other hand, for neighborhoods where I0h > Idh , I0h − Idh suppliers are retained to satisfy demand in other

neighborhoods. Out of Idh suppliers left, those that require charging are retained, while the rest are removed.

An equal number of chargers and demanders are also removed while the rest are kept for suppliers that

require charging.

3.2 Modeling the EV Relocation and Recharging (EVRR) Problem

In second part of our modeling approach, we describe the relocation and recharging decision for electric

vehicles (EVs). We call this problem the EV relocation and recharging (EVRR) problem. The traditional

relocation problem in car sharing and bike sharing systems involves the decision to relocate vehicles from

current node i to a future node j to cater to shifting demand needs as shown in Figure 2-a). In case of

electric cars, node j can be a charging station. The relocation scenario we consider is decidedly different

than traditional setting. In our model, a vehicle can visit up to four nodes during its journey as shown in

Figure 2-b). From its current node i, a supplier node, it can go to a pair of charger-dummy charger nodes

k and l, one each for receiving and dispatching the vehicle, and once recharged to the required level, it

can move to a demander node j. Dummy charger nodes are introduced to allow for two shuttle visits to

the charging station since the driver does not wait while the vehicle is being charged. Finally, a vehicle

may also choose to stay put at its current node if it is sufficiently charged and does not have to fulfill a

demand-based relocation. Our model only specifies the neighborhood a vehicle needs to be relocated to and

the required charging level. Our model, therefore, chooses an optimal route for an EV, not only deciding the

terminal node j, if any, of its journey but also deciding which pair of charger nodes, if any, it should visit

for recharging purposes.

Let N be the set of permissible parking spots in the reduced network, i.e., N = S ∪ D ∪ C. Let N ′ be

the network with addition of dummy nodes, Cd. The notation for EVRR problem is given in Table 1. Given
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Sets

N Set of permissible parking spots

N ′ Set of permissible parking spots plus the dummy nodes

C Set of charger nodes

D Set of demander nodes

S Set of supplier nodes

Cd Set of dummy charger nodes

H Set of demand neighborhoods indexed by h ∈ H

P Set of all feasible paths indexed by p ∈ P where each path p = (i0, i1, . . . , is)

A Set of all possible arcs indexed by a ∈ A where each arc a = (i, j)

A (p) Set of arcs in path p, where A (p) = Ac (p) ∪At (p), i.e., charging and travelling
arcs on path p

N (p) Set of nodes in EV path p, where N (p) = {S (p) , C (p) , Cd (p) ,D (p)}, i.e.,
supplier, charger, dummy charger and demander nodes of a particular path p

φ (i) Set of paths p that contain node i, i.e., {p ∈ P : i ∈ p}

Variables

xp Binary variable; 1 when a vehicle is to be relocated along a path p, 0 otherwise

Parameters

tij travel time alongside a travel arc (i, j)

wp charging time between charger and dummy charger nodes for path p

c0p initial battery level at supplier node for path p

cfp desired charging level at demander node for path p

β1 rate of depletion; the decrease in battery level of a vehicle per unit of travel time

β2 rate of charging; the increase in battery level of a vehicle per unit of time

Table 1 – Mathematical notation for EVRR

S, C, Cd, and D, We can enumerate all the possible EV paths and associate a binary decision variable xp
with each path p ∈ P̂ . The path variable is 1 if an electric vehicle moves on path p and 0, otherwise. An EV

may or may not require charging. In the former case, the number of possible paths is equal to |S| × |D|. In

case of charging, the number of possible EV paths is |S| × |C| × |D|. The total number of paths |P̂| is equal

to |S| × |D| (1 + |C|).

We reduce the size of P̂ by removing infeasible or unnecessary paths. Associated with each path p are

parameters c0p, c
f
p , andwp representing initial battery level at the supplier, desired charging level at demander,
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and the charging time required to achieve cfp , respectively. Since we have already enumerated all the paths,

then for a path i → k → l → j, knowing the initial battery level at the supplier, the final charging level at

the demander and the discharging on arcs (i, k) and (l, j), one can determine path dependent charging time

wp on charging arc (k, l) as follows:

wp =
1

β2

(
cfp − c0p + β1

∑
(i,j)∈At(p)

tij

)
∀p ∈ P̂. (1)

In essence, wp represents the service time at a charging station. Our model for charging process assumes

that charging time has a linear relationship with charging levels. Others have considered non-linear charging

process and used piece-wise linearization to model different charging speeds (Pelletier et al., 2018). How-

ever, a linear charging process sufficiently models the reailty for our case when the focus is on operational

problem and the total time spent on recharging rather than the non linearities of the charging process itself.

If wp ≤ 0 for a path, charging stop is not needed and hence the corresponding path p : i → k → l → j is

removed and only direct path p : i → j is kept. Conversely, if wp > 0, direct path p : i → j is removed

since a charging station must be visited. The path set P̂ is reduced to P:

P = P̂ \ {p = i→ k → l→ j : i ∈ S, j ∈ D, k ∈ C, wp ≤ 0} \ {p = i→ j : i ∈ S, j ∈ D, wp > 0}.
(2)

The full enumeration of paths and the subsequent reduction of path set ensures that all paths p will

fulfill charging requirements at their respective demander node because of charging time wp associated with

them. Furthermore, for each path p ∈ P , the total path time lp can be calculated as lp = tik + wp + tlj .

Given the notation in Table 1, we can write the EVRR feasibility problem as follows:

(EVRR)
∑
p∈φ(i)

xp ≤ 1 ∀i ∈ N , (3)

∑
p∈P

xp = min{|S|, |D|}, (4)

xp ∈ {0, 1} ∀p ∈ P. (5)

In the feasibility problem described above, the objective is to find a path for every electric vehicle. Con-

straint (3) makes sure that each node can only be visited once by an EV while it treads a path p. Constraint

(4) ensures that the total number of paths chosen must be equal to total number of EV movements. In case

|S| ≥ |D|, the number of EV paths must be equal to |D|. Conversely, if |D| ≥ |S|, the number of EV paths

should equal |S|.

11



Sets

N ′ Set of permissible parking spots plus the dummy nodes

N ′0 Set of permissible parking spots, the dummy nodes and the depots

δ− (j) Set of shuttle arcs entering node j

δ+ (j) Set of shuttle arcs leaving node j

Variables

zij Binary variable which equals one if a shuttle travels directly from node i to node
j, and zero otherwise

yi Number of drivers carried on a shuttle when it leaves node i.

τi Continuous variable representing the arrival time for shuttle at node i.

τkN+1 Continuous variable representing the arrival time for shuttle k at depot nodeN+1.

Parameters

K The number of shuttles available

q The maximum number of drivers available for each shuttle

Table 2 – Mathematical notation for SR Problem

3.3 Modeling the Shuttle Routing (SR) Problem

The second part of our combined operational problem is a shuttle routing (SR) problem. The network for

SR,N ′0, is same as the extended network of Section 3.2, with two dummy nodes for depot for beginning and

termination of shuttle route added. Let zij be 1 if a shuttle travels between nodes i and j as part of its route

and 0, otherwise. Similarly, let yi be the number of drivers on a shuttle while it is leaving node i.

The detailed notation for SR feasibility problem is given in Table 2, while the problem itself is described

henceforth:

(SR)
∑

j∈δ+(0)

z0,j ≤ K, (6)

∑
i∈δ−(N+1)

zi,N+1 ≤ K, (7)

∑
i∈δ−(j)

zij ≤ 1 ∀j ∈ N ′, (8)

∑
i∈δ−(j)

zij −
∑

i∈δ+(j)

zji = 0 ∀j ∈ N ′, (9)

zij = 1 =⇒ τj ≥ τi + tij ∀j ∈ N ′, i ∈ δ− (j) , (10)

zi,N+1 = 1 =⇒ τkN+1 ≥ τi + ti,N+1 ∀ i ∈ δ− (N + 1) , ∀ k ∈ K (11)

12



zij = 1 =⇒ yj = yi − 1 ∀j ∈ S ∪ C ′, i ∈ δ− (j) , (12)

zij = 1 =⇒ yj = yi + 1 ∀j ∈ C ∪D, i ∈ δ− (j) , (13)

0 ≤ yi ≤ q ∀i ∈ N ′, (14)

zij ∈ {0, 1} ∀(i, j) ∈ A. (15)

D

i jk l

P D P

Figure 3 – Drop off (D) and pickup of (P) of drivers by shuttle at different nodes for a particular EV path p: Drivers do not
wait at the charging station. The shuttle must visit the Charger node k to pick a driver and Dummy Charger node l to drop a
driver.

The SR feasibility problem (6)–(15) is then to ensure that every shuttle route begins at the starting

dummy node (0) and ends at the terminal dummy node (N + 1). Constraints (6)–(7) ensure that total arcs

leaving depot node (0) or entering depot node (N + 1) must be less than or equal to the total shuttles K.

All the other nodes must only be visited once by one of the shuttles (8). Constraint (9) is flow conservation

constraint. Constraint (10) updates the arrival time of a shuttle at a node j when it visits arc (i, j) while

constraint (11) finds arrival times at terminal depot node N + 1 for multiple shuttles. Constraints (12) and

(13) update the number of drivers on the shuttle as it drops off and picks up the drivers at node j. As

shown in Figure 3, a driver is dropped off at supplier and dummy charger nodes while one is picked up at

charger and demander nodes. Finally, constraint (14) ensures the number of drivers on each shuttle must

not exceed shuttle capacity q. In the SR feasibility problem described in this section, a feasible shuttle

route is any route that begins at a depot, ends at a depot while visiting any number of intermediary nodes

and loading and unloading an indeterminate number of drivers. Next section synchronizes the feasibility

problems described in Sections 3.2 and 3.3.

3.4 Synchronizing EVRR and SR Decision Models

A feasible synchronized EV and shuttle routing problem (f-SYNC) admits only those shuttle routes that

include visits to the nodes supplied by the EVRR problem, as opposed to any number of nodes in a feasible

SR. Similarly, an f-SYNC solution makes sure that drivers are available to drive the electric vehicles on

the routes supplied by the EVRR problem, as opposed to an indeterminate number of drivers loaded and

unloaded in a feasible SR solution. Finally, an f-SYNC solution only admits those shuttle routes that respect

the time windows Ei of EV routes for the EVRR problem. The following constraints (16)–(19) serve the

purpose of synchronizing τj and zij variables, representing the shuttle route, with Ej and xp variables,
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−i

i jk l

−l

Figure 4 – The arrival times of EV at each node i on a path p depend only on shuttle arrival times at Supplier node i (driver
drop-off) and Dummy Charger node l (driver drop-off) for a particular path p

representing the EV paths.

∑
i∈δ−(j)

zij =
∑
p∈φ(j)

xp ∀j ∈ N ′, (16)

xp = 1 =⇒ τj ≥ τi + lp ∀p ∈ P, i = S (p) , j = D (p) , (17)

xp = 1 =⇒ τj ≥ τi + tij ∀p ∈ P, (i, j) ∈ A (p) , (18)

zij ∈ {0, 1} ∀(i, j) ∈ A, (19)

where lp = tik + wp + tlj is the length of path i→ k → l→ j. Figure 4 illustrates such a path.

Consider a path p = i → k → l → j where i = S (p) , k = C (p) , l = Cd (p) and j = D (p). The

electric vehicle arrival time at nodes belonging to path p can be uniquely determined as follows:

Ei = τi, (20)

Ek = τi + tik, (21)

El = τi + tik + wp, (22)

Ej = max (τi + tik + wp + tlj , τl + tlj) . (23)

For a direct path p = i→ j where i = S (p) and j = D (p):

Ei = τi, (24)

Ej = τi + tij . (25)

The set of equations can be used to determine the path dependent arrival times of each electric vehicle

once the arrival times of shuttle at node i and node l are known. As a repositioning shuttle completes its

tour, it drops and picks the drivers, who in turn relocate the EVs between nodes. Given a shuttle route, at

different nodes, we may have a shuttle, an EV or a driver waiting for some time. Equation (20) states that

arrival of EV at supplier node i only occurs after a driver is dropped off by the shuttle at time τi. Therefore,

the EV wait time is simply equal to the arrival time of the shuttle at the node, i.e., EVwait = Ei. Given τi,

the charging process for EV begins at τi+ tik and ends at τi+ tik+wp. At charger node k, a driver may wait

for a shuttle after dropping the EV, i.e., Dwait = τk − Ek. The charging process for EV begins at τi + tik,
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therefore, it does not wait on the node. EV arrival on dummy charger node l occurs at the end of charging

process at time τi + tik + wp. At each dummy charger node, if the charging process is over before shuttle

arrives, the EV must wait for the driver, i.e, EVwait = τl−El. In this case, EV arrival time at demander j is

τl + tlj . Conversely, if the charging process is not over when the shuttle arrives, the driver must wait for the

EV, i.e., Dwait = El− τl. the EV arrival at demander j occurs at El + tlj . At demander node j, if the driver

has already dropped the EV before shuttle’s arrival, the driver must wait, i.e., Dwait = τj − Ej . In some

cases, however, a shuttle may arrive at a demander before the driver brings the EV, i.e., SHwait = Ej − τj ;
hence, the shuttle must wait for driver’s arrival.

3.5 Final Formulation for the Synchronized Approach

Thus far, we have presented three disjoint feasibility problems. The EVRR problem finds feasible EV routes

and only admits the EV routes that fulfill the demand and charging requirements of the system. Similarly,

the SR problem finds feasible shuttle routes, and the f-SYNC admits only those feasible shuttle routes that

are synchronized with the requirements outlined in the EVRR problem. In this section, we connect all three

disjoint feasibility problems into a combined MIP formulation with an overarching objective function.

(SYNC) minimize
∑
k∈K

τkN+1, (26)

subject to (3)–(5), [EV Relocation and Recharging (EVRR)]

(6)–(15), [Shuttle Routing (SR)]

(16)–(19). [Synchronizing EV and Shuttle Routing (f-SYNC)]

The objective function (26) of the combined problem minimizes the travel time or makespan of shuttle

routes. Thus the combined MIP problem makes sure that only those electric vehicle relocations are carried

out that are promising for the overall system objective of minimizing the physical cost of carrying out that

relocation using shuttles and drivers.

3.6 Formulation for the Standalone EVRR Problem

EVRR feasibility problem in Section 3.2 describes a relocation problem complete with demand and charging

requirements. This relocation model can be used in a standalone manner by the decision makers, interested

in relocation alone, using an appropriate objective function.

(P1) minimize
∑
p∈P

lpxp (27)

(P2) minimize max
p∈P

(lpxp) (28)

15



We recommend two different objective functions for relocation problem as given by (27) and (28). The

former minimizes the total length of the paths selected for EVs while the latter minimizes the maximum

length of paths selected. The second objective can be linearized by introducing an auxiliary variable m and

adding an extra constraint.

(P3) minimize m, (29)

subject to m ≥ lpxp ∀p ∈ P. (30)

It is easy to show that (P3) with constraint (30) is equivalent to (P2). The relocation problem gives a set

of EV routes x as an optimal solution. On its own, the solution of EVRR problem for the full city-wide

network provides decision makers with optimal relocation decision. The problem will also be used in the

heuristic approaches for solving the synchronized EV relocation and shuttle routing problem.

3.7 Formulation for the Sequential Approach

We can use the standalone relocation model presented in Section 3.6 and a subsequent shuttle routing model

to formulate the sequential approach.

(SEQ-A) minimize
∑
p∈P

lpxp, (31)

subject to (3)–(5). [EV Relocation and Recharging (EVRR)]aaaaaaa

Let x be an optimal solution for (SEQ-A). Given x, solve (SEQ-B).

(SEQ-B) minimize
∑
k∈K

τkN+1, (32)

subject to (6)–(15), [Shuttle Routing (SR)]

(16)–(19). [Synchronizing EV and Shuttle Routing (f-SYNC)]

The sequential approach uses same modeling components as synchronized approach. It is easy to see that

the sequential approach gives us solutions which are feasible for synchronized approach but are sub-optimal.

Therefore, solutions for sequential approach can be used as initial solutions for synchronized approach.

4 Computational Methods

Owing to large size of our problems for the full city-wide network, we devise heuristic approaches to solve

the sequential (SEQ) and the synchronized (SYNC) problems. The heuristic approaches for SEQ and SYNC

rely on cluster-relocate-route approach to solve the EV relocation and shuttle routing problems. The algo-

rithmic components for the two approaches are described in this section. In Section 4.1, we describe the
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heuristic approach for solving the sequential problem. The best solution from sequential approach serves as

an initial solution for our main algorithm, the Exchange-Based Neighborhood-Search Method (EBNSM),

for solving the SYNC problem as described in Section 4.2.

4.1 Setting the Benchmark: the Sequential Approach

To show the system wide benefits of the synchronized (SYNC) approach to EV relocation and shuttle routing

problem, we compare it with the sequental (SEQ) approach. Since we want to compare the two approaches

in terms of their relocation decisions, we use a similar cluster-relocate-route approach for the SEQ problem.

The steps to solve the SEQ problem are described as Algorithm 2.

Algorithm 2: The Sequential Approach
Input: N ′0,K, q
Output: Best EV paths: Xk, Best shuttle route: z

1 Given number of shuttles K, find K-centers in the network using greedy approximation approach
mentioned in Section 4.1.1;

2 Solve the MIP problem (NCA) described in Appendix B for creating K clusters of nodes from
K-centers. Put the objective coefficient dik = tik,∀i ∈ N , k ∈ K. Let Nk,Sk, Ck,Dk, and Pk be
the sets of nodes, suppliers, chargers, demanders and paths for each cluster k, respectively;

3 foreach 1 ≤ k ≤ K do
4 Given Nk,Sk, Ck,Dk, and Pk, solve (SEQ-A). Let Xk be the set of best EV paths;
5 Given Xk, obtain an initial route rk for the shuttle using greedy approach;
6 Given an initial shuttle route (rk), run the customized 2-interchange algorithm to get the best

shuttle route. Let ubk ← obj(2-int);

7 bestSoln←
∑
k∈K

ubk;

8 bestRoutes←
⋃
k∈K

rk;

The clusters for the SEQ approach are formed using minimum cost assignment problem NCA with

objective coefficient dik = tik while the relocation decision is achieved by solving minimum path cost EV

relocation and recharging problem (SEQ-A). The MIP formulation SEQ-B can be used to get optimal shuttle

routes for moderate sized instances but fails for large instances owing to precedence constraints and loose

time windows. Therefore, we use a greedy algorithm to construct an initial shuttle route from optimal EV

path set and use the customized 2-interchange algorithm to improve the route.

4.1.1 Finding K-centers

As first step for sequential method, we solve a K-center problem to find K centers in the network. The

K-center problem is a well known NP-hard problem (Megiddo and Supowit, 1984). We use a 2-opt greedy

approximation algorithm (Plesník, 1987) to solve the problem. We let tij be the traversal time between

nodes i and j and assume the time matrix to be symmetric.
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4.1.2 Creating K Clusters

Once K-centers have been found, we can assign to each center k a set of nodes which form the k-th cluster.

The clustering process is described in detail in Appendix B.

4.1.3 Finding Optimal EV Routes

Once K clusters have been formed, optimal EV paths in each cluster can be found by simply solving the

minimum path cost EV relocation and recharging problem (SEQ-A). The output of the problem is an optimal

set of paths for each cluster. The set of paths is subsequently used to find best shuttle routes for each cluster.

4.1.4 Finding Optimal Shuttle Routes

We present a customized 2-interchange algorithm which draws from a 2-interchange procedure for Dial-A-

Ride Problem (DARP) presented in Psaraftis (1983). A DARP involves a vehicle picking up and dropping

off multiple customers. In our problem, the EVs are equivalent to customers in DARP.

Contrary to a customer in DARP, each EV moves multiple times through the nodes on its route. There-

fore, a shuttle must satisfy multiple precedence constraints for each EV. However, given a set of EV paths, a

shuttle route r can be constructed trivially using a greedy procedure whereby the suppliers are visited first,

followed by chargers, dummy chargers and demanders, in this order, while maintaining capacity feasibility

for drivers. Given r, a new route rnew can be constructed by swapping two arcs (i, i+ 1) and (j, j+ 1) with

two new arcs (i, j) and (i + 1, j + 1). Since direction of segment (i + 1 → · · · → j) is now reversed, it

is necessary to check precedence feasibility and ensure driver availability on the shuttle. The proposed 2-

interchange procedure is presented as Algorithm 4 in Appendix A. The feasibility and improvement checks

are customized for our problem and their algorithmic descriptions are also presented, in relative detail, in

Appendix A.

4.2 Solving the SYNC Problem using EBNSM

In this section, we describe in relative details the steps of EBNSM procedure for finding solutions to syn-

chronized EV relocation and shuttle routing problem (SYNC). EBNSM is an iterative procedure, described

as Algorithm 3, for solving EV relocation and shuttle routing problem synchronously. It relies on solution

for SEQ method and improves it by iteratively adding neighborhood paths and updating the shuttle routes.

Here, we expand on the individual steps.

EBNSM improves the solution obtained from sequential method by iteratively adding new EV paths and

updating the shuttle route. The exchange procedures, ExchangeSuppliers()and ExchangeChargers(),

are used to replace a pair of old paths in path set X with a pair of new paths by exchanging their supplier

and charger/dummy charger nodes, respectively. No new nodes are added in the process. However, the

visiting order of exchanged nodes must be changed in the shuttle route to ensure that precedence feasibility
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Algorithm 3: Exchange-Based Neighborhood-Search Method (EBNSM)

Input: N ′0,S, C, Cd,D, K = Number of Shuttles = Number of Clusters, q = Number of Drivers per
Shuttle, SNSIt: Number of iterations for Small Neighborhood Search

Output: Best shuttle routes: z
1 Given number of shuttles K, use Algorithm 2 to find initial paths Xk and initial shuttle routes rk

for each cluster k ;
2 for k ← 1 to K do
3 for it← 1 to SNSIt do
4 ∆← 0;
5 for i← 1 to |Xk| do
6 for j ← i+ 1 to |Xk| do
7 X ik,X

j
k ← ExchangeSuppliers(X ik,X

j
k ) ; // X k is the updated path set

8 rknew ← UpdateRoutes(X k) ;
9 ∆ij ← RouteImprovement(rk, rknew) ;

10 if ∆ij > ∆ then
11 ∆← ∆ij ;

12 if ∆ = 0 then
13 break ;

14 rk ← rknew, Xk ← X k ;

15 for it← 1 to SNSIt do
16 ∆← 0;
17 for i← 1 to |Xk| do
18 for j ← i+ 1 to |Xk| do
19 X ik,X

j
k ← ExchangeChargers(X ik,X

j
k ) ; // X k is the updated path set

20 rknew ← UpdateRoutes(X k, rk) ;
21 ∆ij ← RouteImprovement(rk, rknew) ;
22 if ∆ij > ∆ then
23 ∆← ∆ij ;

24 if ∆ = 0 then
25 break ;

26 rk ← rknew, Xk ← X k ;

27 ubk = length(rk)

28 Given route rk, generate a vector zk ;
29 ub←

∑
k∈K

ubk ;

30 bestSoln← ub, bestRoutes← zk ;

is maintained. The route update step in EBNSM, UpdateRoutes(), swaps the positions of the pair of

exchanged nodes in the shuttle route according to the updated path set X k. In doing so, since a supplier

is swapped with a supplier, and a charger with a charger, the capacity feasibility of shuttle route is also

maintained. Finally, the route improvement check for the new route rnew is done using the same procedure
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(a) Map for the Neighborhoods (b) All Nodes for Reduced Network

Figure 5 – Left: Map for the Neighborhoods together with Suppliers (blue circle), Demanders (red square) and Chargers
(green bolt sign), Right: All Nodes for Reduced Network

RouteImprovement() as used in Algorithm 4 and described in Appendix A.

5 Case Study: car2go in Amsterdam

We apply our framework to a fully operational system of car2go in Amsterdam, the Netherlands, where

the FFEVS service is provided using more than 300 EVs. From the actual data, we take the initial and

target locations of EVs that need to be relocated and test the performance of our computational method.

We use actual municipal boundaries of smallest size as neighborhoods as shown in Figure 5-a). For the

computational experiment, we first construct a full network containing 339 neighborhoods, 829 nodes, 332

dummy nodes and 2 nodes representing the depot. We use rules in Section 3.1 to reduce the size of the

network. Final network has 155 suppliers, 270 chargers, 270 dummy chargers and 155 demanders. The total

number of possible EV paths is |P| = 6, 267, 580, out of which 155 paths need to be selected to relocate

the 155 EVs. The nodes are depicted in Figure 5-b), which clearly shows that the current EV locations

(suppliers) and the desired locations (demanders) are concentrated in different areas, hence necessitating

relocation operations.

5.1 Dataset and Parameters

In our numerical experiments, we use both neighborhood level and spot level data. Based on the two boolean

characteristics, i.e., occupancy and availability of charging infrastructure at a node, each node can belong to

either of the four node types described in Section 3.2. Each node is also located in a certain neighborhood.

All the neighborhoods and the nodes therein have locations described through their coordinates. The loca-
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tions are used to generate their inter node distances and travel times. We calculate Euclidean distances, and

multiply them with a detour index of 1.4 to estimate driving distances (Boscoe et al., 2012). We use city

speeds of 30 miles per hour to estimate travel times in minutes. The parameter value of β1, the vehicle’s

charge depletion rate, is set to 2.5 minutes per unit of charge depletion. Similarly, β2 representing a vehicle’s

charging rate and given in percentage gain in charging per minute is set at 0.4. The values for β1 and β2
were derived from actual system data. Barring a major technological shift, these values will likely stay fixed

over the medium term. The starting battery level for all vehicles parked at the supplier nodes given by c0

is found from the system status data at 11:59 am on May 8th, 2016. The desired charging level cf for all

nodes located in a particular neighborhood is found as an average of the initial battery levels for all the trips

originating in that neighborhood. In our experiments, we allow for full recharging whereby all the EVs are

recharged to 100%.

5.2 The Exact Approach

In this Section, we present the results for solving the standalone EV relocation and recharging problem

(Section 3.6), sequential EV relocation and shuttle routing problem (Section 3.7), and synchronized EV

relocation and shuttle routing problem (Section 3.5) using exact solution approaches. All the experiments

were done on a machine with 3.6 GHz CPU clock speed, 16 GB RAM and 64-bit Windows 8 operating

system using Java API of CPLEX 12.9.0.

For sequential approach, the relocation and recharging problem (SEQ-A) was solved to optimality for

the full network with 829 nodes within 118 seconds. However, the subsequent shuttle routing problem

(SEQ-B) is a DARP variant with each EV (customer) being served up to four times by a repositioning

shuttle. The problem also involves multiple precedence constraints and loose time windows which depend

on shuttle arrivals at the preceding nodes. CPLEX was only successful in solving SEQ-B exactly for up to

10 EVs and 50 nodes. For synchronized EV relocation and shuttle routing problem described in Section

3.5, CPLEX failed to solve the MIP model for the system sized instance discussed in this paper. For this

instance, we could not even get a feasible solution for the model. In general, CPLEX was successful in

solving the MIP model exactly when the problem size was limited to 15 neighborhoods and 50 total nodes.

Solution time is another important consideration. The operational nature of the problem necessitates

solution methods which provide “reasonably good” solutions within a few minutes. In some cases, cus-

tomized decomposition-based approaches have previously been used for similar integrated models in other

industries. However, the instances solved were either small (Luo et al., 2019) or took many hours to achieve

sufficient convergence (Cordeau et al., 2001). The structure of our problem combined with large size of

our instances and the need for quick solutions makes our problem less suitable for decomposition based

approaches. Therefore, we used heuristic approaches to solve the real-life instances of our problem.

The results comparing the exact approaches with the heuristic approaches for solving SEQ and SYNC

problems for small instances are provided in Table 3. Generally, for the smaller sized problems, the dif-
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Problem Size Synchronized Approach Sequential Approach

|N ′| |H| |X | Algorithm Exact Method a EBNSM a Exact Method Our Heuristic

15 6 2 Objective 123.8 aaa 123.8 aaa 123.8 aaa 123.8 aaa

CPU Time 10.65 aaa 2.23 aaa 1.80 aaa 2.07 aaa

25 10 4 Objective 156.7 aaa 155.3 aaa 155.3 aaa 155.3 aaa

CPU Time 3600 aaa 2.45 aaa 470.40 aaa 2.28 aaa

45 15 9 Objective 184.6 aaa 184.8 aaa 184.8 aaa 184.8 aaa

CPU Time 3600 aaa 2.76 aaa 3600 aaa 2.69 aaa

Table 3 – Performance comparisons (small scale problem case): Synchronized vs. Sequential approaches as well as Exact
method vs. Our algorithms

ference between synchronized and sequential approaches was not substantial owing to the fact that even in

sequential approach, the relocation objective is to minimize the total EV path length of all EVs. In smaller

networks, this is a good proxy for minimizing the total shuttle route. The results obtained using heuristic

approaches were comparable to those with exact approaches for small instances while taking considerably

smaller time. Therefore, for solving the system sized instance of the sequential and synchronized problems,

we use the heuristic approaches presented in Section 4.

5.3 Computational Performance of EBNSM

We run EBNSM for instances of the SYNC problem for various numbers of shuttles K and number of

drivers q. Each shuttle services one cluster. We solve SEQ-A to get an initial path set Xk and use the

2-interchange procedure to get shuttle route rk. Since we do not have a lower bound for the shuttle route

length, we use number of iterations to be the termination criterion. Moreover, if K is small, each shuttle

will have larger route length. Therefore, the number of 2-interchange iterations are inversely proportional

to K. We use 1000/K. The numbers are empirically chosen as when the 2-interchange procedure has

stopped improving the objective. Given the size of the instances, we also want to limit the run time of the

algorithm to 20 minutes. Since the size of clusters varies in inverse proportion to number of shuttles/clusters

K, we run 500/K iterations of the neighborhood procedure for finding the “best” EV relocation decision.

We use a depth-first strategy and for each iteration select the exchange with highest improvement. For each

iteration of the neighborhood search, we update the shuttle route while maintaining precedence and capacity

feasibility to get the best shuttle route given the EV paths selected. When the iterations have stopped giving

improvement, we terminate the exchange procedure. Each instance of EBNSM for SYNC problem takes

less than 10 minutes to terminate. Moreover, the number of iterations can be modified according to the size

of the problem.
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Figure 6 – The difference in objective function values for SYNC and SEQ approaches for different values of K and q.

5.4 Value of the SYNC Approach

We compare the results by the SYNC and SEQ approaches. The purpose of comparing sequential and

syncrhonized approaches is not to claim equivalence between the two problems. Similar integrated models

have been presented before to show the benefits of integration. For instance, the two aspects of location

and routing have been “simultaneously” considered in location-routing literature. The combined problem,

although more complex, offers the “promise of more effective and economical decisions” (Balakrishnan

et al., 1987).

Given values of K and q, the output of each instance of algorithms is in terms of total route length in

minutes denoted asL. We can also calculate following parameters: total number of personnel (P = Kq+K)

and average route time per shuttle in hours (T = L
60×K ). We also calculate total wait times for shuttles

(SHwait), EVs (EVwait) and drivers (Dwait) for the best route. We compare the performance of SYNC

and SEQ approaches for 100% recharging situation. For full recharging, the SYNC approach outperforms

the SEQ approach in terms of total route length for all instances of the problem. On average, the route

length for SYNC approach is 15% shorter as compared to the SEQ approach. The difference in objective

function value varies considerably, in 5–28% range, across instances. Generally, the difference grows larger
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when the number of drivers on board each shuttle increases as can be seen in Figure 6. However. if the

number of drivers is increased so much that some drivers are not utilized at all, the difference between the

two approaches shrinks. As with the exact approach, when service area is very small, i.e., when the number

of clusters/ shuttles is very large, the difference between the SYNC and SEQ approaches decreases.

We also compare the cumulative wait times for all EVs (155), all shuttles (K) and all drivers (K × q)
for SYNC and SEQ approaches. The SYNC approach outperforms the SEQ approach in terms of EV wait

times. On average, the average improvement for full recharging is 21%. The improvement for driver wait

times is also 24% on average. However, the difference decreases as number of drivers per shuttle increases.

In case of shuttles, the wait times are negligibly small for small K values. As K increases, the wait times

oscillate and SEQ approach has, on average, smaller shuttle wait times in case of full recharging.

6 Resource Allocation and Operational Efficiency

An important managerial decision in the operation of EV relocation for FFEVS systems is how operational

resource allocation decisions impact the efficiency of operation. In this section, we study the relationship

between the operational cost of EV relocation and the size of the shuttles and number of drivers. Specifi-

cally, using our computational method and car2go data, we conduct an extensive numerical experiment by

calculating the relocation cost for different number of shuttles (clusters) and number of drivers on board

each shuttle. We find that besides the per unit shuttle and personnel costs, the size of service area and the

initial battery levels of EV fleet are important determining factors for an efficient operation of EV relocation

in FFEVS systems.

6.1 Cost Parameters

Let ΓD and ΓSH be the hourly costs for personnel and shuttles, respectively. The total cost of relocation

operation can be calculated as C = P × T × ΓD + K × T × ΓSH. It is the sum of personnel cost and the

shuttle operating cost. In our experiments, we assume the labor cost to be $40/hr, and the per hour operating

cost for a shuttle to be $24. We also limit the available time for relocation operation to 7 hours. Therefore,

we only consider the instances which achieve the relocation operation within the time limit.

6.2 Sensitivity Analysis for the Number of Shuttles and Size of Shuttles

We consider the sensitivity to the number of repositioning shuttles K and the maximum number of drivers

on board each shuttle q. The parameter q is also a proxy for the size and type of shuttle being used by the

system. As mentioned earlier, different FFEVS systems may use a van, a car, or single-person mobility

options like scooters and foldable bicycles to carry out the relocation. It is worthwhile to know which of

these options is most cost effective for system operators and also results in least wait times for personnel.
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Figure 7 – For a Large Network with 155 EVs and given a certain number of personnel and per unit costs, it is advantageous
to cluster more and increase the number of shuttles

To carry out the sensitivity analysis, we vary the value ofK from 1 to 30 and q from 1 to 12. By varying

K and q, we not only vary the extent of clustering, but also find out the best way to distribute manpower

and shuttle resources to carry out system-wide relocation of EVs. Given a number of total personnel P , a

manager may be interested in the best resource allocation in terms of shuttles and drivers. For instance if

P = 6, the possible resource allocation combinations could be (K, q) = {(1, 5), (2, 2), (3, 1)}, since each

shuttle also requires a driver. In Figure 7, we map the cost of all such combinations for P ranging from

2 to 50 with K ranging from 1 to 30 and q ranging from 1 to 12 when 155 EVs are to be relocated. We

observe that in most cases the combination (K, q) with larger number of shuttles is also more cost effective.

However, as shown in boxes in Figure 7, in some cases, for given P , increasing K actually increases the

cost of operation and combinations with smaller number of shuttles and larger number of drivers per shuttle

are more cost effective. When we repeat the same experiment with a smaller network of 10 EVs varying

K from 1 to 5 and q from 1 to 12, we obtain similar results, shown in Figure C.1 of Appendix C, where

choosing the highest K is not the best option. Details of the instances for which (K, q) combinations with
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P (K, q) Average Hours
per Shuttle

Total Operating
Cost

Shuttle Wait
Time

EV Wait
Time

Driver Wait
Time

6 (1,5) 3.7 972 4 716 589

(2,2) 3.3 948 146 505 498

(3,1) 3.5 1,092 328 738 331

8 (1,7) 3.3 1,122 8 500 681

(2,3) 3.1 1,132 128 383 578

(4,1) 3.2 1,345 488 647 489

10 (1,9) 3.3 1,388 0 502 676

(2,4) 3.0 1,341 136 292 791

(5,1) 3.1 1,603 611 499 614

12 (1,11) 3.3 1,667 3 451 746

(2,5) 3.0 1,580 137 241 686

(3,3) 3.1 1,700 295 196 869

(4,2) 3.0 1,713 426 172 773

24 (2,11) 3.0 3,017 124 235 658

(3,7) 3.1 3,179 300 179 944

(4,5) 3.0 3,140 406 161 745

Table 4 – Comparison of Shuttle Route Length and Operating Costs for For Various (K, q) Combinations Given Number of
Personnel for a Small Network when Number of EVs = 10. The Instances in the Table, Marked Red in Figure C.1 of Appendix
C, Correspond to Situations when Increasing the Number of Drivers is Advantageous

smaller number of shuttles are more cost effective are given in Table 4.

Therefore, it is important for a decision maker to understand when it is advantageous to increase drivers

as opposed to shuttles and vice versa, for given number of available personnel. Systems with relatively high

labor cost should consider single person mobility options like foldable bicycles or scooters so a cluster of

EVs could be assigned to an individual driver without any cars or vans moving him/her around. Changing

the per unit cost parameters may also impact these results and the optimal strategy may shift to two drivers

per shuttle rather than one driver. However, increasing the number of drivers per shuttle beyond two drivers

invariably gives diminishing returns due to large driver wait times on the shuttle. This suggests that for most

systems with high hourly personnel costs, using large vans may not be a cost effective option.

6.3 Analyzing the Shuttle, EV, and Driver Wait Times

For given ΓD and ΓSH, the average route time per shuttle given by T also impacts the total cost of operation.

T is in turn inlfuenced by shuttle wait times. As K is increased, each shuttle is responsible for relocating
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Figure 8 – Shuttle wait times increase as the number of shuttles increases
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Figure 9 – Shuttle wait times increase as the number of shuttles increases

smaller number of EVs. For K = 1, a shuttle must relocate all 155 EVs and for K = 14, the number drops

to less than 12 EVs. As the number of EVs per shuttle decreases, the corresponding shuttle wait times start

increasing as can be seen in Figures 8 and 9. This is owing to the fact that for smaller number of EVs,

shuttles must wait for EVs to get recharged before picking up the final batch of drivers from the demander

nodes. Therefore, after some point, adding more shuttles only increases the wait times of the shuttles, and it

becomes beneficial to increase the number of drivers instead, as shown for a small instance in Figure 10.

6.4 Analyzing the Impact of Initial Battery Levels and Charging Speed

The difference between initial battery levels and desired charging levels is also an important factor in relo-

cation operations. A larger difference signifies longer recharging processes and larger wait times for shuttles

and drivers. This impact is considerable especially for small-scale networks where an EV’s charging process

may delay the trip completion. For low initial battery levels, the charging process takes longer and adding
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Figure 10 – Possible relocation operation alternatives when number of personnel = 6, number of EVs = 10. For (K, q) =
(3, 1), shuttles wait 52% of the time; for (K, q) = (2, 2), shuttles wait 37% of the time; for (K, q) = (1, 5) shuttles wait
1.8% of the time.
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Figure 11 – As initial battery levels increase, it becomes beneficial to increase the number of shuttles

extra shuttles only contributes to shuttle wait times. However, if the initial battery levels get higher (so the

charging requirements become lower), increasing the number of shuttles can still be beneficial. As shown

in Figure 11, we increase the initial battery levels from c0 to αc0 uniformly. As α increases, the charging

requirement decreases, and the cost of operation with larger number of shuttles (green asterisks) becomes

more favorable.

We note here that, as shown in equation (1), increasing the initial charging levels c0 decreases wp, i.e.,

the time spent charging on the charging station. A similar effect will occur as we vary the charging speed,

i.e., parameter β2. As charging speeds become faster, due to technological advancement, it will result in

a decrease in wp. Therefore, the sensitivity analysis with different initial battery levels is a good proxy

for varying the charging speed. As technology advances, and charging speed becomes faster, increasing

the number of shuttles, i.e., using a larger number of smaller shuttles to carry out the relocation operation

becomes beneficial.
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7 Conclusion

This paper presents a mathematical model to solve the problem of nightly repositioning and recharging of

electric vehicles in a FFEVS system. Since in many such systems, EVs are moved by a crew of shuttles and

drivers, we propose that the relocation decision be made in synchronization with shuttle routing decision

to minimize the cost of relocation operation. In contrast, most current approaches make the relocation and

shuttle routing decisions sequentially. Our unique path based formulation can solve problems of moderate

size. For system sized instances, we propose the exchange based neighborhood search method which draws

from the mathematical model and solves all the instances within 10 minutes. Comparison of synchronized

approach with sequential approach shows that the former improves the total length of shuttle routes and in

turn the cost of relocation operation by 15% on average. FFEVS systems require an elaborate relocation

operation and improving the cost of such an operation improves the bottom line of these systems. Moreover,

our model achieves complete system wide repositioning and recharging, therefore improving the distribution

of EVs and directly addressing the issues of demand imbalance and range anxiety in FFEVS systems.

The data for our experiments comes from a real life free-floating car sharing operator and the instances

used in this paper represent the complexities of an actual relocation operation. This paper presents EBNSM

which uses cluster-relocate-route approach to solve the system-sized relocation instances for relocating and

recharging. For the largest instance solved in this paper, we relocate 155 EVs while increasing the system

wide average charging levels from 42 % to 90 %. The model is also flexible to changes in system status,

initial battery levels, and desired demand configuration. It allows for partial recharging of EVs and their

relocation close to the actual demand points.

We conduct a variety of experiments with different numbers of shuttles and drivers per shuttle, a proxy

for shuttle size, to find out the most cost effective human resource allocation. The results suggest that given

a certain number of personnel, it is more cost effective to increase the number of shuttles rather than number

of drivers on each shuttle, especially when the service area is large. This trend may be reversed for small

service areas and small number of EV relocations per shuttle. In these cases, adding extra shuttles only adds

to wait times and increasing the number of drivers may be beneficial. This implies that although increasing

the number of drivers on shuttles improves the route length, the improvement is not justified due to extra

cost. Therefore, systems with relatively high labor cost should consider single person mobility options like

foldable bicycles or scooters as this will relieve the cost of an extra car and driver.
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Cordeau, Jean-François, Goran Stojković, François Soumis, Jacques Desrosiers. 2001. Benders decompo-

sition for simultaneous aircraft routing and crew scheduling. Transportation science 35(4) 375–388.

de Almeida Correia, G. H., A. P. Antunes. 2012. Optimization approach to depot location and trip selection

in one-way carsharing systems. Transportation Research Part E: Logistics and Transportation Review

48(1) 233–247.

Firnkorn, J., M. Müller. 2011. What will be the environmental effects of new free-floating car-sharing

systems? The case of car2go in Ulm. Ecological Economics 70(8) 1519–1528.

Folkestad, C. A., N. Hansen, K. Fagerholt, H. Andersson, G. Pantuso. 2020. Optimal charging and reposi-

tioning of electric vehicles in a free-floating carsharing system. Computers & Operations Research 113

104771.

Formentin, S., A. G. Bianchessi, S. M. Savaresi. 2015. On the prediction of future vehicle locations in

free-floating car sharing systems. Intelligent Vehicles Symposium (IV), 2015 IEEE. IEEE, 1006–1011.

Fricker, Christine, Nicolas Gast. 2016. Incentives and redistribution in homogeneous bike-sharing systems

with stations of finite capacity. Euro Journal on Transportation and Logistics 5(3) 261–291.

Gambella, C., E. Malaguti, F. Masini, D. Vigo. 2018. Optimizing relocation operations in electric car-

sharing. Omega 81 234–245.

30

https://www.citylab.com/transportation/2018/10/where-americas-charge-towards-electric-vehicles-stands-today/572857/
https://www.citylab.com/transportation/2018/10/where-americas-charge-towards-electric-vehicles-stands-today/572857/
https://www.citylab.com/transportation/2018/10/where-americas-charge-towards-electric-vehicles-stands-today/572857/
https://www.car2go.com/media/data/italy/microsite-press/files/car2go_white-paper_autonomous-driving_2017_en.pdf
https://www.car2go.com/media/data/italy/microsite-press/files/car2go_white-paper_autonomous-driving_2017_en.pdf


Garrick, D. 2016. Car2go ceases San Diego operations. San Diego Union-Tribune. URL https://www.

sandiegouniontribune.com/news/politics/sd-me-car2go-leave-20161230-story.html.

Haider, Zulqarnain, Alexander Nikolaev, Jee Eun Kang, Changhyun Kwon. 2018. Inventory rebalancing

through pricing in public bike sharing systems. European Journal of Operational Research 270(1) 103–

117.

He, L., Z. Hu, M. Zhang. 2020. Robust repositioning for vehicle sharing. Manufacturing & Service Opera-

tions Management 22(2) 241–256.

He, L., G. Ma, W. Qi, X. Wang. 2019. Charging an electric vehicle-sharing fleet. Manufacturing and Service

Operations Management (forthcoming).

He, L., H.-Y. Mak, Y. Rong, Z.-J. M. Shen. 2017. Service region design for urban electric vehicle sharing

systems. Manufacturing & Service Operations Management 19(2) 309–327.

Herrmann, S., F. Schulte, S. Voß. 2014. Increasing acceptance of free-floating car sharing systems using

smart relocation strategies: A survey based study of car2go hamburg. International Conference on Com-

putational Logistics. Springer, 151–162.

Jian, S., D. Rey, V. Dixit. 2016. Dynamic optimal vehicle relocation in carshare systems. Transportation

Research Record: Journal of the Transportation Research Board (2567) 1–9.

Kek, A. G.H., R. L. Cheu, Q. Meng, C. H. Fung. 2009. A decision support system for vehicle relocation

operations in carsharing systems. Transportation Research Part E: Logistics and Transportation Review

45(1) 149–158.

Kim, S. W., H.-Y. Mak, M. Olivares, Y. Rong. 2020. Empirical investigation on the range anxiety for electric

vehicles. Working Paper.

Kypriadis, D., G. Pantziou, C. Konstantopoulos, D. Gavalas. 2018. Minimum walking static repositioning

in free-floating electric car-sharing systems. IEEE, 1540–1545.

Laporte, G., F. Meunier, R. W. Calvo. 2015. Shared mobility systems. 4OR 13(4) 341–360.

Le Vine, S., J. Polak. 2019. The impact of free-floating carsharing on car ownership: Early-stage findings

from london. Transport Policy 75 119–127.

Lim, M. K., H.-Y. Mak, Y. Rong. 2015. Toward mass adoption of electric vehicles: Impact of the range and

resale anxieties. Manufacturing & Service Operations Management 17(1) 101–119.

Lin, S. 1965. Computer solutions of the traveling salesman problem. Bell System Technical Journal 44(10)

2245–2269.

31

https://www.sandiegouniontribune.com/news/politics/sd-me-car2go-leave-20161230-story.html
https://www.sandiegouniontribune.com/news/politics/sd-me-car2go-leave-20161230-story.html


Loose, W. 2010. The state of european car-sharing. Project Momo Final Report D 2.

Luo, Zhixing, Mengyang Liu, Andrew Lim. 2019. A two-phase branch-and-price-and-cut for a dial-a-ride

problem in patient transportation. Transportation Science 53(1) 113–130.

Martin, E., S. Shaheen, J. Lidicker. 2010. Impact of carsharing on household vehicle holdings: Results from

north american shared-use vehicle survey. Transportation Research Record: Journal of the Transportation

Research Board (2143) 150–158.

Megiddo, N., K. J. Supowit. 1984. On the complexity of some common geometric location problems. SIAM

Journal on Computing 13(1) 182–196.

Pelletier, Samuel, Ola Jabali, Gilbert Laporte. 2018. Charge scheduling for electric freight vehicles. Trans-

portation Research Part B: Methodological 115 246–269.

Pfrommer, J., J. Warrington, G. Schildbach, M. Morari. 2014. Dynamic vehicle redistribution and online

price incentives in shared mobility systems. Intelligent Transportation Systems, IEEE Transactions on

15(4) 1567–1578.

Plesník, J. 1987. A heuristic for the p-center problems in graphs. Discrete Applied Mathematics 17(3)

263–268.

Psaraftis, H. N. 1983. k-interchange procedures for local search in a precedence-constrained routing prob-

lem. European Journal of Operational Research 13(4) 391–402.

Raviv, T., M. Tzur, I. A. Forma. 2013. Static repositioning in a bike-sharing system: Models and solution

approaches. EURO Journal on Transportation and Logistics 2(3) 187–229.

Santos, A. G., P. G.L. Cândido, A. F. Balardino, W. Herbawi. 2017. Vehicle relocation problem in free

floating carsharing using multiple shuttles. Evolutionary Computation (CEC), 2017 IEEE Congress on.

IEEE, 2544–2551.

Schulte, F., S. Voß. 2015. Decision support for environmental-friendly vehicle relocations in free-floating

car sharing systems: The case of car2go. Procedia CIRP 30 275–280.

Shaheen, S., A. Cohen. 2007. Growth in worldwide carsharing: An international comparison. Transporta-

tion Research Record: Journal of the Transportation Research Board (1992) 81–89.

Weikl, S., K. Bogenberger. 2013. Relocation strategies and algorithms for free-floating car sharing systems.

IEEE Intelligent Transportation Systems Magazine 5(4) 100–111.

Weikl, S., K. Bogenberger. 2015. A practice-ready relocation model for free-floating carsharing systems

with electric vehicles–mesoscopic approach and field trial results. Transportation Research Part C:

Emerging Technologies 57 206–223.

32



Appendix for

Optimizing the Relocation Operations of
Free-Floating Electric Vehicle Sharing Systems

A Two-Interchange Algorithm for Multiple Precedence Constraints

We present a customised 2-interchange algorithm which draws from a 2-interchange procedure for Dial-A-

Ride Problem (DARP) presented in Psaraftis (1983). A DARP involves a vehicle picking up and dropping

off multiple customers. A DARP tour, unlike that of a Travelling Salesman Problem (TSP) (Lin, 1965), must

satisfy precedence constraints since origin of each customer must precede his/her destination on the route.

In our problem, the EVs are equivalent to customers in DARP. Contrary to a customer in DARP, each EV

moves multiple times through the nodes on its route. Therefore, a shuttle must satisfy multiple precedence

constraints for each EV. We borrow and extend the notation used in Psaraftis (1983).

A given shuttle route r of lengthM = length(r) can be described as a sequence
(
Ŝ1, Ŝ2, . . . , Ŝi, . . . , ŜM

)
where i represents the i-th stop of the route and Ŝi is defined using the following symbolic values:

Ŝi =



0 if i = 1 or i = M (Depots)

n+ if shuttle visits supplier node of EV n at node i

n> if shuttle visits charger node of EV n at node i

n< if shuttle visits dummy charger node of EV n at node i

n− if shuttle visits demander node of EV n at node i

∀ i = 1, 2, . . . ,M

Alternativelty, the shuttle route can be represented through matrix [m (n, i)] where m (n, i) is the status

of EV n at the i-th stop of the shuttle tour.

m (n, i) =



5 if supplier for EV n has not been visited so far.

4 if charger for EV n has not been visited so far.

3 if dummy charger for EV n has not been visited so far.

2 if demander for EV n has not been visited so far.

1 if route for EV n has been completed.

(n = EV number, i = 1, 2, . . . ,M) .

Given an initial route r, a 2-interchange swapping algorithm works by interchanging two links in the
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Algorithm 4: A customized 2-interchange procedure for finding 2-optimal shuttle route
Input: q; set of EV paths X ; Iter = number of 2-interchange iterations
Output: z

1 Given X , use GreedyProcedure(X )to obtain an initial route r as an array r[1], r[2], · · · , r[end];
2 for k ← 1 to Iter do
3 ∆← 0 ;
4 for i← 1 to length(r)− 3 do
5 for j ← i+ 2 to length(r)− 1 do

// Swapping nodes i+ 1 and j and reversing nodes between them
6 rnew ← copy(r) ;
7 rnew[i+ 1 : j]← rnew[j : i+ 1] ;
8 if ¬PrecedenceFeasibilityCheck(rnew) then // for synchronization
9 continue;

10 if ¬CapacityFeasibilityCheck(rnew) then // for driver availability
11 continue;

12 ∆ij ← RouteImprovement(r, rnew);
13 if ∆ij > ∆ then
14 ∆← ∆ij , rbest ← rnew ;

15 r ← rbest ;

16 Given route r, generate a vector z.

route with two other links. For a given route r and a proposed swap (i, j), a new route rnew can be con-

structed by substituting two links. Link i→ i+ 1 is substituted with i→ j, while j → j + 1 is substituted

with i+ 1→ j + 1. Since direction of segment (i+ 1→ · · · → j) is now reversed, it is necessary to check

precedence feasibility. The shuttle also picks up and drops off the drivers at each node it visits. There-

fore, a proposed 2-interchange must also be feasible in terms of number of drivers on the shuttle. Further-

more, a proposed 2-interchange must also improve (decrease) the length of the shuttle route. Given a route

r and a proposed interchange (i, j), we next describe the steps for PrecedenceFeasibilityCheck(rnew),

CapacityFeasibilityCheck(rnew and RouteImprovement(r, rnew). Let us also consider a small example

to illustrate the steps of the 2-interchange procedure. We consider 4 EVs with the following paths: 11→ 2,

40→ 15, 23→ 16→ 47→ 4 and 24→ 13→ 46→ 12. EVs 1 and 2 have direct paths while EVs 3 and 4

visit interdmediate charging stations.

GreedyProcedure(X ):

Given a set of EV paths, we use the procedure described in Algorithm 5 to construct an initial route r. The

initial shuttle route for the example with 4 EV routes is shown in Table A.1.
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Algorithm 5: GreedyProcedure(X ): Greedy algorithm for finding initial shuttle route
Input: X = set of EV routes, q, y = current number of drivers, V ← {}
Output: r = [r[1], r[2], · · · , r[end]]

1 j ← 1 ;
2 r[j]← 0, y ← q;
3 j ← j + 1 ;
4 foreach x ∈ X do
5 while y ≥ 1 do
6 r[j]← {S(x)} ;
7 y ← y − 1;
8 j ← j + 1 ;

9 while y ≤ q − 1 do
10 r[j]← {C(x)};
11 y ← y + 1;
12 j ← j + 1 ;

13 foreach x ∈ X do
14 while y ≥ 1 do
15 r[j]← {Cd(x)};
16 y ← y − 1;
17 j ← j + 1 ;

18 while y ≤ q − 1 do
19 r[j]← {D(x)};
20 y ← y + 1;
21 j ← j + 1 ;

22 end← j;
23 r[end]← 0;

PrecedenceFeasibilityCheck(rnew):

For a given shuttle route to be precedence feasible, the supplier of each EV route must be visited before

the charger, which in turn must be visited before the dummy charger and finally the dummy charger must

be visited before the demander. Therefore, for each EV n, there are three precedence constraints. We can

use the matrix m(n, i) to ensure the feasibility of all three precedence constraints. Given a proposed 2-

interchange (i, j), assume that for an EV n, m(n, i) = 5 and m(n, j) = 3. This implies that the supplier for

EV n has not been visited at node i but the charger has already been visited before node j. It follows then

that the supplier and charger nodes for EV n lie within the shuttle route segment (i+ 1→ · · · → j). Since

performing the 2-interchange (i, j) will reverse the direction of traversal on segment (i+ 1→ · · · → j), the

charger node will be visited before the supplier node. This will violate the first precedence constraint for EV

n. Similarly, if m(n, i) = 4 and m(n, j) = 2, the proposed 2-interchange (i, j) will result in the dummy

charger node being visited before the charger node of an EV n, violating the second precedence feasibility

constraint.
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Normally, performing the feasibility check will require O(N3) time since we must perform O(N)

checks for each 2-interchange. However, the computational complexity can be reduced to O(N2) by per-

forming a customized version of screening procedure described in Psaraftis (1983). For a given tour r and

a given stop i (1 ≤ i ≤ M − 2), we define FIRSTSTOP(i) to be the position of the first stop (charger)

beyond node (i+ 1) for which the corresponding EV supplier has not been visited including and up to node

i. If no such stop exists, FIRSTSTOP(i) = M . Similarly, we define SECONDSTOP(i) to be the position

of the second stop (dummy charger) beyond node (i + 1) for which the corresponding EV charger has not

been visited including and up to node i. If no such stop exists, SECONDSTOP(i) = M . Finally, we de-

fine THIRDSTOP(i) to be the position of the third stop (demander) beyound node (i + 1) for which the

corresponding EV dummy-charger has not been visited including and up to node i. If no such stop exists,

THIRDSTOP(i) = M . Mathematically, FIRSTSTOP(i) = h if h is the smallest number above (i + 1) for

which there exists an EV n so that m(n, i) = 5 and m(n, h) = 3. If no such EV exists, the h = M .

Similarly, SECONDSTOP(i) = h if h is the smallest number above (i + 1) for which there exists an EV n

so that m(n, i) = 4 and m(n, h) = 2. If no such EV exists, the h = M . Finally, THIRDSTOP(i) = h if h

is the smallest number above (i + 1) for which there exists an EV n so that m(n, i) = 3 and m(n, h) = 1.

If no such EV exists, the h = M . Theorem A.1 describes the test for precedence feasibility check for a

proposed 2-interchange (i, j).

Theorem A.1. The exchange (i, j) is precedence feasible if and only if j < FIRSTSTOP(i) and j <

SECONDSTOP(i) and j < THIRDSTOP(i).

Proof. This theorem is similar to the result of (Psaraftis, 1983). The proof is obvious and hence omitted.

The screening part of the 2-interchange algorithm can be summarized as follows:

Algorithm 6: Screening Procedure for Prercedence Feasibility Check for a Proposed 2-
Interchange

Input: FIRSTSTOP(i), SECONDSTOP(i), THIRDSTOP(i)
Output: TF(i, j)

1 for i← 1 to M − 2 do
2 for j ← i+ 1 to M do
3 if j < FIRSTSTOP(i) and j < SECONDSTOP(i) and j < THIRDSTOP(i) then
4 TF(i, j)← ‘true’ ;
5 else
6 TF(i, j)← ‘false’ ;

The values for m(n, i), Ŝi, FIRSTSTOP(i), SECONDSTOP(i), THIRDSTOP(i), and the matrix

TF(i, j) for the small example are calculated in Table A.1.

We use a depth first procedure to select the best interchange. The TF(i, j) matrix checks for precedence

feasibility for all possible (i, j) swaps given an initial route r. The precedence feasible swaps are shown as
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Type ** S S S S C C DC DC D D D D **

Node, r[i] 0 11 40 23 24 16 13 47 46 2 15 4 12 0

Ŝi 0 1+ 2+ 3+ 4+ 3> 4> 3> 4< 1− 2− 3− 4− 0

m(1, i) 5 4 4 4 4 4 4 4 4 3 3 3 3 3

m(2, i) 5 5 4 4 4 4 4 4 4 4 3 3 3 3

m(3, i) 5 5 5 4 4 3 3 2 2 2 2 1 1 1

m(4, i) 5 5 5 5 4 4 3 3 2 2 2 2 1 1

FIRSTSTOP[i] 6 6 6 7 14 14 14 14 14 14 14 14 14 14

SECONDSTOP[i] 14 14 14 8 8 9 14 14 14 14 14 14 14 14

THIRDSTOP[i] 14 14 14 14 14 12 12 13 14 14 14 14 14 14

i|j 3 4 5 6 7 8 9 10 11 12 13 14

1 T T T F F F F F F F F F

2 T T F F F F F F F F F

3 T F F F F F F F F F

4 T F F F F F F F F

5 T F F F F F F F

6 T F F F F F F

7 T T T F F F

8 T T T F F

9 T T T F

10 T T F

11 T F

12 F

Table A.1 – An Example Illustrating the Screening Procedure for Precedence Feasibility Check
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Node, r[i] 0 11 40 23 24 16 13 47 46 2 15 4 12 0

Type ** S S S S C C DC DC D D D D **

yold
i 4 3 2 1 0 1 2 1 0 1 2 3 4 4

i 1 2 3 4 5 6 7 10 9 8 11 12 13 14

Node, rnew[i] 0 11 40 23 24 16 13 2 46 47 15 4 12 0

Type ** S S S S C DC DC C D D D D **

ynew
i 4 3 2 1 0 1 0 -1 0 1 2 3 4 4

Table A.2 – An Example Illustrating the Capacity Feasibility Check for interchange (7, 10)

T in the table. We next apply capacity feasibility check and improvement check on this set of routes.

CapacityFeasibilityCheck(rnew):

The capacity feasibility check is done to ensure that the proposed 2-interchange does not cause the number

of drivers to drop below zero or jump above the capacity q. A given shuttle route r begins at the depot

with q drivers. A driver is dropped at each supplier and dummy charger node and one is picked from each

charger and demander node. Given a proposed 2-interchange (i, j), and the new route rnew, the capacity

only changes for the route segment (j → · · · → i + 1). Given yold
i , i.e., the number of drivers at node i

on the current shuttle route r, one can easily determine ynew
i , i.e., the number of drivers at node i for new

shuttle route rnew. If for a given node i on shuttle route, ynew
i falls below 0 or above capacity q, the proposed

interchange (i, j) is deemed infeasible. For example, the proposed interchange (7, 10) is capacity infeasible

as shown in Table A.2.

RouteImprovement(r, rnew):

A proposed two interchange (i, j) involves sustitution of two links (i, i + 1) and (j, j + 1) with two new

links (i, j) and (i + 1, j + 1). In traditional TSP and DARP problems, an interchange is considered to be

improving or favorable if ti,i+1 + tj,j+1 > ti,j + ti+1,j+1. The improvement for an interchange (i, j) can

simply be calculated as ti,i+1 + tj,j+1− (ti,j + ti+1,j+1). The updated arrival times τj for the new route can

be calculated by iteratively adding the link traversal times, i.e., τ1 = 0, τj = τi + tij ,∀(i, j). In case of the

synchronized EV relocation and shuttle routing problem presented in this paper, the improvement check is

computationally more challenging. The arrival time of a shuttle at a demander node on an EV path p ∈ X
depends on both the EV path length (lp) and the shuttle arrival time on corresponding supplier node. This

dependency is given by Equations (17) and (18). Therefore for a shuttle moving on link (i, j) the arrival
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time τj at node j is calculated as:

τj =

max(τi + tij , τl + lp) if p ∈ X , l = S(p), j = D(p)

τi + tij otherwise.

Since a proposed interchange (i, j) reverses the shuttle traversal on segment (i + 1 → · · · → j), a

demander node contained in the segment may have its arrival time changed from τi′ + tij to τl′ + lp or vice

versa, owing to the change in its position. Similarly, a supplier node l′ contained in the segment may have its

arrival time changed due to change in its position on the route. If the supplier node belongs to path p ∈ X ,

this change in τ ′l can also nonlinearly impact the shuttle arrival at the downstream demander node j′ = D(p)

and at any nodes after j′ on the route. Therefore, improvement after a proposed 2-interchange can only be

checked by fully calculating the shuttle arrival times at all nodes using the expression for τj given above.

Let τoldM be the total route time for a given route r. Let τnewM be the total route time for the route rnew. The

improvement ∆ij can be calculated as: ∆ij = τnewM − τoldM .

B Steps to create K-clusters from K-centers

Once K-centers have been found, we can assign to each center k a set of nodes which form the k-th cluster.

The assignment must fulfill certain high level requirements.

1. The number of nodes within each cluster should be approximately equal to form evenly sized clusters.

2. For each cluster, the number of demanders and chargers in the cluster should be greater than or equal

to the minimum of the number of suppliers and demanders in the cluster to ensure that each electric

vehicle has an available path within the cluster.

Given K clusters, these requirements are equivalent to fulfilling the following conditions:

|Sk| ≥ min
{ |S|
K
,
|D|
K

}
, |Dk| ≥ |Sk|, and |Ck| ≥ |Sk|.

The assignment of nodes to clusters is done using an assignment problem that minimizes the total distance

from all nodes to the assigned center. Let rik be a binary variable which is 1 if node i is assigned to center

k and 0, otherwise. Similarly let dik = tik be the measure of distance from node i to center k. The node to

center assignment problems (NCA) can be written as follows:

(NCA) minimize
∑
i∈N

∑
k∈K

dikrik, (B.1)

subject to
∑
k∈K

rik = 1 ∀i ∈ N , (B.2)
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∑
i∈S

rik ≥ min

{
|S|
K
,
|D|
K

}
∀k ∈ K, (B.3)∑

i∈D
rik ≥

∑
i∈S

rik ∀k ∈ K, (B.4)∑
i∈C

rik ≥
∑
i∈S

rik ∀k ∈ K, (B.5)

rik ∈ {0, 1} ∀i ∈ N , k ∈ K (B.6)

C Additional Figures

Figure C.1 – For a Small Network with 10 EVs and given a certain number of personnel and per unit costs, it is advantageous
to increase the number of drivers
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