
Neural Coarsening Process for Multi-level
Graph Combinatorial Optimization

Hyeonah Kim1 Minsu Kim1 Changhyun Kwon2 Jinkyoo Park1∗
1Department of Industrial & Systems Engineering,

Korea Advanced Institute of Science and Technology (KAIST)
2 Department of Industrial and Management Systems Engineering, University of South Florida

{hyeonah_kim, min-su}@kaist.ac.kr,
chkwon@usf.edu, jinkyoo.park@kaist.ac.kr

Abstract

Combinatorial optimization (CO) is applicable to various industrial fields, but
solving CO problems is usually NP-hard. Thus, previous studies have focused on
designing heuristics to solve CO within a reasonable time. Recent advances in deep
learning show the potential to automate the designing process of CO solvers by
leveraging the powerful representation capability of deep neural networks. Practi-
cally, solving CO is often cast as a multi-level process; the lower-level CO problems
are solved repeatedly so as to solve the upper-level CO problem. In this case, the
number of iterations within the lower-level process can dramatically impact the
overall process. This paper proposes a new graph learning method, Neural Coars-
ening Process (NCP), to reduce the number of graph neural network inferences
for lower-level CO problems. Experimental results show that NCP effectively
reduces the number of inferences as compared to fully sequential decision-making.
Furthermore, NCP outperforms competitive heuristics on CVRP-CapacityCut, a
subproblem of the cutting plane method for the capacitated vehicle routing problem
(CVRP).

1 Introduction

Combinatorial optimization (CO) is a research area that is related to discrete mathematics, computa-
tional theory, and operations research. CO aims to find a combination of variables that minimizes
the cost function (or maximize the objective function), and is applicable to various fields, including
bio-synthesis [1], logistics [2], and job scheduling in the manufacturing industry [3]. Many CO
problems are naturally defined on graphs, such as the maximum independent set (MIS), maximum-cut
(MAX-CUT), and traveling salesman problem (TSP). We refer to such CO problems as graph CO.
As CO problems are generally NP-hard and intractable to solve within a limited time budget, early
studies have focused on designing heuristics that generate near-optimal solutions within a reasonable
time [4, 5].

Advances in deep learning relieve the reliance of CO on human-designed heuristics and problem-
specific domain knowledge. The deep learning methods utilize a deep neural network (DNN) to learn
the patterns of the combinatorial optimization. As deep learning automates the design process of
the CO solvers via data-driven learning techniques, it overcomes the task expandability problem of
the handcrafted heuristic methods. Recent studies that have used deep learning to solve graph CO
problems have shown notable improvements in solution qualities and computational speeds [6, 7, 8].

∗Corresponding author

NeurIPS 2022 New Frontiers in Graph Learning Workshop (NeurIPS GLFrontiers 2022).

Deep learning can be employed to solve CO problems by learning an end-to-end approach that maps
the problem input to the solution output. End-to-end approaches have been widely explored, especially
in sequential decision-making fashions [6, 9, 10, 7, 8, 11, 12, 13, 14]. These approaches leverage
Recurrent Neural Network [6, 9, 10, 12], Transformer [8], and Graph Neural Network (GNN) [7, 14].
Deep learning can also be employed to solve CO problems by combining deep learning approaches
with existing algorithms. For example, exact algorithms, such as the branch-and-bound and cutting
plane method, can be strengthened using deep learning approaches [15, 16, 17, 18, 19, 20]. In this
case, the CO problems are often tackled using a multi-level process, where the upper-level process (i.e.,
the main algorithm) calls the lower-level process (i.e., subroutine) to solve the main problem. Fig. 1
shows the hierarchical structure of a CO algorithm whose subroutines solve subproblems, usually CO
problems, derived from the main algorithm. The main algorithm frequently calls subroutines. Thus,
when one of the subroutines is replaced with deep learning-based methods, improving the subroutines
can significantly impact the overall process.

Problem SolutionMain algorithm

Subroutine
Deep-learning

Subroutine
Subroutine

Figure 1: The main algorithm repeatedly calls the
subroutines. In this case, one of the subroutines is
replaced by a deep-learning method.

We propose the Neural Coarsening Process
(NCP), a graph learning scheme, to solve sub-
CO problems. NCP employs a graph coarsening
procedure that iteratively reduces the size of the
graph to handle combinatorial nature. Specifi-
cally, we coarsen the graphs that has N number
of nodes with the ratio γ based on the node class
prediction, predict the node classes again on
the coarsened graph, and then apply a simple
rounding on the coarsest graph to make the final
decision. The number of iterations2 for NCP is
hence O(logN) as we coarsen a graph with N
number of nodes.

We evaluate the performances of NCP on CVRP-CapacityCut, which is the subproblem of the cutting
plane method for the capacitated vehicle routing problems (CVRPs) [21]. CVRP-CapacityCut is
a minimum-cut (MIN-CUT) problem on weighted graphs with constraints. We show that NCP
performs better than fully auto-regressive method and a competitive heuristic in a large-sized CVRP-
CapacityCut with limited number of iterations.

2 Related Works

Various works have attempted the graph CO problems by leveraging GNN with sequential decision-
making [7, 22, 14, 23]. [7] proposed the Structure2Vec Deep Q-learning (S2V-DQN), a graph
embedding-based reinforcement learning, which shows tremendous performance on various graph
CO tasks despite requiring O(N) decision-making steps to terminate the Markov Decision Process
(N is the number of nodes). [23] proposed a transformer-based model with an edge weight matrix,
which require complex computation to process O(N2) scale of fully connected edges.

Some researchers have tried to shorten the decision steps by conducting multiple decisions simultane-
ously at each iteration. For example, [24] proposed learning what to defer (LwD), which decides on
the actions simultaneously by leveraging locally decomposable properties. Specifically, the defer
action is added to the action space and the decisions are made independently on each node. The next
iteration is then conducted only with the deferred nodes. LwD shows notable performances on graph
CO tasks even though it requires a task-specific transition function to satisfy the constraints.

Outside the research area of CO, the reduction of the number of DNN inferences has gained much
attention, especially in text and image generation. [25] proposed the Denoising Diffusion Models
in Discrete State-Spaces (D3PM), which employs a diffusion process and makes multiple decisions
at each step. Similarly, [26] proposed a parallelized auto-aggressive diffusion model (Parallelized
ARDM), which makes multiple decisions by learning the order-agnostic properties. These studies
show remarkable results compared to the conventional auto-regressive generation by reducing the
number of inferences.

2We refer to decoding steps within subroutines as the number of iterations unless there is a specific description.

2

𝑝𝑖 𝑖∈𝒱0

𝑓𝜔

𝑝𝑖 𝑖∈𝒱𝑇

𝑓𝜔

𝑝𝑖 𝑖∈𝒱𝑡+1

𝑓𝜔

𝜸 – coarsening

One-shot decisionNeural coarsening process

Figure 2: The overall procedure of Neural Coarsening Process (NCP) in the bi-section case. NCP
predicts the node class iteratively via GNN and coarsens the graph by merging the node pairs. After
T iteration of γ-coarsening, a simple rule is applied to de-randomize the final prediction fω(GT).

3 Neural Coarsening Process

We propose the Neural Coarsening Process (NCP) to solve node-level graph CO tasks for subproblems
with a smaller number of iterations. We employ the graph coarsening procedure to decrease the size
of the input graph gradually. The graph coarsening procedure reduces a given graph G0 = (V0, E0),
where V0 and E0 are the nodes and edges of G0 respectively, and |V0| = N , to a sequence of smaller
graphs G1,G2, . . . ,GT , such that |V0| > |V1| > · · · > |VT |, where T is the number of iterations. The
graph coarsening (or contraction) works by merging multiple nodes into one. Various contraction
strategies can be applied according to the tasks.

The node-level graph CO tasks are node classification tasks, where the nodes are classified into one of
the classes in K. Although some tasks contain neighborhood constraints (e.g. no two adjacent nodes
can share the same class in MIS), we focus on node-level tasks without the neighborhood constraints.
We also apply edge contraction for node classification tasks3, where a chosen edge (u, v) merges two
endpoints into a single node v′. The weight of the merged nodes is the sum of the original nodes’
weights, and the parallel edges are aggregated into one edge with the sum of edge values.

Overall, the node class prediction and graph coarsening procedure are conducted iteratively. The
prediction model consists of a graph embedding module and a node classification module; a message
passing neural network (MPNN) [27] and a Multi-layer Perceptron (MLP) are employed, respectively.
The model fω : G → R|K|×|V| gives an independent probability pki that decides if node i will be
included in class k ∈ K. Specifically, we repeat following steps:

Step1. For each node i, predict the node class probability pki via fω(Gt).
Step2. Coarsens Gt to get Gt+1.

Step2-1. Greedily select an edge according to probability qij that decides if its endpoints
are in the same class, i.e.,

arg max
(i,j)∈Et

qij , where qij =
∑
k∈K

pki p
k
j .

Step2-2. Contract the selected edge and repeat Step2 until |Vt+1| = ⌊γ|Vt|⌋.

Step1 corresponds to the node class prediction, and Step2 corresponds to the graph coarsening with
edge contractions. Note that Step2 can be processed in parallel. The overall procedure is illustrated
in Fig. 2. Since the graph is coarsened with the ratio γ for every GNN inference, the number of
GNN inferences is bounded to O(log |V|). As the coarsened graph has fewer nodes and contains
aggregated information, the node classification becomes less complicated. When the graph has been
coarsened enough, we apply a rounding scheme to de-randomize the final prediction and map the
nodes of the coarsened graph GT to that of the original graph G0.

We train the model by minimizing the difference between the predicted node class probability and
the true labels. Binary labels y = {yki }i∈V,k∈K are generated in advance using the exact (or good
enough) algorithms with relatively small-sized problems. For each coarsening step, a collection

3Star contraction selects a node and merge it with its neighboring nodes. Star contraction is applicable to
MIS and we leave this in the future work

3

of pairs D = {G(n),y(n)}Nn=0 are gathered, and the parameters are updated to minimize binary
cross-entropy (BCE) loss:

L(ω) =
∑

(G,y)∈D

∑
k∈K

∑
i∈V

[
yki · log pki + (1− yki) · log(1− pki)

]
. (1)

When the model is trained, the labels can become invalid when the graphs are coarsened due to
inaccurate prediction pki (e.g. the nodes with different labels are merged into one). To keep the labels
valid in the entire coarsening process, we compute qij based on yi instead of pi. Consequently, the
contraction probabilities of crossing edges, whose endpoints have different labels, are guaranteed to
be all zero at the training phase.

4 Experimental Results

4.1 Target Task: CVRP-CapacityCut

In this study, we conduct experiments focused on the cutting plane method for CVRP. CVRP
is represented as a tuple (G,K,Q), where G = (V,E) is a complete graph whose node set V
corresponds to the union of the depot and customer nodes, and K is the number of vehicles with
capacity Q. CVRP aims to find the routes with the minimum cost for K vehicles where: (i) each
customer must be served by only one vehicle; (ii) no vehicle can serve a set of customers whose total
demand exceeds the vehicle’s capacity Q; and (iii) every route starts and ends at the depot.

The cutting plane method is generally used to handle the exponentially-large capacity constraints.
Fig. 3 shows the overall procedure of the cutting plane method for capacity constraints. First, it
relaxes the problem by dropping all capacity and integer constraints. Second, it iteratively (a) solves
the relaxed linear problem, (b) finds the capacity constraints violated by the current linear solution,
and (c) appends them to the relaxed problem. However, designing an effective algorithm for the
subroutine (b) is challenging; thus, we replace this subroutine with NCP.

Relaxed Problem

Capacity Constraints Pool

ҧ𝑥

𝐷𝑥 ≤ 𝑑

Until
- there is no violated RCI
- or ഥ𝒙 is integer

: 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑥 ∈ 𝑋 : 𝑡ℎ𝑒 𝑟𝑒𝑙𝑎𝑥𝑒𝑑 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ҧ𝑥

𝑐𝑜𝑛𝑣(𝑋) 𝑐𝑜𝑛𝑣(𝑋)

the possible cutting planes (violated RCIs)

𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑙𝑎𝑥𝑒𝑑 𝑝𝑟𝑜𝑏𝑙𝑒𝑚

Add

𝐷𝑥 ≤ 𝑑
Solving LP

Finding
violated

CapacityCut

: 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑥 ∈ 𝑋 : 𝑡ℎ𝑒 𝑟𝑒𝑙𝑎𝑥𝑒𝑑 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ҧ𝑥

𝑐𝑜𝑛𝑣(𝑋) 𝑐𝑜𝑛𝑣(𝑋)

the possible cutting planes (violated RCIs)

𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑙𝑎𝑥𝑒𝑑 𝑝𝑟𝑜𝑏𝑙𝑒𝑚

Add

𝐷𝑥 ≤ 𝑑

Solve the relaxed problem

Find violated CapacityCut

Add constraints to the
relaxed problem

𝐷𝑥 ≤ 𝑑

ҧ𝑥

Figure 3: The overall procedure of the cutting plane method: the relaxed problem does not contain
any capacity constraints at the beginning. CVRP-CapacityCut aims to find the capacity constraints
violated by the current relaxed solution x̄ij , and add them to the relaxed problem. Adding capacity
constraints makes the feasible region of the relaxed problems tighter.

CVRP-CapacityCut is defined as finding a subset S ⊆ V \{0} that violates the corresponding capacity
constraints; it is highly related to the MIN-CUT problem on a weighted graph. See Appendix A
for mathematical formulations and further details. CVRP-CapacityCut is a graph CO problem and
solving this is known as NP-hard [28].

4.2 Setup

We apply NCP to solve the CVRP-CapacityCut efficiently. To be specific, we construct a sparse
graph G0 = (V0, E0), where V0 = V and E0 = {(i, j) ∈ E : x̄ij > 0} based on the given relaxed
solution x̄ij . CVRP-CapacityCut is a node classification task that has two classes (i.e., S and V \ S),
which minimizes the total weight of the crossing edges connecting two nodes of different sets (i.e.,
one of the endpoints belongs to S and the other belongs to V \ S).

We let pi = 1 if node i is included in S, and pi = 0 otherwise to simplify the notations. The depot
node, indexed as 0, is excluded from S by the definition of CVRP-CapacityCut (i.e. p0 = 0). G0 is

4

coarsened according to the procedure defined in Section 3 until there are three nodes remaining (the
depot and two aggregated nodes). We set qij for the depot connected edges not to coarsen the depot
as follows:

qij =

{
pipj + (1− pi)(1− pj) if i, j ̸= 0

0 otherwise
(2)

Thus, the coarsening also terminates when there are no edges to contract.

𝑝𝑖 𝑖∈𝒱0

𝑓𝜔

𝑝𝑖 𝑖∈𝒱𝑇

𝑓𝜔

𝑝𝑖 𝑖∈𝒱𝑡+1

𝑓𝜔

𝜸 – coarsening

One-shot decisionNeural coarsening process

𝑆𝑇 𝑉𝑇\𝑆𝑇

𝑆0

𝑉0\𝑆0

(a) The coarsest graph GT .

𝑝𝑖 𝑖∈𝒱0

𝑓𝜔

𝑝𝑖 𝑖∈𝒱𝑇

𝑓𝜔

𝑝𝑖 𝑖∈𝒱𝑡+1

𝑓𝜔

𝜸 – coarsening

One-shot decisionNeural coarsening process

𝑆𝑇 𝑉𝑇\𝑆𝑇

𝑆0

𝑉0\𝑆0

(b) The original graph G0.

Figure 4: The nodes of GT are classified into two
sets ST and VT \ ST , then directly mapped to G0.
The green node indicates the depot.

After T steps of coarsening, we compute the
final node selection probability pi = fω(GT),
then simply round the probability to map the
probabilities to the binary values. If there are no
nodes with pi > 0.5, we set the node that has
the highest probability as 1. By doing this, the
nodes of GT are classified as the nodes in set ST

and in its complement set VT \ ST . As we keep
tracking the node information in the coarsening
process, we can map the class of the coarsened
nodes to the class of the original nodes directly.

The training data is gathered by conducting the
cutting plane method with the exact separation algorithm [21] for relatively small-size, randomly
generated CVRP (|V | ∈ [50, 100]). As the collected labels are highly imbalanced, a positive weighted
BCE loss is employed. The positive weight is defined as the ratio between the number of negative
and positive labels.

4.3 Performance Evaluation

Baseline. We use the CVRPSEP library [29] written in C++ for the baseline separation algorithm.
It consists of four heuristics, one simple connected component algorithm, and three shrinking-based
heuristics. We set the maximum number of cuts for a given relaxed solution as the number of vehicles
K, the same as the proposed algorithm.

Lower bound (LB) gap. Since the scale of cost varies depending on problem instances, we measure
the relative performances by calculating the lower bound gap, GAP , as follows:

GAP =
(OPT − LB)

OPT
× 100(%), (3)

where OPT is the known optimal cost and LB is the resulting cost with the cutting plane method.
OPT is challenging to compute and unknown in large-scale CVRP. Hence, the solution calculated
via the hybrid genetic search algorithm (HGS [4]) is used instead of OPT .

Evaluation. The cutting plane method terminates when the algorithm cannot find any violated
capacity constraints, or the number of subroutine calls reaches the limit. The relaxed solution and its
cost (i.e. resulting lower bound) are computed with the constraints appended at the end. CVRPSEP
has at least O(2|V |) time complexity in the worst case since the connected component heuristic
needs to check all the components, their complements, and unions (refer [29] for details). Thus, the
evaluation with limited calls does not give any advantages to our method.

4.4 Results

Since the exact labels for the large-scale instances are intractable, the model is trained with labels
generated from relatively small-sized CVRP. We evaluate the lower bound for CVRP with different
sizes using both CVRPSEP and NCP to verify the performance and scalability of our model. We
conduct the experiments for 10 CVRP instances of each size with limited subroutine calls.

Table 1 shows the overall results of the cutting plane method with CVRPSEP and NCP. As shown in
Table 1, the cutting plane method with NCP performs more effectively in larger instances, even though
the model is trained in the [50, 100] range. The average improvement of LB per CVRP-CapacityCut
call (denoted as Avg. ∆ LB) is calculated to evaluate the quality of added constraints. This is done by
dividing the total LB improvements by the number of calls. Table 1 shows that the LB improvements

5

are more significant with the constraints found by NCP as compared to that of CVRPSEP. We provide
additional results with limited wall clock time in Appendix C.1.

Table 1: The mean and standard deviation of lower bound with iteration subroutine calls.
Method Size Mean LB Std. LB Avg. # of Calls Avg. ∆ LB

CVRPSEP

50 9,363.594 2,490.687 68.3 (≤ 200) 38.381
75 13,355.482 7,288.836 115.7 (≤ 200) 34.930
100 15,935.360 5,152.466 160.1 (≤ 200) 34.676
200 21,085.211 4,527.548 200 (≤ 200) 39.401
300 30,481.408 11,276.405 200 (≤ 200) 62.129
400 40,017.198 11,751.322 100 (≤ 100) 165.266
500 47,978.849 22,786.976 100 (≤ 100) 177.991
750 60,950.387 19,835.406 50 (≤ 50) 472.611
1,000 59,623.222 12,326.330 50 (≤ 50) 432.736

CapacityCut with NCP
(ours)

50 9,129.823 2,474.901 37.8 (≤ 200) 61.473
75 13,064.861 7,281.095 60.8 (≤ 200) 61.263
100 15,593.334 5,170.822 94 (≤ 200) 56.308
200 20,742.544 4,728.970 126.7 (≤ 200) 58.559
300 31,092.012 12,510.644 157.7 (≤ 200) 75.812
400 43,896.118 14,509.259 100 (≤ 100) 204.055
500 53,865.885 27,457.718 100 (≤ 100) 234.865
750 73,652.108 23,963.772 50 (≤ 50) 726.645
1,000 73,140.790 15,059.967 50 (≤ 50) 703.088

50100 200 300 400 500 750 1000
Number of customers

0

10

20

30

40

LB
 g

ap
(%

) w
ith

 H
GS

 so
lu

tio
ns CVRPSEP

CapacityCut with NCP (ours)

(a) The range of LB gap for each test size.

50 75 100 200 300 400 500 750 1000
Number of customers

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
g

Ra
tio

CVRPSEP
CapacityCut with NCP (ours)

(b) The winning ratio out of 10 instances.

Figure 5: The results of the cutting plane method with NCP and CVRPSEP.

The lower bound gap of NCP and CVRPSEP are plotted as shown in Fig. 5a. In addition, the
number of times that the algorithms defeat each other out of the 10 instances (i.e., winning ratio) is
measured for each size as shown in Fig. 5b. The results indicate that our algorithm performs better
in large-sized CVRP (≥ 300) when averaged. Furthermore, NCP outperforms CVRPSEP for every
instances with more than 300 nodes. More experiments that verify the transferability of NCP are
conducted using CVRPLIB X-instances [30] generated using different distributions. The results show
that NCP performs well for out-distribution problems (details are in Appendix C.2).

Fig. 6 illustrates the LB gap of NCP and CVRPSEP according to the number of subroutine calls.
The LB gap is significantly reduced in the early stages, and the improvement diminishes as the
capacity cuts are added. Fig. 6 also shows that NCP converges faster than CVRPSEP. When the
number of nodes is small, CVRPSEP converges to a lower point than NCP eventually. However,
when the number of nodes is large, NCP decreases to a lower point than CVRPSEP within the limited
subroutine calls. Since NCP converges faster, it can be more efficient in improving the lower bound,
especially in the large-scale CVRP.

6

0 25 50 75 100 125
0

5

10

15

20

25

30

35

40
Size=50 (Iteration 200)

CVRPSEP
CapacityCut with NCP (ours)

0 50 100 150
0

5

10

15

20

25

30

35

Size=75 (Iteration 200)
CVRPSEP
CapacityCut with NCP (ours)

0 50 100 150 200

10

20

30

40

Size=100 (Iteration 200)
CVRPSEP
CapacityCut with NCP (ours)

0 50 100 150 200

10

20

30

40

50
Size=200 (Iteration 200)

CVRPSEP
CapacityCut with NCP (ours)

0 50 100 150 200

10

20

30

40

50

Size=300 (Iteration 200)
CVRPSEP
CapacityCut with NCP (ours)

0 20 40 60 80 100
10

20

30

40

50

60
Size=400 (Iteration 100)

CVRPSEP
CapacityCut with NCP (ours)

0 20 40 60 80 100

20

30

40

50

Size=500 (Iteration 100)
CVRPSEP
CapacityCut with NCP (ours)

0 10 20 30 40 50

20

30

40

50

60

Size=750 (Iteration 50)
CVRPSEP
CapacityCut with NCP (ours)

0 10 20 30 40 50
20

25

30

35

40

45

50

55

60

Size=1000 (Iteration 50)
CVRPSEP
CapacityCut with NCP (ours)

Figure 6: The LB gap according to the number of CVRP-CapacityCut calls. The solid line represents
the average value of 10 instances and the shade areas represents the range of the LB gap.

4.5 Results for the subproblem

We compare NCP with a fully auto-regressive and an one-shot prediction model to verify the effect
of NCP on CVRP-CapacityCut. A fully auto-regressive model makes decisions node by node based
on the previous decisions; thus, decisions for the next node are conditioned by the nodes that are
decided prior to it. On the other hand, an one-shot prediction model predicts probabilities of being
included in S for all nodes simultaneously. One-shot prediction equals to NCP with γ = 1 since we
apply the same rounding rule to get binary value. We use the same network architecture (i.e. MPNN
+ MLP) and train to minimize the differences using the labels (see Appendix B.4 and Appendix B.5
for details).

We evaluate the models using 100 test data generated in advance for each size of [50, 75, 100, 200].
The number of inferences (Avg. Steps), the cost gap of the subproblem with labels (Cost Gap), and
the ratio of feasible solutions for CVRP-CapacityCut (Feasibility) are measured for each size. Table 2
results clearly show that our method requires a fewer number of inferences for decisions with less
satisfaction for the constraints.

Fig. 7 illustrates the lower bound gap computed with the cutting plane method via different algorithms
for randomly generated CVRP in the [50, 500] range. We follow the evaluation process described
in Section 4.3. The results show that NCP achieves a lower cost gap in subproblems even though
it fails to satisfy constraints occasionally, which leads to better performances in the main CVRP.
The fully auto-regressive decoding strictly satisfies the constraints of the CVRP-CapacityCut as
the unavailable choices are masked when the decisions are made sequentially. It is challenging to

7

Table 2: The results for CVRP-CapacityCut with different decoding strategies. The subproblem’s
cost gap is computed based on the cost with labels.

Size 50 75

Avg. Steps Cost Gap Feasibility Avg. Steps Cost Gap Feasibility

Auto-regressive 25.148 0.305 1.0 37.494 0.276 1.0
One-shot 1.0 0.256 0.687 1.0 0.657 0.758

Coarsening (ours) 16.000 0.094 0.635 16.460 0.221 0.755

Size 100 200

Avg. Steps Cost Gap Feasibility Avg. Steps Cost Gap Feasibility

Auto-regressive 50.691 0.351 1.0 99.998 0.466 1.0
One-shot 1.0 0.669 0.645 1.0 4.425 0.691

Coarsening (ours) 17.700 0.190 0.610 19.040 0.237 0.575

50 100 200 300 400 500
Number of customers

0

10

20

30

40

50

60

LB
 g

ap
(%

) w
ith

 H
GS

 so
lu

tio
ns

CapacityCut with one-shot decoding
CapacityCut with auto-regressive decoding
CVRPSEP
CapacityCut with NCP (ours)

Figure 7: The range of lower bound gap of CVRP with different strategies.

consider the relationship between the nodes (i.e. variables) in the one-shot prediction, hence its
performance deteriorates as it classifies the nodes jointly.

5 Conclusion

In this work, we proposed the Neural Coarsening Process (NCP), an effective graph learning method
for subproblem of the hierarchical structures in graph CO. Our main contribution is that our method
(i) requires a smaller number of inference iterations and (ii) gives a more powerful performances,
than the fully auto-regressive method. The reduced iteration (i.e. the number of GNN inferences)
of subproblems can have great effects on the overall procedure since the subproblems are called
repeatedly. The extensive experiments show that our method outperforms both the graph learning-
based auto-regressive method and competitive heuristic method on CVRP-CapacityCut.

Acknowledgments and Disclosure of Funding

This research was partially supported by the Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (Project No. 2022-0-
01032) and the National Research Foundation of Korea (Project No. 2021H1D3A2A01039401).

References
[1] Gita Naseri and Mattheos AG Koffas. Application of combinatorial optimization strategies in

synthetic biology. Nature communications, 11(1):1–14, 2020.

8

[2] Abdelkader Sbihi and Richard W Eglese. Combinatorial optimization and green logistics.
Annals of Operations Research, 175(1):159–175, 2010.

[3] Runwei Cheng, Mitsuo Gen, and Yasuhiro Tsujimura. A tutorial survey of job-shop scheduling
problems using genetic algorithms—i. representation. Computers & industrial engineering,
30(4):983–997, 1996.

[4] Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter Rei. A
hybrid genetic algorithm for multidepot and periodic vehicle routing problems. Operations
Research, 60(3):611–624, 2012.

[5] Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12 2017.

[6] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 28, pages 2692–2700. Curran Associates, Inc., 2015.

[7] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30, pages 6348–6358. Curran Associates, Inc., 2017.

[8] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

[9] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combi-
natorial optimization with reinforcement learning, 2017.

[10] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

[11] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai
Min. Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in
Neural Information Processing Systems, 33:21188–21198, 2020.

[12] André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for
routing problems using variational autoencoders. In International Conference on Learning
Representations, 2020.

[13] Minsu Kim, Jinkyoo Park, and Joungho Kim. Learning collaborative policies to solve np-hard
routing problems. In Advances in Neural Information Processing Systems, 2021.

[14] Junyoung Park, Sanjar Bakhtiyar, and Jinkyoo Park. Schedulenet: Learn to solve multi-agent
scheduling problems with reinforcement learning. arXiv preprint arXiv:2106.03051, 2021.

[15] Elias B Khalil, Bistra Dilkina, George L Nemhauser, Shabbir Ahmed, and Yufen Shao. Learning
to run heuristics in tree search. In Ijcai, pages 659–666, 2017.

[16] Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch.
In International Conference on Machine Learning, pages 344–353. PMLR, 2018.

[17] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

[18] Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua
Bengio. Hybrid models for learning to branch. Advances in neural information processing
systems, 33:18087–18097, 2020.

[19] Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer program-
ming: Learning to cut. In International Conference on Machine Learning, pages 9367–9376.
PMLR, 2020.

9

[20] Antonia Chmiela, Elias Khalil, Ambros Gleixner, Andrea Lodi, and Sebastian Pokutta. Learning
to schedule heuristics in branch and bound. Advances in Neural Information Processing Systems,
34:24235–24246, 2021.

[21] Ricardo Fukasawa, Humberto Longo, Jens Lysgaard, Marcus Poggi de Aragão, Marcelo Reis,
Eduardo Uchoa, and Renato F Werneck. Robust branch-and-cut-and-price for the capacitated
vehicle routing problem. Mathematical programming, 106(3):491–511, 2006.

[22] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolu-
tional networks and guided tree search. Advances in neural information processing systems, 31,
2018.

[23] Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon.
Matrix encoding networks for neural combinatorial optimization. Advances in Neural Informa-
tion Processing Systems, 34:5138–5149, 2021.

[24] Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum inde-
pendent sets. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 134–144. PMLR, 13–18 Jul 2020.

[25] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg.
Structured denoising diffusion models in discrete state-spaces. Advances in Neural Information
Processing Systems, 34:17981–17993, 2021.

[26] Emiel Hoogeboom, Alexey A Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg,
and Tim Salimans. Autoregressive diffusion models. In International Conference on Learning
Representations, 2021.

[27] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017.

[28] Ibrahima Diarrassouba. On the complexity of the separation problem for rounded capacity
inequalities. Discrete Optimization, 25:86–104, 2017.

[29] Jens Lysgaard, Adam N Letchford, and Richard W Eglese. A new branch-and-cut algorithm for
the capacitated vehicle routing problem. Mathematical Programming, 100(2):423–445, 2004.

[30] Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Subrama-
nian. New benchmark instances for the capacitated vehicle routing problem. European Journal
of Operational Research, 257(3):845–858, 2017.

10

A Explanation of CVRP-CapacityCut

A.1 Mathematical formulation of CVRP

Mathematically, CVRP is written in integer programming (IP). Following [29], we let xij represent
the number of travels between nodes i and j. Given a subset of customers S ⊆ VC , δ(S) denotes a
set of crossing edges, one node of which belongs to S and the other belongs to V \ S. For arbitrary
given edge subset F ⊆ E, x(F) denotes the sum of travels of F , i.e.

∑
(i,j)∈F xij . The two-index

formulation of CVRP is:

Minimize
∑

(i,j)∈E

cijxij (4)

Subject to x(δ({i})) = 2 ∀i ∈ VC (5)
x(δ(S)) ≥ 2BP (S) ∀S ⊆ VC (6)
xij ∈ {0, 1} ∀1 ≤ i < j ≤ |V | (7)
x0j ∈ {0, 1, 2} ∀j ∈ VC , (8)

where r(S) is the minimum number of required vehicles to serve the customers in S. The equality
in Eq. (5) impose that the total traveling time of each node is exactly 2, so each customer is visited
once by only one vehicle. The capacity constraints in Eq. (6) ensure that the summation of demand
cannot exceed the capacity Q and a route have the depot as the connected nodes (i.e., the sub-tour
elimination). The right-hand side r(S) is often computed with ⌈

∑
i∈S di/Q⌉, called rounded capacity

inequalities (RCIs). The two last constraints in Eqs. (7) and (8) are the integrality conditions of the
decision variables respectively. Note that if the vehicle visits only one customer, the edge between
the depot and the customer j has to be traveled two times (i.e., x0j = 2).

A.2 Cutting plane method for CVRP

In general, the cutting plane method is an iterative algorithm that first solves a relaxed problem,
which is the problem where the hard-to-handle constraints are ignored, and then, out of the ignored
constraints, the violated constraints (i.e., the cuts or cutting planes) are appended to the relaxed
problem to form the new relaxed problem. The iteration terminates when the solution of the relaxed
problem (i.e. the relaxed solution) becomes feasible to the original problem. Specifically in CVRP,
the cutting plane method often relaxes the RCIs and the integer conditions (e.g. [29]).

In the two-index formulation of CVRP, the relaxed problem for the cutting plane method is as follows:

Minimize
∑

(i,j)∈E

cijxij (9)

Subject to x(δ({i})) = 2 ∀i ∈ VC (10)
0 ≤ xij ≤ 1 ∀1 ≤ i < j ≤ |V | (11)
0 ≤ x0j ≤ 2 ∀j ∈ VC (12)
xij ∈ R ∀i, j ∈ V (13)

Note that, in the relaxed problem, RCIs in Eq. (6) and the integer constraints in Eqs. (7) and (8) are
eliminated, and it becomes linear programming (LP), whose optimal solution can be relatively easily
found than the original problem.

In practice, to keep the relaxed problem to be LP, the cutting planes are selected among RCIs. The
relaxed problem does not enforce the RCIs, so the (fractional) solution (i.e., x̄ in Fig. 3) for the
relaxed problem are not feasible for the original IP problem Eq. (4)–Eq. (8). To refine the feasible
region of the relaxed problem, the separation algorithms find a RCI constraint which are violated by
the current solution (i.e., Dx̄ > d). The found inequality Dx ≤ d is one of the relaxed RCIs, so the
original feasible solutions satisfy the inequality. Thus, this constraint separates the current solution
from the feasible solutions of the original problems. Once the separating RCI(s) are found, the RCI(s)
are appended to the relaxed problem.

11

A.3 The exact RCI separation

At each separation step, there exist a lot of valid inequalities (i.e. the possible cutting planes)
that separate the relaxed optimal solution from the set of the integer feasible solutions. The exact
separation algorithm [21] is designed to produce the tightest cutting planes (i.e., the cut closest to
convex hull of the feasible region). The exact separation can deeply cut the relaxed feasible region by
adding the tightest cutting plane into the current relaxed problem, whereas most heuristic separations
are designed to find one of the possible cutting planes. By iteratively cutting the current relaxed
solution out, we can get the more refined feasible region of the relaxed problem.

The exact separation is formulated as a mixed-integer programming (MIP). Given the current relaxed
solution x̄, we define Ḡ = (V, Ē) where Ē = {(i, j) ∈ E : x̄ij > 0} as the support graph, yi as
the binary variable whether node i is in S, and wij as the continuous variable that equals to 1 if
(i, j) ∈ δ(S). For each M ∈ {0, . . . , ⌈

∑
i∈VC

di/Q⌉ − 1}, we can get the minimum crossing edge
cost z(M) by solving the following:

z(M) = Minimize
∑

(i,j)∈Ē

x̄ijwij (14)

Subject to wij ≥ yi − yj ∀(i, j) ∈ Ē (15)

wij ≥ yi − yj ∀(i, j) ∈ Ē (16)∑
i∈VC

diyi ≥ (M ·Q) + 1 (17)

y0 = 0 (18)
yi ∈ {0, 1} ∀i ∈ VC (19)

wij ≥ 0 ∀(i, j) ∈ Ē (20)

The logical constraints Eq. (15) and Eq. (16) means wij has to be 1 if the yi and yj have different
values, which is the definition of wij . For the given M , the inequality Eq. (17) enforces that the
total demand of the selected nodes should exceed the entire load of M vehicles. In other words,
the subset S requires at least M + 1 vehicles to satisfy all demands in S (i.e. the subset S requires
2(M + 1) times of traveling). As the minimum crossing edge weight z(M) corresponds to the total
traveling number of S∗ = {i ∈ VC : y∗i = 1}, we can find the corresponding capacity inequality
z = x̄(δ(S∗)) ≥

∑
i∈S∗ di. Thus, if z(M) is less than 2(M +1), the corresponding RCI is violated.

B Detailed Experimental Setting

B.1 Graph representation

Since the message passing operation of MPNN is conducted along the edges, the messages from the
isolated nodes cannot be exchanged. In order to make the support graph connected while keeping the
sparsity, edges between the depot and customers are added (i.e. the depot is completely connected
to all customers). The modified graph is defined as Ḡ′ = (V, Ē′), where Ē′ = {(i, j) ∈ E : x̄ij >
0 or i = 0}.
Now, we define the node and edge features of Ḡ′ to represent the given RCI separation problem
Eq. (14)-Eq. (20). The problem has four parameters, cost coefficient x̄, constraint coefficient d, and
the right-hand side (RHS) M and Q. These parameters are not included in Ḡ′, so we formulate these
as the node and edge features.

Node feature The constraint Eq. (17) is related to the node decision variable y. It can be reformu-
lated as

∑
i∈VC

di

Q yi > M , and the coefficient di

Q and RHS M define the node feature. Note that
di

Q has the range [0, 1] by definition, but the range of M varies on the number of vehicles. Thus,
we normalize it by dividing the vehicle number K (i.e., M

K ∈ [0, 1]). The node feature of i ∈ V is
defined as:

si =

(
di
Q
,
M

K

)
(21)

12

Edge feature The cost function Eq. (14) are related to the edge decision variable wij . We directly
use the cost coefficient x̄ as an edge feature. Note that x̄ij is 0 for the additional edges (i, j) ∈ Ē′ \ Ē,
and every x̄ij are in the range [0, 1] by definition. The edge feature of (i, j) ∈ Ē′ is defined as:

sij = (x̄ij) (22)

B.2 Network architecture

We employ a message passing neural network (MPNN) and a simple MLP for representation learning
for the graph embedding and node classification modules. Single linear layers with 128 latent
dimension are employed for the node and edge initial embedding. The MPNN consists of 5 graph
layers whose node update and message generation functions are MLP with [64, 32] hidden dimensions.
The policy module is a simple MLP with [64, 32] hidden dimension. Note that it has a 1 dimension for
the output and employs a sigmoid activation function since the output corresponds to the probability.

B.3 Data generation

To get exact labels for separation problems, we generate random CVRP instances following [30]
and apply the cutting plane method with the exact separation algorithm described in Appendix A.3.
The random CVRP instances are generated with uniformly distributed depot and customer positions,
and each customer’s demand is sampled from a uniform distribution range of [1, 100]. Since the
computation of the exact RCI separation problems with a large number of CVRP is intractable
(NP-complete), we only solve the relatively small size of CVRP instances (|V | ∈ [50, 100]).

Support graphs and exact labels for the separation problems are gathered in an offline manner. Given
LP solution x̄, for each M = 0, . . . , ⌈

∑
i∈VC

di/Q⌉ − 1, the exact separation algorithm solves MIP
Eqs. (14) to (20). Since binary variable yi indicates whether the node i is in S, we can set the exact
node label ŷi as the optimal values of y∗i . We include label ŷ = [ŷ0, . . . , ŷ|V |] into training data
even if the minimum crossing edge set does not violate RCI. Hence, the policy learns how to find
the minimum crossing edge set by amortizing the computation of the MIP solver. To get the next
separation problem, the violated RCIs are added to the current relaxed problem, and we repeat this
until the algorithm fails to find violated RCIs.

To evaluate the trained model, we generate CVRP test instances with different numbers of customers
from 50 to 1, 000 (10 instances for each size). We use the identical distributions with training for
depot position, customer position, and demand with CVRP training instances.

B.4 Auto-regressive decoding model

Model. First, we add a dummy node that indicates the <end of selection> and is connected
all nodes so as to gather information about the current set composition (i.e. the dummy node has
incoming edges only). We set the weights of dummy-connected edges as 0, and add an edge type
feature that indicates that its source node is currently included in S. The dummy nodes are masked to
available only when the selected nodes are satisfy constraints at each step.

Training. We train the model using the same labeled data with NCP. At each step, the model is
trained to imitate the probability p̂i, calculated via the exact labels as follows:

p̂i =

{
ŷi∑

i∈Vc\S ŷi
if i ̸= dummy

1−
∑

j∈|VC | p̂j otherwise

We employ the mean squared error (MSE) loss because it gives better performances than the cross
entropy loss.

B.5 One-shot decoding model

Model. We construct the same input graph with NCP and predict the independent node selection
probabilities directly. Since the model computes the node selection probabilities independently, we
can use the exact label ŷi as true probability for node i. To de-randomize the resulting graph, we
employ the same rounding scheme with NCP. The one-shot decoding model is identical to the graph
coarsening network with the coarsening ratio γ = 1.

13

Algorithm 1: CapacityCut with the auto-regressive decoding
Input: Augmented graph G
Output: Selected nodes set S

1 Initialize set S = ∅;
2 for step← 0 to |VC | − 1 do
3 Predict node selection probability {pi}i∈VC\S ← fω(G,S);
4 if training then
5 Update θ ← ∇L({pi}i∈VC\S , {p̂i}i∈VC\S);

6 Randomly select a node j according to {p̂i}i∈VC\S ;
7 Update edge features according to S;
8 if j = dummy then
9 Terminate the selection;

10 else
11 S ← S ∪ {j};

Training. We train the model using the same labeled data with NCP. The overall training procedure
follows Section 3 with γ = 1 except for the loss function. We employ the MSE loss function because
it performs better than BCE loss and positive weighted BCE loss for the one-shot decoding model.

Algorithm 2: CapacityCut with the one-shot decoding
Input: Augmented graph G
Output: Selected nodes set S

1 Predict node selection probability {pi}i∈VC
← fθ(G);

2 if training then
3 Update θ ← ∇L({pi}i∈V , {ŷi}i∈V);
4 else
5 Set the depot probability p0 ← 0, y0 ← 0;
6 yi ← round(pi),∀i ∈ VC ;
7 Include i to S if yi = 1;

C Further Experiments

C.1 Experimental results with limited wall clock time

We compare performances of NCP and CVRPSEP with limited wall clock time (2 hours) instead
of the limited number of subroutine calls. Experiments are conducted on the server equipped with
Intel(R) Core(TM) i9-7980XE CPU. We evaluate the models only using CPU, as CVRPSEP is not
implemented to use GPU acceleration. As shown in Table 3, the lower bound with NCP is tighter
than CVRPSEP when the number of nodes is bigger than or equal to 400. Fig. 8 shows that NCP
performs better in the large-scale CVRP.

C.2 Experiments on X-instances in CVRPLIB

We apply the trained model to X-instances [30] in CVRPLIB without additional training to verify the
transferability. Note that the training data is generated using uniform demand distribution U(1, 100)
but the X-instances have seven different demand distributions. Table 4 shows that the model performs
better when the number of customers exceeds 200. NCP achieves a more significant LB improvement
per iteration even when the demand distribution is different with the training demand distribution.
Fig. 9 illustrates the lower bound gap with HGS algorithm. The results suggest that NCP mostly
outperforms CVRPSEP in the large-scale problems with limited iterations.

14

Table 3: The mean and standard deviation of lower bound with limited wall clock time.
Method Size Mean LB Std. LB Avg. # of Calls Avg. ∆ LB

CVRPSEP

50 9,363.570 2,490.674 71.9 37.026
75 13,355.372 7,289.166 114.4 35.059
100 15,937.238 5,155.842 161.0 34.341
200 21,377.666 4,762.775 341.0 23.097
300 31,288.780 11,646.043 370.9 41.276
400 42,315.017 12,517.111 226.7 91.894
500 49,081.463 23,271.637 205.6 97.201
750 67,719.115 21,080.550 211.7 158.350
1,000 65,106.924 12,136.281 157.7 182.185

CapacityCut with NCP
(ours)

50 9,146.218 2,422.141 42.1 56.076
75 13,063.580 7,294.335 63.4 58.578
100 15,577.428 5,146.759 96.5 54.625
200 20,751.042 4,743.903 134.1 55.851
300 30,804.764 12,187.478 113.6 119.368
400 43,341.285 13,859.847 85.4 271.026
500 50,052.446 23,024.014 62.3 446.744
750 69,964.785 20,731.845 31.8 1,228.709
1,000 65,580.619 11,257.778 19.1 1,626.640

50100 200 300 400 500 750 1000
Number of customers

0

5

10

15

20

25

30

35

Lo
we

r b
ou

nd
 g

ap
(%

)

CVRPSEP
CapacityCut with NCP (ours)

(a) The range of LB gap for each test size.

50 75 100 200 300 400 500 750 1000
Number of customers

0.0

0.2

0.4

0.6

0.8

1.0
W

in
ni

g
Ra

tio
CVRPSEP
CapacityCut with NCP (ours)

(b) The winning ratio out of 10 instances.

Figure 8: The results of the cutting plane method with NCP and CVRPSEP.

Table 4: The mean and standard deviation of lower bound of X-instances.
Method Range Mean LB Std. LB Avg. Iterations Avg. ∆ LB

CVRPSEP

[100, 200) 25,769.830 14,081.872 187.05 (≤ 200) 48.625
[200, 300) 36,994.622 25,865.421 200 (≤ 200) 73.770
[300, 400) 46,417.015 33,962.062 100 (≤ 100) 177.987
[400, 500) 61,982.074 48,613.320 100 (≤ 100) 198.625
[500, 600) 69,884.441 36,139.920 50 (≤ 50) 459.653
[600, 700) 63,584.630 26,472.213 50 (≤ 50) 422.451
[700, 800) 62,401.834 29,730.288 50 (≤ 50) 433.237
[800, 900) 82,898.842 40,405.746 50 (≤ 50) 463.897
[900, 1000] 105,572.352 89,510.664 50 (≤ 50) 753.173

CapacityCut
with NCP (ours)

[100, 200) 25,514.464 14,192.554 136.32 (≤ 200) 60.119
[200, 300) 37,660.482 26,874.093 167.95 (≤ 200) 84.577
[300, 400) 50,172.212 37,826.764 100 (≤ 100) 215.539
[400, 500) 66,723.129 51,968.514 100 (≤ 100) 246.035
[500, 600) 76,593.828 42,385.466 50 (≤ 50) 593.841
[600, 700) 70,233.887 28,931.966 50 (≤ 50) 555.436
[700, 800) 71,564.764 28,957.874 50 (≤ 50) 616.495
[800, 900) 92,101.115 44,707.908 50 (≤ 50) 647.942
[900, 1000] 115,312.115 85,135.955 50 (≤ 50) 947.968

15

[100, 200)

[200, 300)

[300, 400)

[400, 500)

[500, 600)

[600, 700)

[700, 800)

[800, 900)

[900, 1000]

Range of the number of customers

5

10

15

20

25

30

35

40

LB
 g

ap
(%

) w
ith

 H
GS

 so
lu

tio
ns

CVRPSEP
NeuralRCI (Ours)

(a) The range of the LB gap in X-instances.

[100, 200)

[200, 300)

[300, 400)

[400, 500)

[500, 600)

[600, 700)

[700, 800)

[800, 900)

[900, 1000]

Range of the number of customers

0.0

0.2

0.4

0.6

0.8

1.0
W

in
ni

g
Ra

tio
CVRPSEP
NeuralRCI (Ours)

(b) Winning ratio between NCP and CVRPSEP in X-
instances.

Figure 9: The results of the cutting plane method with NCP and CVRPSEP in X-instances.

16

	Introduction
	Related Works
	Neural Coarsening Process
	Experimental Results
	Target Task: CVRP-CapacityCut
	Setup
	Performance Evaluation
	Results
	Results for the subproblem

	Conclusion
	Explanation of CVRP-CapacityCut
	Mathematical formulation of CVRP
	Cutting plane method for CVRP
	The exact RCI separation

	Detailed Experimental Setting
	Graph representation
	Network architecture
	Data generation
	Auto-regressive decoding model
	One-shot decoding model

	Further Experiments
	Experimental results with limited wall clock time
	Experiments on X-instances in CVRPLIB

