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Abstract

In this paper, we apply matching theory to supply chain coordination. We present

mathematical optimization models similar to the newsvendor problem to provide appro-

priate conditions for retailer-supplier matching. In particular, our matching algorithm,

compared to the general matching theory, has uniquely been affected by contract sizes

and ordering sequences. We also study that our matching application guarantees stable

and optimal outcomes. Numerical examples with various parameter settings are provided

to test the feasibility of the matching algorithms. We find that we can avoid the worst

matching case when we use the proposed matching algorithms.

1 Introduction

Since Gale and Shapley (1962) introduced a matching algorithm for college admission prob-

lems, matching theory has been one of widely discussed topics in game theory, and education

economics to efficiently place students on public schools. Recently big cities in the U.S.

such as Boston, New York City and Seattlef have virtually been using the matching system

to satisfy both schools and students in their preference orders. Traditional supply chain

management has not considered preference-based systems between retailers and suppliers,

although there are a lot of good characteristics of matching theory for allocation system.

In this paper, we develop a new framework that allows us to effectively match retailers

and suppliers in a matching algorithm which we call retailer-supplier matching with the De-

ferred Acceptance Algorithm (Gale and Shapley, 1962) and subsequently to consider stability

and optimality of the matching outcomes satisfying various scenarios that occur in retailer-

supplier contract situations. A central issue we address is how retailers and suppliers can

order and offer their optimal quantities under full information about their matching partners.

In particular, we determine each retailer’s optimal ordering quantity and each supplier’s opti-

mal offering quantity from stochastic optimization models that are similar to the newsvendor

model.
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There are many papers in economics literatures dealing with school-choice allocations

by the matching theory, including Abdulkadiroglu and Sonmez (2003). Just as our retailer-

supplier matching model, the Deferred Acceptance Algorithm, one of the matching algo-

rithms, has widely been used for emplaning not only school choice allocations, but also for

nurses allocations problem in hospitals studied. In addition to various applications of the

matching theory, its important properties including stability and optimality have been also

studied by Roth (1982, 2008).

The relationship between retailers and suppliers has been studied in the perspective of

supplier selection (De Boer et al., 2001) and outsourcing policies (Elmaghraby, 2000), rather

than matching. An interesting selection method that has (limited) similarities with the

proposed retailer-supplier matching is a supplier tournament (Deng and Elmaghraby, 2005),

where a retailer procures from two suppliers in the initial time periods and later only one

supplier is selected. In the retailer-supplier matching considered in this paper, however,

selections among multiple suppliers (or retailers) occur, but actual procurements occur only

after all selections (matching) are made.

The retailer-supplier matching in this paper requires a method to determine preferences

of retailers and suppliers. We use stochastic optimization models similar to the well-known

newsvendor model and the considered profit function in concave as similar as in Cachon

(1999), Zhang (2008) and Sobel and Turcic (2008).

This paper will be organized as follows. Section 2 selectively reviews the most widely used

matching theory, the Deferred Acceptance Algorithm proposed by Gale and Shapley (1962).

Section 3 provides stochastic optimization models to determine preferences of retailers and

suppliers, which will be basis for matching. Section 4 introduces retailer-supplier matching

algorithms. We then discuss the stability and optimality of the matching results in Section

5. In Section 6, we suggest numerical illustrations including relevant steps for the algorithm,

and also the results are compared to each other in different matching scenarios.

2 Deferred Acceptance Algorithm

In this section, we present a brief explanation of Deferred Acceptance Algorithm (DA algo-

rithm) which is the most typical matching algorithm over several other matching algorithms.

In addition, we illustrate the DA algorithm with a student-school matching case, where the

matching is based on the preferences of students and schools. Students have their own pref-

erence for the schools, reflecting the preferences to their applications. Likewise, the schools

also have their own preference over the students, accepting students under their preferences.

The process of the algorithm is run through the following steps.

In the first step, each student applies for his first choice school. Each school tentatively

accepts an applicant who has the highest preference for the school, and the rest are rejected.
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At the k-th step, each student who was rejected in (k − 1)-st step applies to his next choice

school. For each school, the highest preference applicant among the new applicant and those

who were tentatively placed at a previous step are tentatively placed to the school, and the

rest are rejected. The algorithm terminates when no student is rejected any more.

Let us consider an example of student-school matching. We consider a group of students

{s1, s2, s3, s4} and a group of schools {c1, c2, c3, c4} where each school has only one seat

(capacity) to admit one student. The preferences of schools and students are given in Table

1.

rank s1 s2 s3 s4 c1 c2 c3 c4
1 c2 c2 c2 c3 s1 s1 s1 s3
2 c3 c1 c1 c1 s2 s3 s4 s2
3 c1 c3 c4 c2 s4 s2 s3 s1
4 c4 c4 c3 c4 s3 s4 s2 s4

Table 1: Preferences of Students and Schools

From Table 1, we confirm the preference order for each school and student. For example,

Student 1 (s1) has a preference order such that School 2 (c2) on the first rank, School 3 (c3)

on the second rank, School 1 (c1) on the third rank, School 4 (c4) on the last rank. School 1

(c1) has a preference order such that Student 1 (s1) on the first rank, Student 2 (s2) on the

second rank, Student 4 (s4) on the third rank, and Student 3 (s3) on the last rank.

Round c1 c2 c3 c4
1 - s1, s2, s3 s4 -
2 s2, s3 s1 s4 -
3 s2 s1 s4 s3

Table 2: DA Matching Algorithm

The DA algorithm applied to this problem is given in Table 2. The outcome of DA

algorithm for this problem has been finalized in Round 3. In Round 1, Student 1, Student

2, Student 3 apply for School 2 as their first preference is School 2. On the other hand,

Student 4 applies to School 3. School 2 tentatively accepts Student 1 as marked bold in the

table, rejecting other applicants. Similarly in Round 2, Student 2 and Student 3 who were

rejected in Round 1 apply for School 1 as their second preference is same as School 1. Then

School 1 only accepts Student 2 rejecting Student 3. Finally in Round 3, Student 3 applies

for School 4, completing all matching pairs. Hence, this algorithm provides student-school

pairs: (s1, c2), (s2, c1), (s3, c4) and (s4, c3).
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Symbol Definition

p unit price for the product by retailers i
Ui profit of retailer i
Vj profit function for supplier j
Oi order quantity of retailer i
Sij offering quantity of supplier j for retailer i
Di random demand for retailer i
hi shortage cost for retaileri
rij buy-back costs of supplier j from retailer i
c unit purchase cost of retailers from suppliers
mj unit production cost of supplier j

Fi(x) c.d.f demand function for retailer i

Table 3: Notation

3 Preferences of Retailers and Suppliers

In this section, we provide models for determining the preference orders of retailers and

suppliers. Both retailers and suppliers determine their preferred order of opponents based on

own profit maximization. We formulate stochastic optimization models which are similar to

the well-known newsvendor problem. We use the notation presented in Table 3 throughout

the paper.

3.1 Retailer’s Model

We consider a single period newsvendor problem in which the retailers choose their optimal

quantities for profit maximization. In this model, we consider buy-back of any left-over after

sales season. That is, retailers can create revenue by selling any inventory more than realized

demands to the original suppliers. We assume that the selling prices for all retailers are

same. The retailers have two modes of the ordering: (1) the order quantity is less than the

realized demand, and (2) the order quantity is greater than the realized demand. In Mode

(1), shortage costs are incurred with hi > p. In Mode (2), retailers gain salvage values for

the left-over with rij < c.

Given the order quantity Oij , the utility of each retailer i is determined by the following

function:

Uij(Oij) = pE[min(Oij , Di)]− hiE[max(Di −Oij , 0)]

+ rijE[max(Oij −Di, 0)]− cOij (1)

when retailer i purchases from supplier j. Each term represents the expected profit, the

expected shortage cost, the expected salvage value and the purchase cost, respectively. The
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utility (1) is same as in the newsvendor problem. Let us define

O∗ij = arg maxUij(Oij) (2)

We can easily show the strict concavity of Uij , and hence the uniqueness of O∗ij . The following

result is obtained.

Proposition 1. The profit function for any retailer i, Uij(Oij), is a strictly concave function

for all suppliers j, and it is maximized at

O∗ij = F−1i

(
hi + p− c

hi + p− rij

)
(3)

3.2 Supplier’s Model

The suppliers offer their product quantities based on their profit maximization functions

which consist of identical offering price, buy-back costs from matched retailers and production

costs. The unit sales price of the product from suppliers is assumed to be same for all suppliers

and retailers. The buy-back quantity must be dependent on the nature of random demand of

each retailer, therefore the unit buy-back cost is also assumed to be different for each retailer

and each supplier.

Given the shipping quantity Sij , the utility of each supplier j is determined by the fol-

lowing profit function:

Vij(Sij) = cSij − rijE[max(Sij −Di), 0)]−mjSij (4)

when supplier j ships to retailer i. Each term in (4) represents the revenue, the expected

buy-back cost, and the production cost, respectively. We define

S∗ij = arg maxVij(Sij) (5)

Proposition 2. The profit function for any supplier j, Vij(Sij), is a strictly concave function

for all retailers i, and it is maximized at

S∗ij = F−1i

(
c−mj

rij

)
(6)

Proof. From the first-order condition, we obtain

(c−mj)− rijFi(Sij) = 0
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Thus, we obtain (6). The second-order condition shows that Vij(Sij) is strictly concave:

∂2Vij

∂S2
ij

= −rijfi(Sij) < 0

since rij is always positive.

3.3 Preferences

Let us consider retailer i. Suppose the order quantity of retailer i is determined as zij when

retailer i procures from supplier j. That is, retailer i considers the following set of order

quantities:

{zi1, zi2, . . . , zin}

and the set of corresponding utilities:{
Ui1(zi1), Ui2(zi2), . . . , Uin(zin)

}
Retailer i prefers supplier j to supplier j′ when Uij(zij) > Uij′(zij′). When the two utility

function values are same, the preferred supplier is determined randomly. We define the

ordered set of preferred suppliers of retailer i as

Ωi = {i1, i2, . . . , in} (7)

where Uii1(zii1) > Uii2(zii2) > . . . > Uiin(ziin).

Similarly, given the shipping quantities zij , we define the ordered set of preferred retailers

of supplier j as

Λj = {j1, j2, . . . , jn} (8)

where Vj1j(zj1j) > Vj2j(zj2j) > . . . > Vjnj(zjnj). We discuss how zij may be determined in

the following section.

4 Retailer-Supplier Matching Algorithm

In the retailer-supplier matching, the mechanism has two control factors:

1. How the actual contract size is determined; and

2. Who proposes matching first: retailers or suppliers.

The first factor impacts on the determination of ordered set of preferences, while the second

factor impacts the outcome of matching is optimal to which party.
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For the first factor, we consider the following three cases of the actual contract size zij of

retailer i and supplier j:

1. zij = O∗ij : When retailer i and supplier j make a contract, the retailer i’s optimal order

quantity, o∗ij is used.

2. zij = S∗ij : When retailer i and supplier j make a contract, the supplier j’s optimal

production quantity, s∗ij is used.

When the contract size zij is determined, the ordered sets of preference are determined as

explained in Section 3.3.

We consider the retailer-first and the supplier-first mechanisms for the second control

factor. When combined with a choice of zij , in total four possible matching algorithms can

be obtained. The supplier-first matching algorithm with zij = O∗ij is given below. The other

three algorithms can be stated similarly.

Supplier-First Matching Algorithm with zij = O∗ij

Step 0. Each retailer is able to obtain optimal ordering quantities for all suppliers, so that each

retailer i has o∗i1, o
∗
i2, o

∗
i3.... Using the optimal orders and the corresponding expected

profits, the suppliers and retailers determined preference lists.

Step 1. The suppliers offer the first preferred quantity to the corresponding retailer.

Step 2. The retailers who received any offer accept the most preferred offer among the offers

and reject all other offers.

Step 3. Rejected suppliers re-offer with their second choices from the preference list. The

retailers who received new offers compare the already accepted offer, if any, with the

new offers and accept the best offer among them.

Step 4. The algorithm is repeated until there is no unmatched retailer and supplier.

5 Stability and Optimality of the Retailer-Supplier Matching

This section studies the stability of the retailer-supplier matching proposed in the previous

section. Suppose that Retailer 1 is currently matched with Supplier 1, and Retailer 2 is with

Supplier 2. This matching is called unstable, if Retailer 1 prefers Supplier 2 to Supplier 1

and Supplier 1 prefers Retailer 1 to Retailer 2. In this case, Retailer 1 and Supplier 2 are

both better off with doing business together; we call the pair of Retailer 1 and Supplier 2 a

blocking pair. If there is no blocking pair in a matching, we call the matching stable. It is

well known that the Deferred Acceptance Algorithm produces a stable matching.
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i p c hi rij Di

Retailer 1 40 7 41 0.8888, 0.8876, 0.8790, 0.8769 Mean 20, Std. Dev. 2

Retailer 2 40 7 42 0.9200, 0.9192, 0.9230, 0.9321 Mean 30, Std. Dev. 3

Retailer 3 40 7 41 0.8767, 0.8976, 0.8793, 0.8921 Mean 40, Std. Dev. 5

Retailer 4 40 7 43 0.9000, 0.9200, 0.9300, 0.9234 Mean 50, Std. Dev. 6

Table 4: Parameter Values for Retailers

Proposition 3. The outcomes of the retailer-supplier matching are stable under the contract

size determination rules used in the matching.

Proof. For both retailer-first and supplier-first matching, we can uniquely determine the

order of preferences for each retailer and supplier. Therefore the stability of the outcomes of

matching is ensured, since the retailer-supplier matching is a simple application of the DA

algorithm (Gale and Shapley, 1962).

The stability of the retailer-supplier matching is an important issue. If a matching is

unstable, there are some retailers and suppliers who want to change their business partners,

and such changes will lead to sequential changes of business partners to other retailers and

suppliers, until the matching becomes stable.

Proposition 4. In the Retailer-First (Supplier-First) matching, the result is optimal to re-

tailers (suppliers) under the contract size determination rules used in the matching.

Proof. Proposition 4 is also an obvious application of the results for the Deferred Acceptance

Algorithm. See Gale and Shapley (1962) and Roth (2008).

The Proposition 3 and Proposition 4 propose a crucial property for our matching the-

ory application: the matching results are always consistent and fixed unless the parameters

constituting equations (1) and (4) are changed.

Given Proposition 3 and Proposition 4, we propose the following matching mechanism.

Since meeting the ordering quantity of retailers is more important in many cases and the

contract size is usually determined by retailers, we use the contract size zij = O∗ij . However,

since such zij are suboptimal for suppliers, we suggest the supplier-first matching.

6 Numerical Illustrations

In this section, we provide a numerical example using the supplier-first matching with contract

size zij = O∗ij . The parameter values used in the examples are present in Tables 4 and

5. We consider four retailers and four suppliers, and assume the demand follows Normal

distributions. As explaining the numerical example with Suppler First Algorithm with zij =

O∗ij , we try to have a better understanding on our applied matching theory. These steps and

tables turn out the process of the algorithm suggested in Section 4.
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j c mj rji

Supplier 1 7 6.51 0.8888, 0.9200, 0.8767, 0.9000

Supplier 2 7 6.66 0.8876, 0.9192, 0.8976, 0.9200

Supplier 3 7 6.72 0.8790, 0.9230, 0.8793, 0.9300

Supplier 4 7 6.50 0.8769, 0.9321, 0.8921, 0.9234

Table 5: Parameter Values for Suppliers

Supplier 1 Supplier 2 Supplier 3 Supplier 4

Retailer 1 24.3604 24.3596 24.3535 24.3520

Retailer 2 39.2249 39.2160 39.2590 39.3706

Retailer 3 50.8796 50.9167 50.8842 50.9069

Retailer 4 68.0705 68.4732 68.7106 68.5507

Table 6: Optimal Ordering Quantity of Retailers to Suppliers

Step 0. Each retailer i determines the optimal ordering quantities (Table 6), zij = O∗ij , for all

suppliers j = 1, 2, 3, 4.

Step 1. As putting O∗ij into suppliers’ expected profit functions, the suppliers make a preference

list over retailers, and offer the first preferable quantity to retailers. In this example,

Suppliers 2 and 3 offer to Retailer 3, and Supplier 1 and 4 to Retailer 4.

Step 2. The retailers having the offers determine to accept it or reject it. In this example,

Retailer 3 accepts Supplier 2, and Retailer 4 accepts Supplier 4, rejecting others.

Step 3. The rejected Suppliers, in this example Supplier 1 and 3, re-apply to their second-

choice retailers: Supplier 1 applying for Retailer 3 and Supplier 3 applying for Retailer

1. Retailer 3 again selects Supplier 2, rejecting Supplier 1, and Retailer 1 should choose

Supplier 3 without any other choice.

Step 4. The matching has been repeated until there remains no more supplier. Then, all suppli-

ers have their matched retailers, and all stable matching pairs exit: (Retailer 1, Supplier

3), (Retailer 2, Supplier 1), (Retailer 3, Supplier 2), (Retailer 4, Supplier 4).

First Second Third Fourth

Supplier 1 Retailer 4 Retailer 3 Retailer 2 Retailer 1

Supplier 2 Retailer 3 Retailer 4 Retailer 2 Retailer 1

Supplier 3 Retailer 3 Retailer 1 Retailer 2 Retailer 4

Supplier 4 Retailer 4 Retailer 3 Retailer 2 Retailer 1

Table 7: Preferences of Suppliers
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First Second Third Fourth

Retailer 1 Supplier 1 Supplier 2 Supplier 3 Supplier 4

Retailer 2 Supplier 4 Supplier 3 Supplier 1 Supplier 2

Retailer 3 Supplier 2 Supplier 4 Supplier 3 Supplier 1

Retailer 4 Supplier 3 Supplier 4 Supplier 2 Supplier 1

Table 8: Preferences of Retailers

Retailer 1 Retailer 2 Retailer 3 Retailer 4

Round 1 - - Supplier 2, 3 Supplier 1, 4

Round 2 Supplier 3 - Supplier 2, 1 Supplier 4

Round 3 Supplier 3 Supplier 1 Supplier 2 Supplier 4

Table 9: Supplier-First Matching

The preference orders of suppliers and retailers are provided in Tables 7 and 8. The

matching procedure and its outcome is shown in Table 9.

We compare the outcome of the supplier-first matching with all other possible matching

cases. As we have 4 retailers and 4 suppliers, there are 256 possible matching instances. In

Table 10, we observe that the outcome of the supplier-first matching ranks 69th among all

possible cases in terms of the total supplier profit, In Table 11, it ranks 67th in terms of the

total retailer profit. We note that we can avoid the worst matching case (Rank 256) using

the supplier-first matching. However, Rank 1 in Table 10 and Rank 1 in Table 11 are not the

same matching instance.

All four possible matching scenarios proposed in this paper (supplier-first vs. retailer-

first; retailer’s optimal order quantity vs. supplier’s optimal shipping quantity) are compared

in Table 12. We observe that the resulting profits of retailers and suppliers depend on the

two control factors: who proposes first and what contract size is used. While we used in this

paper the supplier-first matching algorithm with the contract size as the retailers’ optimal

order quantities, further study is necessary to determine the two contract factors.

Profit Rank Supplier 1 Supplier 2 Supplier 3 Supplier 4 Total Supplier Profit

Rank 1 17.0891 7.49 4.6543 17.1441 46.3775

Rank 2 17.0891 6.284 4.6543 17.1441 45.1715
...

...
...

...
...

...

Rank 69 10.7325 7.49 2.9832 17.1441 38.3498
...

...
...

...
...

...

Rank 256 8.052 4.4036 1.8368 8.3506 22.643

Table 10: Suppliers’ Profit Compared with All Other Possible Matching Instances
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Profit Rank Retailer 1 Retailer 2 Retailer 3 Retailer 4 Total Retailer Profit

Rank 1 658.2259 1015.9 1313.3 1692.6 4680.0259

Rank 2 658.1822 1015.9 1313.3 1692.6 4679.9822
...

...
...

...
...

...

Rank 67 657.8693 1015.2 1313.3 1691.9 4678.2693
...

...
...

...
...

...

Rank 256 657.7929 1015.1 1311.7 1689.5 4674.0929

Table 11: Retailers’ Profit Compared with All Other Possible Matching Instances

zij Pair 1 Pair 2 Pair 3 Pair 4

Supplier-First O∗ij (R1, S3) (R2, S1) (R3, S2) (R4, S4)

Profits (657.8, 2.9) (1015.2, 10.7) (1313.3, 7.4) (1691.9, 17.1)

Supplier-First S∗ij (R1, S4) (R2, S3) (R3, S2) (R4, S1)

Profits (305, 9.3) (152.8, 7.4) (302, 11.8) (701.1, 22.3)

Retailer-First O∗ij (R1, S1) (R2, S4) (R3,S2) (R4, S3)

Profits (658.2, 8) (1015.9, 10.9) (1313.3, 7.4) (1692.6, 1.8)

Retailer-First S∗ij (R1, S3) (R2, S2) (R3, S4) (R4, S1)

Profits (111.8, 4.9) (226.9, 9.1) (580.9, 18.2) (701.1, 22.3)

Table 12: Four Cases with Two Control Factors

7 Concluding Remark

In this paper, we placed emphasis on retailer-supplier coordination with a typical matching

algorithm. To develop frameworks for the matching, we used newsvendor models which

measure numerical preferences of retailers and suppliers. In our applied matching model, the

results of the matching algorithm in retailer-supplier cases depend on contract sizes and who

first proposes, satisfying stableness and optimality conditions. These are consistent with the

general matching theory.

While this paper takes an important initial step to develop and analyze of the match-

ing models for retailer-supplier coordination system, further research must be conducted to

resolve practical problems. For example we assumed identical numbers of retailers and sup-

pliers, but we observe unequal numbers of retailers and supplier in reality. In addition, the

strict preference assumption that every matching participant has to evaluate their matching

partner differently should be overcome, because it is possible for the game players to have

exact identical evaluation between their matching partners.

Another important issue to be addressed in future research is how to determine the

contract size as it affects the profit of retailers and suppliers. One possible choice is to

choose a fair contract size to both parties, which may be modeled by Nash bargaining games.
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In addition, in this paper, the production capacity of suppliers is not considered. When a

retailer’s order quantity is greater than a supplier’s production capacity, the supplier cannot

make a contract with the retailer. A consideration of the production capacity will bring a

new dimension to the matching of retailers and suppliers.
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