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Abstract

The cutting plane method is a key technique for successful branch-and-cut and branch-price-

and-cut algorithms that find the exact optimal solutions for various vehicle routing problems

(VRPs). Among various cuts, the rounded capacity inequalities (RCIs) are the most fundamental.

To generate RCIs, we need to solve the separation problem, whose exact solution takes a long time

to obtain; therefore, heuristic methods are widely used. We design a learning-based separation

heuristic algorithm with graph coarsening that learns the solutions of the exact separation

problem with a graph neural network (GNN), which is trained with small instances of 50 to

100 customers. We embed our separation algorithm within the cutting plane method to find a

lower bound for the capacitated VRP (CVRP) with up to 1,000 customers. We compare the

performance of our approach with CVRPSEP, a popular separation software package for various

cuts used in solving VRPs. Our computational results show that our approach finds better lower

bounds than CVRPSEP for large-scale problems with 400 or more customers, while CVRPSEP

shows strong competency for problems with less than 400 customers.

Summary of Contribution: We suggest a novel learning-based separation algorithm for

RCIs arising in solving CVRPs. While some attempts have been made to learn to select cuts, our

study is the first attempt to learn to generate cuts. In particular, we suggest a scalable model

that leverages a message passing GNN with graph coarsening. The GNN with a sparse graph

allows the trained model to solve problems of various sizes, while the graph coarsening reduces

the size of graphs and enables learning representation from equivalent but non-isomorphic graphs.

We prove that our model has a polynomial worst-case time complexity at the inference phase.

Furthermore, we experimentally verify that our model has the transferability to solve problems

sampled from out-of-distribution.

1 Introduction

Cutting planes are the key components of many successful exact algorithmic frameworks for the

integer programming (IP) formulations of various vehicle routing problems (VRPs): the capacitated
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VRP (CVRP), the VRP with time windows (VRPTW), the pickup-and-delivery problem (PDP),

and their extensions. When the classical branch-and-bound framework is combined with the cutting

plane method, it forms the branch-and-cut (BC) algorithm (Laporte et al., 1985); when also

combined with column-generation approaches, it forms the branch-price-and-cut (BPC) algorithm

(Fukasawa et al., 2006). The most successful exact algorithms are the BPC algorithms, which

combine numerous techniques found in the last few decades, including effective cut generations,

faster pricing algorithms, acceleration strategies for pricing, strong branching strategies, variable

fixing, route enumeration, etc. See Toth and Vigo (2014) and Costa et al. (2019) for the descriptions

of the various components in the BC and BPC algorithms.

As VRPs are NP-hard, it is inevitable that the exact algorithms have long computational times

for large-scale problems. Recently, various attempts have been made to apply advanced machine

learning (ML) tools to improve and accelerate various components of the exact algorithms that were

designed with the domain knowledge of an expert. Examples include column selection (Morabit

et al., 2021) and column generation (Zhang et al., 2022) for VRPTW, and cut selection (Tang et al.,

2020; Paulus et al., 2022) and branching strategy (Khalil et al., 2016) for general IP problems. They

have demonstrated the potential of ML methods for accelerating the exact algorithms for VRPs.

In this paper, we develop an ML-based algorithm for another component of the exact algorithm

that has not been considered in the literature: cut generation. Both BC and BPC algorithms rely

on linear programming (LP) relaxations of the original IP problem and add inequality constraints

iteratively. Given a fractional solution of a relaxed LP problem, we need to find an inequality that

separates the fractional solution from the feasible region. This problem is called the separation

problem, and such an inequality constraint, violated by the fractional solution but not by the feasible

solutions of the original integer problem, is called a cut. These cuts, making the dual bounds tighter,

are one of the key contributing factors to the success of BC and BCP algorithms.

Particularly, we focus on the separation problem for the rounded capacity inequalities (RCIs)

among many other cuts, such as framed capacity inequalities, strengthened comb inequalities,

multi-star inequalities, subset row cuts, strengthened capacity cuts, and so on. While utilizing

various cuts, BC and BPC algorithms almost always begin by applying RCIs and then find other

cuts if no more RCIs are identified. For this reason, an effective and efficient separation algorithm

for RCIs plays a critical role in the exact algorithms.

The separation problem for RCIs is NP-hard (Diarrassouba, 2017). Although an exact method

exists (Fukasawa et al., 2006), heuristic separation algorithms are more popular; most notably, the

heuristic algorithm by Lysgaard et al. (2004) and its open-source library CVRPSEP (Lysgaard,

2003). For problems with less than about 100 customer vertices, it is known that the bound found

by CVRPSEP is almost the same as that found by the exact separation (Fukasawa et al., 2006;

Wenger, 2003). However, for larger problems, the performance of CVRPSEP for RCIs has hardly

been evaluated since the exact separation requires an IP problem that takes a long time to solve.

For large-scale problems with 400 to 1, 000 customers, this paper shows that we can design a

learning-based heuristic algorithm with better performance than CVRPSEP. We design a novel
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neuralized separation algorithm, called NeuralSEP, which learns the exact RCI separation algorithm

through a graph neural network (GNN) and graph coarsening. The proposed model finds effective

cuts within a relatively short period of time compared to the exact separation for large-scale

problems. To show the effectiveness of our approach, we embed NeuralSEP within the cutting plane

method and obtain dual bounds, which will be compared with the dual bounds obtained by RCIs

from CVRPSEP. Our key contributions are as follows:

1. We suggest a learning-based separation algorithm, the first of its kind to the best of our

knowledge. Although some studies have already suggested learning-based cutting plane

methods, they focus on learning to select which cuts to add to the relaxed problem, and not

to identify the cuts by solving the separation problem.

2. We suggest a scalable model leveraging GNN and graph coarsening. GNN with a sparse graph

allows the trained model to solve problems of different sizes. Moreover, graph coarsening

reduces the size of the graphs to handle large-sized graphs. Thus, NeuralSEP can efficiently

solve the separation problem for RCIs in large-scale CVRPs.

3. We prove that NeuralSEP has polynomial worst-case time complexity at the inference phase.

The RCI separation problem involves searching for subsets of vertices to find the subset

that violates capacity constraints. NeuralSEP amortizes this computation by effectively

learning representations during training; graph coarsening allows the model to learn graph

representations from equivalent but non-isomorphic graphs.

4. NeuralSEP has the transferability to solve out-of-distribution problems—problems not sampled

from the distribution used in the training phase. We experimentally verify the transferability

of NeuralSEP by showing that the model trained with uniformly distributed demand can solve

X-instances in CVRPLIB without additional training.

Section 2 reviews the related works, and Section 3 introduces CVRP, RCIs, the cutting plane

method, and existing separation methods for RCIs. Section 4 explains the methodology of NeuralSEP

with the training strategy in Section 5. Extensive computational experiments in Section 6 verify the

scalability, transferability, and effectiveness of NeuralSEP. Section 7 concludes this paper.

2 Related Works

This paper proposes a learning-based separation algorithm for RCIs. As the separation problem is a

combinatorial optimization (CO) problem, we introduce related works that apply learning-based

methods, mainly with neural networks, to CO. Solving CO problems with neural networks is not a

new idea, as summarized in Smith (1999). However, it has gained more attention recently with the

breakthrough of deep learning (Bengio et al., 2021; Kotary et al., 2021; Bogyrbayeva et al., 2022).

We review the learning-based CO algorithms in two categories: end-to-end and hybrid learning

approaches. The end-to-end approaches train models to map the CO problems directly to their
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corresponding (optimal) solutions, while the hybrid learning approaches use learning approaches to

enhance existing exact/heuristic algorithms or solve subproblems arising within existing algorithms.

We conclude this section by introducing existing works related to RCIs briefly.

2.1 End-to-End Machine Learning Approaches for CO

For routing problems, learning-based approaches with sequential decision-making have been explored

broadly (Vinyals et al., 2015; Bello et al., 2017; Khalil et al., 2017a; Kool et al., 2018; Park et al.,

2021; Kim et al., 2022). They leverage recurrent neural networks (Bello et al., 2017), Transformer

(Kool et al., 2018; Kim et al., 2022), or graph neural networks (Khalil et al., 2017a; Park et al.,

2021) to learn the representations of CO problems. Typically, they construct a route by appending

a vertex to the current partial route one by one; since they choose which vertex to append based on

the previous decisions, they are called auto-regressive models.

For CO problems, especially where decisions are made at the vertex level, some studies have

suggested models that require fewer decision-making steps than auto-regressive models. Schuetz et al.

(2022) proposed a one-shot prediction model that predicts soft (i.e., relaxed to continuous value)

vertex assignments for the maximum-cut and maximal independent set (MIS) problems, then projects

the soft assignments to binary values via rounding. However, in general, the complicated constraints

in CO problems are non-trivial in one-shot prediction methods with simple projection methods. Ahn

et al. (2020) proposed the learning-what-to-defer (LwD) method that iteratively decides on multiple

decision variables at the same time by leveraging locally decomposable properties. LwD reduces

the size of the problems by eliminating the variables decided in the previous iterations. Though

LwD outperforms other end-to-end ML methods in MIS-related tasks, it requires a problem-specific

transition function.

2.2 Hybrid Learning Approaches for CO

ML can be utilized to address CO problems by incorporating learning-based methodologies with

pre-existing algorithms. To solve routing problems, large neighborhood search methods (Shaw,

1997; Pisinger and Ropke, 2010) have been widely studied to improve their performances via neural

networks. Chen and Tian (2019) and Lu et al. (2019) utilized deep learning methods to decide

on which algorithm to use to destroy and repair the current solution at each step. Hottung and

Tierney (2020) employed the attention model of Kool et al. (2018) to learn to repair the randomly

broken partial solutions. On the other hand, Nair et al. (2020) and Wu et al. (2021) focused on

training the destroy operations via neural networks.

Some researchers show that deep learning can strengthen the exact algorithms to solve general

IP problems: for example, to decide on the primal heuristic strategy (Khalil et al., 2017b; Chmiela

et al., 2021), to set the branching score weight (Balcan et al., 2018), and to select variables to

branch (Gasse et al., 2019; Gupta et al., 2020). A few studies enhanced the cutting plane method.

Baltean-Lugojan et al. (2019) introduced a neural network estimator that predicts the effectiveness

of each cut and then selects the cuts to add based on this estimation. Tang et al. (2020) suggested
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a neural network that selects a constraint to be applied within Gomory’s cut procedure. Paulus

et al. (2022) proposed the neuralized scorer that predicts the cost improvement of the relaxed

problem with each cut. These works have focused on the selection of cuts generated by the existing

separation algorithm, while we generate new cuts directly to add to the relaxed problem.

Exact algorithms for VRPs have also been enhanced by deep learning. For the column generation

methods as in the branch-and-price or branch-price-and-cut algorithms, learning methods for column

selection (Morabit et al., 2021) and column generation (Zhang et al., 2022; Morabit et al., 2022)

for VRPTW have been studied. Learning-based cutting plane enhancements specific to VRPs can

hardly be found.

2.3 Rounded Capacity Inequalities (RCIs)

Introduced by Laporte and Nobert (1983), RCIs have played a prominent role in branch-and-cut

algorithms. Augerat et al. (1995) suggested the first complete branch-and-cut algorithm for CVRP

using RCIs, and Augerat et al. (1998) suggested the Tabu search algorithms, the first meta-heuristics

for the RCI separation problems. A branch-and-cut algorithm with heuristic separations of RCIs is

proposed by Ralphs et al. (2003). Lysgaard et al. (2004) strengthened heuristics for RCIs and many

other cuts and developed the CVRPSEP library (Lysgaard, 2003). Particularly, they generalized

the ‘safe-to-shrink’ condition for separation heuristics to reduce the graph size by utilizing the

submodularity of the cost function of the separation problem. Shrinking heuristics employ edge

contraction that selects the edges and merges their endpoints into one vertex, which the graph

coarsening procedures in NeuralSEP also utilize. The graph coarsening in NeuralSEP differs from

the shrinking heuristics in that it selects the edges based on the GNN predictions, whereas the

shrinking heuristics select the edges that satisfy the safety condition—See Section 3.4 for further

discussions. Diarrassouba (2017) proved that the separation problem for RCIs is NP-hard in general,

and strongly NP-hard when the demands are all the same.

3 Problem Definition

In this section, we formally introduce the definition of CVRP and RCIs and briefly illustrate the

framework of the BC algorithm. Then, we introduce the formulation of the exact separation method

for RCIs, followed by a description of the heuristic separation method of CVRPSEP (Lysgaard

et al., 2004).

3.1 CVRP and RCIs

The capacitated vehicle routing problem, denoted as CVRP (Dantzig and Ramser, 1959), can be

formalized as a tuple (G,K,Q). Here, G = (V,E) represents a complete undirected graph, where the

vertex set V is composed of vertices containing both the depot and customers, and the set E is a set

of the edges connecting pairs of vertices. We let K denote the number of vehicles, each possessing a

capacity constraint of Q. We let vertex 0 denote the depot, and VC = V \ {0} denote the set of
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customer vertices. Each customer vertex i has demand di and each edge (i, j) has non-negative cost

cij . A route is defined as a set of edges that form a cycle containing the depot, and the cost of a

route is the summation of all the costs of the edges that constitute the route. The goal of CVRP is

to minimize the total cost of routes such that (i) every customer is assigned to only one vehicle for

service, (ii) each route initiate and terminates at the depot, and (iii) the total demand of customers

served by a vehicle does not exceed the capacity Q.

Mathematically, CVRP can be formulated as an integer program (IP). Following Lysgaard et al.

(2004), we define the edge variable xij to represent the count of travels between vertices i and j;

note that xij = xji since the edges are undirected. For any customer subset S ⊆ VC , we let δ(S)

denote the set of crossing edges whose endpoints belong to different sets, meaning one is in S, and

the other is in V \ S. Given a subset of edges F ⊆ E, we denote x(F ) as the sum of edge values in

F , i.e.,
∑

(i,j)∈F xij . The two-index formulation of CVRP is:

minimize
∑

(i,j)∈E

cijxij (1)

subject to x(δ({i})) = 2 ∀i ∈ VC (2)

x(δ(S)) ≥ 2b(S) ∀S ⊆ VC (3)

xij ∈ {0, 1} ∀1 ≤ i < j ≤ |V | (4)

x0j ∈ {0, 1, 2} ∀j ∈ VC , (5)

where b(S) denotes the minimum number of vehicles required to cover all demand in a customer

set S. The equality constraint presented in (2) ensures a requirement that every customer vertex

has a degree of exactly 2, implying that each customer is visited precisely once by a vehicle. As

b(S) is computed to serve customers in S for the given capacity Q, the capacity constraint in (3)

imposes that a route is connected to the depot by eliminating sub-tours. Lastly, the constraints

detailed in (4) and (5) correspond to the integer conditions for the decision variables. Here, the

edge variable connecting the customer j and the depot, i.e., x0j , has a value of 2 in cases where a

vehicle exclusively serves a single customer.

To solve CVRP, we first need to compute b(S) by solving the bin packing problem whose bin

capacity and sizes of each item are Q and di, respectively. It is well-known that calculating b(S) is

strongly NP-hard. Fortunately, the formulation is still valid—the set of feasible integer solutions

remains the same—even if b(S) is replaced with k(S) = ⌈
∑

i∈S di/Q⌉, which is equal to or smaller

than b(S). The constraints in (3) with k(S) are called the rounded capacity inequalities (RCIs).

3.2 The Branch-and-Cut Algorithm

Even if the two-index formulation with RCIs is well defined, the RCIs cannot be used directly in

practice. The main reason is that the number of RCIs grows exponentially with respect to |V |. The
branch-and-cut algorithm handles such complexity in an iterative manner via the cutting plane

method.
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Figure 1: Illustration of the iterative separation procedure in cutting plane method

The cutting plane method starts with relaxing a given problem by disregarding the hard-to-hand

constraints. In CVRP, the RCIs and the integer conditions associated with decision variables are

usually relaxed (Ralphs et al., 2003; Lysgaard et al., 2004). Then, the cutting plane method solves

the relaxed problems and finds the violated constraints among disregarded constraints. The violated

constraints are called the cutting planes or simply cuts. To yield a new relaxed problem for the

subsequent iteration, the cutting planes are added to the relaxed problem. This iterative process

continues until the solution of the relaxed problem, referred to as the relaxed solution, satisfies

the feasibility criteria of the original problem. If the cutting plane method cannot find an integer

solution, we start a branch-and-bound scheme to complete the branch-and-cut algorithm.

In the context of the two-index formulation of CVRP, the relaxed problem is formulated with

linear programming (LP) as follows:

minimize
∑

(i,j)∈E

cijxij (6)

subject to x(δ({i})) = 2 ∀i ∈ VC (7)

0 ≤ xij ≤ 1 ∀1 ≤ i < j ≤ |V | (8)

0 ≤ x0j ≤ 2 ∀j ∈ VC . (9)

The RCIs are generated and added to the above LP problems, (6) to (9), iteratively. Since the

RCIs and integer conditions are dropped, the relaxed solution (denoted as x in Figure 1) is likely

infeasible for the original CVRP problem (1) to (5). Therefore, a separation algorithm refines the

feasible region of the relaxed problem by adding an RCI, Dx ≤ d, which is valid to the original

integer solutions, but not valid to the current relaxed solution, i.e., Dx > d. The RCI separates

the relaxed solution from the original feasible solutions. The cutting plane method repeats this

procedure until the separation algorithm fails to find any more RCIs, as demonstrated in Figure 1.
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3.3 Exact Separation Algorithm for RCIs

The exact separation algorithm (Fukasawa et al., 2006) is designed to produce the most violated

RCIs. The exact separation algorithm refines the feasible region of the relaxed problem by adding

the most violated RCIs, while heuristic algorithms focus on finding possible RCIs rapidly.

The separation problem is mathematically formulated as a mixed-integer program (MIP). We

start by defining the notations of the exact formulation. For a given relaxed solution x, we define a

support graph as G = (V,E) where E = {(i, j) ∈ E : xij > 0}. In addition, we introduce binary

variables yi for all i ∈ V , and continuous variables wij for all (i, j) ∈ E. We let yi = 1 when

the vertex i belongs to the set S, and wij = 1 when the edge is in the boundary of set S, i.e.,

(i, j) ∈ δ(S). For every M ∈ {0, . . . , ⌈
∑

i∈VC
di/Q⌉ − 1}, we get the minimum weight of crossing

edges, i.e., z(M), by solving the following problem:

z(M) = min
∑

(i,j)∈E

xijwij (10)

s.t. wij ≥ yi − yj ∀(i, j) ∈ E (11)

wij ≥ yj − yi ∀(i, j) ∈ E (12)∑
i∈VC

diyi ≥ (M ·Q) + 1 (13)

y0 = 0 (14)

yi ∈ {0, 1} ∀i ∈ VC (15)

wij ≥ 0 ∀(i, j) ∈ E (16)

The constraints presented in (11) and (12) indicate that the variable wij equals 1 if the endpoints

belong to distinct sets, i.e., yi ≠ yj , which is the definition of wij . (13) means that the total demand

of S exceeds the total capacity, i.e., M ·Q, violating the capacity constraints. Consequently, the set S

necessitates allocating a minimum of M + 1 vehicles to serve the demands within S. In other words,

the subset S requires traversal more than 2(M+1) times, so we can find the RCI if z(M) < 2(M+1).

The violated RCI has the form of x(δ(S∗)) ≥ 2⌈
∑

i∈S∗ di/Q⌉, where S∗ = {i ∈ VC : y∗i = 1}.
For each M , the separation problem needs to find an optimal subset S∗ that has the minimum

crossing edge weight, so it is a CO problem. The separation problem for RCIs is NP-hard and

strongly NP-hard in the case of unit demand (Diarrassouba, 2017).

3.4 Heuristic Separation Algorithms for RCIs

Designing effective heuristics has been the focus of the separation problems for RCIs due to its

intractability. CVRPSEP, implemented based on Lysgaard et al. (2004), is a widely employed

separation algorithm package not only for RCIs but also framed capacity inequalities, strengthened

comb inequalities, multi-star inequalities, and hypotour inequalities. In this section, we review the

heuristic algorithms for RCIs in CVRPSEP, which employs four different heuristic algorithms in
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order.

The first heuristic is the connected components heuristic. Early versions of the connected

components heuristic were proposed independently in Ralphs (1995) and Augerat et al. (1998). In

CVRPSEP, the connected components heuristic obtains GC = (VC , EC) by removing the depot

from the given support graph G. Then, it finds the connected components S1, . . . , Sp of GC and

checks whether the RCI corresponding to the component is violated. Specifically, for i = 1, . . . , p,

the algorithm checks whether the connected component Si and its complement VC \ Si violate the

RCI. If all Si and VC \ Si satisfy the RCIs, the union of those connected components that are not

connected to the depot in the support graph is checked.

When the connected components heuristic fails, CVRPSEP makes the support graph shrink. It

chooses a subset of customers S and shrinks it to a vertex s, called a super-vertex, whose demand is

set to
∑

i∈S di, and the weight of the edge (s, j) in the shrunk support graph is set to
∑

i∈S xij for

each j ∈ VC . Edge contraction is employed to obtain the shrunk graph, while the subset S should

satisfy certain ‘safety’ conditions dependent on the current LP solution x to find a cut. On the

other hand, in this study, we suggest to coarsen the graph based on the GNN prediction so that the

edges are selected according to the probabilities that the endpoints belong to the same sets. For the

shrunk support graph, additional three heuristics are used: fractional capacity inequalities, greedy

construction heuristic, and removal heuristic; See Lysgaard et al. (2004) for details.

4 The Neural Separation Algorithm for RCIs

In this section, we propose an ML-based separation algorithm for RCIs, NeuralSEP, and explain

how NeuralSEP finds the subset corresponding to the violated RCIs for a given support graph G.

We employ graph neural networks (GNN) with a message passing scheme (Gilmer et al., 2017),

which are able to extract embeddings by utilizing the graph structures. The model is trained to

imitate the exact separation algorithm in Section 3.3.

Figure 2 illustrates the overall process of NeuralSEP. The model predicts a vertex selection

probability pi that the vertex is in subset S (Section 4.1 and Section 4.2); it can be interpreted

as the continuous relaxed value of the decision variable yi. Then, the given graph is coarsened to

a smaller graph depending on pi, and the vertex selection probabilities are re-computed with the

coarser graph (Section 4.3). The coarsening process is repeated until the coarse graph has the depot

and two other vertices only, or there are no edges to contract. Vertices in the coarsest graph are

assigned to S or the complement of S, and lifted to the original graph (Section 4.4).

4.1 Message Passing Graph Neural Networks

In this section, we provide a brief exploration of graph neural networks (GNN). We employ GNN

with a message passing scheme (Gilmer et al., 2017), since the RCI separation problem is naturally

defined on a graph. For given graph G = (V, E), assume that each vertex i ∈ V holds a vertex

feature hi and each edge (i, j) ∈ E holds an edge feature hij . GNN iteratively updates the features
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𝑓𝜔

𝜸 – coarsening

Set AssignmentNeural Coarsening and Re-prediction

Figure 2: The overall coarsening procedure of NeuralSEP: It iteratively predicts vertex selection
probabilities and coarsens the given graph. NeuralSEP decides the set assignment on the coarsest
graph, then maps the assignment to the original graph.

using the edge update function (i.e., message function) and vertex update function (i.e., message

aggregation).

Edge update. The edge feature h
(τ)
ij at iteration τ is updated as follows:

h
(τ)
ij = fe

([
h
(τ−1)
i , h

(τ−1)
j , h

(τ−1)
ij

]
; θe

)
, ∀(i, j) ∈ E (17)

where fe is the edge update function, which is a Multi-layer Perceptron (MLP) parameterized with

θe, and h
(τ−1)
i and h

(τ−1)
ij are the vertex embedding and the edge embedding at the τ − 1 iteration.

The updated edge embedding is regarded as a message.

Vertex update. Vertex i receives messages from its neighbors (i.e., the vertices connected to i)

j ∈ N (i), where N (i) = {j ∈ V : (i, j) ∈ E}. Each vertex gathers and aggregates the messages, and

updates its vertex feature as follows:

h
(τ)
i = fv

([
h
(τ−1)
i ,AGGj∈N (i)

(
h
(τ−1)
ij

)]
; θv

)
, ∀i ∈ V (18)

where fv is the vertex update function, which is an MLP parameterized with θv, and AGG is a

differentiable and permutation invariant aggregate function (e.g., sum, mean, or max).

4.2 Graph Embedding with GNN

At each separation step, NeuralSEP takes the current relaxed solution x and its support graph G as

an input. In the support graph, vertices i and j are connected only if xij is greater than 0. Since the

support graph can be disconnected (i.e., there may exist connected components not containing the

depot), we added edges between the depot and customers with 0 values. Thus, the support graph is

connected while maintaining its sparsity. It is noteworthy that if vertices are disconnected, messages

are not exchanged; since the message corresponds to the edge embedding in GNN. To prevent this,

we define the augmented support graph as G′ = (V,E′), where E′ = {(i, j) ∈ E : xij > 0 or i = 0}.
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To model the separation problem (10) to (16) within the graph framework, we define the vertex and

edge features for G′ using coefficients in the problem.

Vertex Feature. We utilize the coefficient d, and RHS M and Q in (13), which is highly related

to the vertex decision variable y. The constraint can be reformulated as
∑

i∈VC
diyi/Q > M . Here,

the coefficient di/Q inherently falls within the range of [0, 1] due to its definition. To make the

features have similar ranges, we normalize M by the number of vehicles K. In summary, the vertex

feature for vertex i ∈ V is defined as follows:

si =

(
di
Q
,
M

K

)
(19)

Edge Feature. We utilize the cost coefficient x in (10), which is associated with the edge decision

variable w. It is noteworthy that xij takes a value of 0 for the additional edges, i.e., (i, j) ∈ E′ \ E,

and each xij falls within the range of [0, 2]. Consequently, the edge feature for (i, j) ∈ E′ is defined

as follows:

sij = (xij) (20)

Computing the Vertex Selection Probability. NeuralSEP first encodes vertex feature si and

edge feature sij to get the initial embedding:

hij = ge(sij ;ϕe) ∀(i, j) ∈ E′ (21)

hi = gv(si;ϕv) ∀i ∈ V, (22)

where gv and ge are simple MLPs parameterized with ϕe and ϕv, respectively.

NeuralSEP applies GNN parameterized with θv and θe to produce the final embedding H′
v =

{h′i}i∈V as follows:

H′
v = GNN (Hv,He; θv, θe) , (23)

where Hv and He denote the vertex and edge initial embedding vectors (i.e., Hv = {hi}i∈V , and
Hv = {hij}(i,j)∈E′).

Using the final embedding h′i for vertex i, NeuralSEP computes the probability that i is included

in subset S as follows:

pi = π
(
h′i; θp

)
, ∀i ∈ V, (24)

where π is an MLP with θp. We use a sigmoid activation at the final layer in π to ensure the pi

in [0, 1]. Note that the probability for each vertex is calculated independently. Another way of

interpreting pi is to regard it as a continuous relaxed value of the integer variable yi in the exact

separation problem in Section 3.3. We can denote the entire process described above as fω(G
′),

where the parameter ω = (ϕe, ϕv, θe, θv, θp) is learnable.

11



Algorithm 1 γ-coarsening

Input: A graph Gt = (Vt, Et), contraction probability matrix q, coarsening ratio γ
Output: The coarser graph Gt+1 = (Vt+1, Et+1)
1: Initialize Gt+1 ← Gt
2: while |Vt+1| > ⌊γ · |Vt|⌋ do
3: if qij = 0 for all (i, j) ∈ Et+1 then
4: Terminate the while-loop
5: else
6: (u′, v′)← argmax(i,j)∈Et+1

qij ▷ Select an edge to contract based on (25)
7: N (u′)← {v | (u′, v) ∈ Et+1} ▷ Find the neighbor vertices
8: δ(u′)← {(u′, v) ∈ Et+1 | v ∈ Vt+1} ▷ Find the connected edge set
9: Et+1 ← Et+1 ∪ {(v, v′) | v ∈ N (u)} with edge feature svv′ = svu′ ,∀v ∈ N (u′) ▷ Create new edges

10: dv′ ← du′ + dv′ ▷ Merge vertex u′ into v′

11: Gt+1 ← (Vt+1 \ {u′}, Et+1 \ δ(u′))
12: Combine the parallel edges with weight summation to simplify Gt+1

13: end if
14: end while
15: return Gt+1

4.3 Graph Coarsening with Re-prediction

Inspired by the shrinking heuristics (Augerat et al., 1998; Ralphs et al., 2003; Lysgaard et al., 2004),

we utilize a graph coarsening procedure to discretize the predicted probabilities. We can identify

the subset S by iteratively coarsening graphs and re-predicting probabilities on the coarsened graph,

we can identify the subset S.

The graph coarsening procedure transforms an initial graph G0 into a sequence of downsized

graphs denoted as G1,G2, . . . ,GT , with the property that the number of vertices decreases over each

iteration, i.e., |V0| > |V1| > · · · > |VT |, where T represents the number of iterations. In our context,

the initial graph G0 corresponds to the augmented support graph G′.

In this work, we coarsen graphs by merging two vertices (u, v) into a single vertex denoted as v′;

this is also called contraction. We set the weight of v′ as the sum of weights of u and v. And if

there are parallel edges, we combine them into a single edge with their values being summed. The

graph is coarsened with ratio γ < 1, the t-th coarse graph Gt has |Vt| = ⌊γt−1|V0|⌋ vertices. The

set of pairs of vertices to contract is chosen based on the probability that both are in the same

group (St or Vt \ St). As the depot is excluded from set St in the exact separation problem, we

set the contraction probabilities of the depot-connected edges as 0. The contraction probability

qij is defined as the probability of being excluded in the crossing edge set (i.e., the probability of

connecting vertices in the same set) as follows:

qij =

pipj + (1− pi)(1− pj) if i, j ̸= 0

0 otherwise.
(25)

The pseudo-code of γ-coarsening is provided in Algorithm 1. With the coarser graph Gt+1, we

re-compute the vertex selection probability pi via fω(Gt+1). We repeat γ-coarsening until there are
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three vertices (i.e., a depot and two aggregated vertices) remaining, or there are no pair of vertices

to contract (i.e., the contraction probabilities qij are all 0). Given that the graph is coarsened by a

factor of γ at each iteration, the number of predictions is O(log |V |).
The main difference from the shrinking heuristics in Lysgaard et al. (2004) is that we coarsen

graphs based on the GNN predictions, not the relaxed solution values. NeuralSEP iteratively

coarsens the graph based on the GNN prediction and re-predicts the vertex selection probability

based on the coarsened graphs. Thus, we use the graph coarsening scheme to de-randomize the

continuous prediction of GNN to identify a subset. We show that the graph coarsening preserves

the properties of the separation problem when the error of GNN is bounded:

Proposition 1. For any given t, if the prediction error of fω(Gt) is bounded by 1/2, then the graph

coarsening process preserves the crossing edge weights and the total demand of the selected vertices.

We provide all proofs in the appendix. The preservation means that the coarser graphs are

equivalent to the original graphs when solving the separation problem. However, we modify the

structure of the graph by merging vertices and removing edges in the coarsening procedure; thus,

the coarser graph has a different structure from the original graph, i.e., graphs are non-isomorphic.

4.4 Set Assignment and Graph Uncoarsening

After T steps of the coarsening operation, the coarsest graph GT = (VT , ET ) that has the depot and

at least two vertices (i.e., |VT | ≥ 3) is obtained. The final probabilities are computed via fω(GT ); we
then apply the following simple projection rules to map the probabilities {pi}i∈ET back to integer

variables {yi}i∈ET :

Step 1. Set yi = 1 if pi > 1/2.

Step 2. If there are no vertices with yi = 1, set yj = 1, where j = argmaxi∈VT
{yi}.

By this set assignment process, the vertices of GT are bi-partitioned to set ST = {i ∈ VT : yi = 1}
and its complement VT \ ST .

After the set assignment, inverse coarsening operations are conducted to lift the coarsest graph

GT back to its original graph, as shown in Figure 3. The super-vertices of the coarser graph Gt are
composed of a distinct subset of vertices of the finer graph Gt−1. As the merged vertices information

is tracked during the coarsening process, the assignment of the super-vertices in GT can be mapped

to the assignment of the vertices in G0 directly. Since the weights are aggregated in the coarsening

phase, the sum of the crossing edge weights and vertex weights are preserved in the lifting operation;

that is, x(δ(ST )) = x(δ(S0)) and
∑

i∈ST
di =

∑
i∈S0

di, where x(F ) =
∑

(i,j)∈F xij for any edge set

F .

Similar to the exact RCI separation, given M = 0, . . . , ⌈
∑

i∈VC
di/Q⌉ − 1, we find a subset

S0(M) and examine whether its RCI is violated. If x(δ(S0(M)) < 2⌈
∑

i∈S0(M) di/Q⌉, then the

corresponding RCI is violated; therefore, we add it to the current relaxed problem. This examination

process allows NeuralSEP to be free from the safety conditions in the coarsening procedure.
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𝑆𝑇 𝒱𝑇\𝑆𝑇
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𝒱0\𝑆0
(a) The final graph GT

𝑆𝑇 𝒱𝑇\𝑆𝑇

𝑆0

𝒱0\𝑆0

(b) The initial graph G0

Figure 3: An example of the set assignment and uncoarsened results. The vertices are assigned to
a set and its complement, and these set assignments are directly mapped to the initial graph G0.
Note that the square vertex represents the depot.

We conclude this section by showing that the worst-case time complexity of NeuralSEP is

polynomial for inference:

Proposition 2. The forward propagation of NeuralSEP has O(|V||E| log |V|) worst-case time

complexity.

Coarsening involves T iterations of feature embedding and graph coarsening. The termination

condition for the coarsening process is either 1) when the number of vertices reaches three or 2)

when every edge has zero contraction probability (i.e., early termination). At each iteration t, the

number of vertices is bounded by ⌊γt|Vt−1|⌋, where γ represents the coarsening ratio. Accordingly,

the maximum number of iterations is limited to O(log |V|) in the first termination case. Therefore,

NeuralSEP enables fast separations once trained. In what follows, we explain how to train NeuralSEP

in detail.

5 Training NeuralSEP

Our policy fω(G) predicts the probabilities of whether each vertex is included in the subset S or

not. In other words, we classify the vertices into two sets, St and Vt \ St, at every coarsening step t.

We train the policy fω(G) in a supervised manner to learn the exact separation algorithm. Thus,

the computational load of the exact separation algorithm is amortized during the training of the

policy. The labels are collected on relatively small-sized problems, so our model needs to be able to

be generalized to larger-sized or out-of-distribution problems. The exact labels are generated in

advance, and the policy is trained to minimize the difference between predictions and the labels.

5.1 Exact Label Collection

To obtain separation problems and the exact solutions, we solve CVRP using the cutting plane

method with the exact separation algorithm. We generate CVRP instances following Uchoa et al.

(2017) and Queiroga et al. (2022). Precisely, the locations of the depot and customers are sampled
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from the uniform distribution between 0 and 1, and each demand is sampled from a uniform

distribution within [1, 100]. Because solving separation problems for large-scale CVRP instances

with the exact algorithm is computationally demanding, we collect labels by solving relatively

small-sized CVRP instances where the number of vertices is within [50, 100].

The collection of support graphs and the acquisition of exact labels are conducted offline.

Given a relaxed solution x, the exact separation algorithm solves MIP (10) to (16) for each

M = 0, . . . , ⌈d(VC)/Q⌉ − 1. We use the optimal solution y∗i as a label of the vertex i, i.e.,

ŷ = {ŷi}i∈V = {y∗i }i∈V . Even if the set S∗, the vertex subset corresponding y∗, does not violate the

RCI, we include the labels in the dataset. As a result, the policy acquires the ability to identify the

vertex set that yields the minimum crossing edge weight. The found RCIs are added to the relaxed

problem in order to proceed to the next iteration. This process is reiterated until the algorithm can

no longer identify violated RCIs.

5.2 Learning with Graph Coarsening

We conduct graph embedding and coarsening for batched N support graphs with labels during the

training period. We compute q̂ij via (25) with labels {ŷi}i∈V , it guarantees the labels during the

coarsening process. Note that the model is trained to imitate labels, so the labels need to be valid

when the graphs are coarsened1. This guarantees that the crossing edges of the exact solution are not

contracted and, as a result, the minimum crossing edges value is preserved in the coarsening process.

For each coarsening step, a collection of support graph and label pairs DM = {G(n), ŷ(n)}Nn=0 are

gathered for each M ∈M, whereM = {0, . . . ,max{K0, . . . ,KN} − 1}.
Our policy repeatedly predicts the vertex selection probabilities in the coarsening process and is

trained to minimize the difference between predictions and collected labels. The collected labels are

imbalanced depending on M , e.g., most vertices have 0 labels when M is 0. Thus, we employ the

Binary Cross-Entropy (BCE) loss function with positive weight as follows:

LM (ω) =
∑

(G,ŷ)∈DM

∑
i∈V

[ρM · ŷi · log(pi) + (1− ŷi) · log(1− pi)] , (26)

where ρM is the positive weight of dataset DM . The positive weight is computed with the ratio

between the number of negative (with a value of 0) and positive (with a value of 1) labels, i.e.,

ρM =

∑N
n=0

∑
i∈V(n)

(1− ŷi)∑N
n=0

∑
i∈V(n)

ŷi
. (27)

It prevents the policy from training towards the dominant value by adjusting the weights as if there

are more samples in the less dominant value. In conclusion, the policy parameters are updated to

1For example, two vertices can have a positive contraction probability even though they have different label values.
If we merge these two vertices, the label of the merged vertex is ambiguous.
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Algorithm 2 Training NeuralSEP

Input: Data collection D = {D0, . . . ,D|M|}, coarsening ratio γ, max iteration T , and learning rate α
Output: Trained parameter ω
1: for each {G(n), ŷ(n)} ∈ D do
2: Initialize parameters ω of the policy
3: Initialize G0 ← G(n), and t← 0
4: while t ≤ T do
5: {pi}i∈Vt ← fω(Gt) ▷ Predict vertex selection probability
6: Update ω ← ω + α argminω∇L ▷ (28)
7: Calculate contraction probabilities q̂ via ŷ(n) ▷ (25)
8: if |Vt+1| ≤ 3 or min(i,j)∈Et

q̂ij = 0 then
9: Terminate the inner loop

10: else
11: Gt+1 ← γ-coarsening(Gt, q̂, γ) ▷ Algorithm 1
12: t← t+ 1
13: end if
14: end while
15: end for
16: return ω

minimize the training loss defined as follows:

L(ω) =
∑

M∈M

|DM |∑
m∈M |Dm|

LM (ω). (28)

NeuralSEP is trained with Algorithm 2. As the policy is learned to minimize the weighted BCE

loss in (28), which is the difference between the policy predictions and labels, the crossing edge

weights do not need to be calculated. Thus, the algorithm only conducts the graph coarsening phase

without the set assignment and uncoarsening. To train fω(·), we collect about 20, 000 pairs of the

support graph and exact labels from 500 random CVRP instances.

6 Experiments

We evaluate the proposed approach by computing the lower bound of CVRP. Since CVRPSEP, our

baseline, was originally developed for the branch-and-cut algorithm, we also compare CVRPSEP

and NeuralSEP within the cutting plane method to solve the relaxed LP problem at the root node

of the branch-and-cut algorithm.2

Experiments are designed to answer the following questions:

(Scalability) Is the model scalable to larger instances? As the label collections are computationally

expensive, we trained our model using relatively small instances with |V | ∈ [50, 100]. Therefore,

we need to verify whether NeuralSEP performs well even if the size of problems is larger than

the training instances, with |V | ∈ (100, 1000].

2The source code is available at https://github.com/hyeonahkimm/neuralsep.
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(Transferability) Can the model be applied to unseen problems without additional training?

The training instances are generated with CVRP whose demands are uniformly distributed

in [1, 100]. However, the trained model needs to adapt to problems that have different

distributions from the original training data.

(Effectiveness) Is the graph coarsening effective in solving the separation problems for RCIs? We

utilize graph coarsening operations to deal with the combinatorial nature of the RCI separation

problems. We measure violations of cuts found by NeuralSEP to verify the effectiveness of the

proposed algorithm on the separation problems.

6.1 Experiment Setting

Baseline. For the baseline separation algorithm, we use the CVRPSEP library (Lysgaard et al.,

2004), written in C. The library comprises four RCI heuristics – a connected component algorithm

and three shrinking-based heuristics, conducted sequentially when the algorithm fails. We set the

maximum number of RCIs per iteration as min{|V |, 100} following Lysgaard et al. (2004).

Instance generation. As described in Section 5.1, the size of CVRP for training is in [50, 100],

which is uniformly sampled. To evaluate the performance of the policy, test instances are generated

with the different numbers of customers |V | ∈ {50, 75, 100, 200, 300, 400, 500, 750, 1000}. Each test

dataset consists of ten instances sampled from the distributions whose locations and demands are

uniformly distributed as the same as the training dataset. Note that our instance generator follows

the one of instance generation logic with random distributions in Queiroga et al. (2022), which

originates from Uchoa et al. (2017).

Implementation. The main cutting plane method is implemented in Julia v1.16 with the LP

problems modeled with JuMP.jl v0.21 (Dunning et al., 2017) and solved by CPLEX v12.10. The

CVRPSEP library is called directly in Julia. While evaluating the trained models, the primary Julia

procedure invokes the Python-implemented code using PyCall.jl3 to solve the separation problems

using the trained model. The online supplement provides details regarding the hyperparameters

and network architectures used. Irrespective of the separation algorithms employed, we follow the

same RCI formulation rule with Lysgaard (2003). For any given set S, the rule selects the form

with a relatively small number of nonzero coefficients out of three equivalent forms:

(i) x(S : S) ≤ |S| − k(S),

(ii) x(δ(S)) ≥ 2k(S),

(iii) x(VC \ S : VC \ S) + 1
2x({0} : VC \ S)− 1

2x({0} : S) ≤ |VC \ S| − k(S),

where x(A : B) denotes the sum of edge weights whose one end is in A and the other is in B. Form

(i) is employed when |S| ≤ |V |/2, and form (iii) is employed otherwise.

3Available at https://github.com/JuliaPy/PyCall.jl
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Performance metric. Since the cost scale varies depending on the problem instances, we compute

the optimality gap to measure the performance of the algorithms. The cost lower bounds of each

instance are obtained by the cutting plane methods with different separation algorithms. To compare

the performance of the algorithms, we calculate the optimality gap of the resulting lower bound

(LB) as follows:

GAP =
(UB− LB)

UB
× 100(%), (29)

where UB is computed via the hybrid genetic search (HGS) algorithm of Vidal (2022) for randomly

generated instances.

Evaluation. The cutting plane method is terminated under two conditions: either when the

separation algorithm is unable to identify any violated RCIs or when the number of iterations attains

the limit. We compare the lower bounds and the optimality gap resulting from different separation

algorithms, CVRPSEP and NeuralSEP. Note that comparing the wall clock time of each algorithm

directly is difficult because of exogenous factors, including different languages implementing the

algorithms, the interface among them, the dependency on external libraries, and other processors.

Therefore, we evaluate each algorithm mainly based on the number of iterations.

Network architecture. We use a GNN with five layers for graph embedding, whose vertex and

edge update functions employ MLPs with hidden dimensions of [64, 32] and ReLU activation. The

probability prediction module is implemented as a simple MLP with a hidden dimension of [64, 32]

and ReLU activation and a sigmoid activation function for the final output.

Training parameters. We provide the hyperparameters used when we train NeuralSEP in

Table 1. We make a batch with 16 separation problems, which contain K problems each, so the

total batch size is
∑16

n=1K
(n). We use the same hyperparameters except for the coarsening ratio

and the maximum coarsening iteration. We trained our model using PyTorch 1.12.1 on the server

equipped with AMD EPYC 7542 CPU and NVIDIA RTX A6000 GPU.

Table 1: Hyperparameter settings

Hyperparameter Value

Coarsening ratio γ 0.75
Maximum coarsening iterations 50
Batch size 16
Number of epochs 20
Optimizer Adam
Learning rate 5e4

Learning rate scheduler CosineAnnealingWarmRestarts
Scheduler T0 32

6.2 Performances on Randomly Generated CVRP
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Table 2: The comparative results of CVRPSEP and ours within the limited iterations.

Method Size Avg. Gap (↓) Avg. LB (↑) Std. Dev. LB Avg. Iter. Avg. ∆ LB

CVRPSEP

50 1.968% 9,363.600 2,490.689 26 (≤ 200) 97.460
75 2.770% 13,355.075 7,286.675 40 (≤ 200) 104.984
100 4.541% 15,936.576 5,154.639 50 (≤ 200) 111.857
200 6.281% 21,378.035 4,763.083 116 (≤ 200) 68.795
300 8.984% 31,245.767 11,589.540 178 (≤ 200) 70.764
400 17.779% 40,845.554 11,695.275 100 (≤ 100) 173.550
500 20.504% 47,381.467 21,689.405 100 (≤ 100) 187.180
750 33.779% 61,092.462 20,024.117 50 (≤ 50) 475.452

1,000 37.195% 59,480.493 12,122.179 50 (≤ 50) 429.882

NeuralSEP
(ours)

50 4.055% 9,129.823 2,474.901 38 (≤ 200) 61.473
75 5.143% 13,064.861 7,281.095 61 (≤ 200) 61.263
100 6.709% 15,593.334 5,170.822 94 (≤ 200) 56.308
200 9.148% 20,742.544 4,728.970 127 (≤ 200) 58.559
300 10.414% 31,092.012 12,510.644 158 (≤ 200) 75.812
400 12.879% 43,896.118 14,509.259 100 (≤ 100) 204.055
500 14.185% 53,865.885 27,457.718 100 (≤ 100) 234.865
750 20.243% 73,652.108 23,963.772 50 (≤ 50) 726.645

1,000 22.857% 73,140.790 15,059.967 50 (≤ 50) 703.088

This section provides experimental results on the randomly generated CVRP instances. It is

noteworthy that the evaluations include a larger size of problems than the training dataset, where

the problem size is from 50 to 100. The lower bound and optimality gap are evaluated based on a

restricted number of iterations. We also compute the average improvement of the lower bound per

iteration (Avg. ∆ LB) to compare the quality of the cuts. The total LB improvements are calculated

by the differences between the final LB and the first relaxed cost, which is the minimized cost

without considering any capacity constraints. Lastly, we measure runtime per iteration (Iter. Time)

of each algorithm, considering that the iteration limits are varying on the problem size. Table 2

shows that NeuralSEP performs well in larger instances and achieves higher LB than CVRPSEP for

N ≥ 400, despite the training range being [50, 100]. The detailed outcomes for individual instances

can be found in the supplementary material, specifically in EC.4.

As the cost scale tends to depend on the size of the problems, we calculate the optimality

gap using HGS solutions. The optimality gap values of CVRPSEP and NeuralSEP are plotted in

Figure 4a. In addition, the winning ratio (i.e., the number of times defeating each other) out of 10

instances is plotted in Figure 4b. The figures illustrate that our algorithm outperforms CVRPSEP

in large problems where the number of customers is 400 or more. Furthermore, for the case of

N ≥ 500, NeuralSEP outperforms CVRPSEP for every instance.

Despite the noticeable performance, ours tends to exhibit higher time consumption per iteration.

It is noteworthy that CVRPSEP is implemented in C, a programming language renowned for its

speed advantages over Python, and the current implementation of NeuralSEP depends on external

libraries that could be engineered further to find cuts time-efficiently. To provide a comprehensive
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Figure 4: The results of the cutting plane method with CVRPSEP and NeuralSEP.

comparison, we also undertake experiments within constrained computational time to validate the

efficacy of NeuralSEP, as detailed in Section 6.4.

Figure 5 illustrates the optimality gap obtained by CVRPSEP and NeuralSEP with respect to

the iterations. The optimality gap has a notable reduction in the early stages, with diminishing

improvements as more cuts are added. Figure 5 points out that CVRPSEP eventually converges to

a lower gap compared to NeuralSEP. This tendency can also be seen in Table 2 where the iterations

of NeuralSEP terminate earlier than CVRPSEP when the size is under 400. However, when the

number of vertices is large, the optimality gap of NeuralSEP reaches a lower point as compared to

that of CVRPSEP within the limited iterations.

6.3 Performances on X-instances

We examine the transferability of our trained model by applying it to X-instances from CVRPLIB

(Lima et al., 2014) without additional training. Note that demands are sampled from various

distributions in X-instances, while our training data employs a uniform demand distribution between

1 and 100. Our results, as shown in Table 3 and Figure 6, demonstrate that our model surpasses

in large-scale problems with limited iterations, even when the demand distribution differs from

the training data. To compute the optimality gap, we use the best-known solutions provided by

CVRPLIB. The detailed outcomes specific to each instance are provided in EC.4.

In summary, it seems that NeuralSEP is implicitly trained with various demand distributions

as the graph coarsening forms different demand distributions by merging the demands in the

coarsening phase. Consequently, NeuralSEP suffers less from the distribution shifts, which means

the performances are less degraded when the test problems are sampled from the different problem

distributions with the training problem distribution. However, CVRPSEP tends to achieve better

performances than our algorithms on X-instances when it is executed enough iterations. In the

following section, we provide experimental results to compare the performance of CVRPSEP and
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Figure 5: The optimality gap improvement according to iterations. The solid line in the plot
denotes the average optimality gap of 10 instances, while the shaded area illustrates the range of
the optimality gap.
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Table 3: The comparative results of CVRPSEP and ours within the limited iterations on X-instance.

Method Range Avg. Gap (↓) Avg. LB (↑) Std. Dev. LB Avg. Iter. Avg. ∆ LB

CVRPSEP

[100, 200) 4.271% 26,030.758 14,342.726 105 (≤ 200) 86.913
[200, 300) 7.090% 37,748.285 26,060.201 173 (≤ 200) 84.279
[300, 400) 13.758% 47,291.521 33,842.847 100 (≤ 100) 186.732
[400, 500) 16.095% 62,615.572 48,144.625 100 (≤ 100) 204.960
[500, 600) 19.527% 70,233.048 35,998.370 50 (≤ 50) 466.625
[600, 700) 24.748% 63,587.607 26,396.767 50 (≤ 50) 422.510
[700, 800) 30.893% 62,362.005 29,201.413 50 (≤ 50) 432.440
[800, 900) 25.495% 83,282.409 40,126.377 50 (≤ 50) 471.568
[900, 1000] 30.728% 106,990.158 88,934.935 50 (≤ 50) 781.529

NeuralSEP
(ours)

[100, 200) 6.392% 25,514.464 14,192.554 136 (≤ 200) 60.119
[200, 300) 8.515% 37,660.482 26,874.093 168 (≤ 200) 84.577
[300, 400) 11.022% 50,172.212 37,826.764 100 (≤ 100) 215.539
[400, 500) 11.768% 66,723.129 51,968.514 100 (≤ 100) 246.035
[500, 600) 14.449% 76,593.828 42,385.466 50 (≤ 50) 593.841
[600, 700) 16.866% 70,233.887 28,931.966 50 (≤ 50) 555.436
[700, 800) 19.039% 71,564.764 28,957.874 50 (≤ 50) 616.495
[800, 900) 17.601% 92,101.115 44,707.908 50 (≤ 50) 647.942
[900, 1000] 22.832% 115,312.115 85,135.955 50 (≤ 50) 947.968
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(a) The average and range of the optimality gap.
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(b) Winning ratio out of 10 instances.

Figure 6: The results of the cutting plane method with CVRPSEP and NeuralSEP in X-instances.
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(a) Randomly generated CVRP (in-distribution)

50100 200 300 400 500 750 1000
Number of customers

0

5

10

15

20

25

30

35

Op
tim

al
ity

 g
ap

 (%
)

CVRPSEP
NeuralSEP (ours)

[100, 200)

[200, 300)

[300, 400)

[400, 500)

[500, 600)

[600, 700)

[700, 800)

[800, 900)

[900, 1000]

Range of the number of customers

5

10

15

20

25

30

Op
tim

al
ity

 g
ap

 (%
)

CVRPSEP
NeuralSEP (ours)

(b) X-instances (out-of-distribution)

Figure 7: The range of the optimality gap with 2 hours limit.

NeuralSEP when the computation time is limited.

6.4 Results with Limited Computation Time

The better performance within the same number of iterations would not mean practically faster

computation. To test the practical performances, we measure the optimality gap of CVRPSEP

and NeuralSEP with 2 hours limits regardless of the number of iterations, using 4 Intel Xeon

Gold 6230 CPUs. NeuralSEP continues to outperform CVRPSEP for problem sizes larger than

400 for randomly generated CVRP instances as depicted in Figure 7a, but exhibits comparable

performances in X-instances as shown in Figure 7b. While these trends align with the findings

presented in Figure 4a for randomly generated instances, NeuralSEP’s relatively poorer performance

with X-instances can be attributed to its out-of-distribution behavior: our model is trained on the

uniform distribution and is directly applied to solve the X-instance which has various distributions

(out-of-distribution). For more comprehensive results, including summary tables and instance-wise

time-performance graphs, please refer to the online supplement; see EC.1 and EC.5.

To take advantage of NeuralSEP fully, we would improve the forward processing time by an

efficient implementation and code optimization. Currently, NeuralSEP is implemented with the Deep

Graph Library (DGL, Wang et al., 2019) in Python. The widely-used DGL library employs relatively

heavy and complex graph data structures to enable various graph operations, while NeuralSEP

utilizes a few simple operations only. Using a graph data structure specific to NeuralSEP will

expedite the forward processing time. In addition, we can consider a faster C++ implementation

of the graph coarsening procedure, which is currently implemented in slower, native Python. The

forward processing time can also be significantly improved by using an efficient CPU and GPU

integration. While GPU will process the inference step certainly faster, we could not justify using

GPU due to the expensive overhead between CPU and GPU operations. Better hardware or code

level integration would certainly improve the forward processing time of NeuralSEP.
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Table 4: Separation results of different separation algorithms on various sizes of problems.

Size Avg. Violations Num. of Inequalities Success Rate

Exact CVRPSEP NeuralSEP Exact CVRPSEP NeuralSEP Exact CVRPSEP NeuralSEP

50 1.5640 0.2029 1.4579 547 3,158 547 1.00 0.88 0.68
75 2.5204 0.0938 2.3529 963 5,522 963 0.96 0.82 0.56

100 1.9115 0.0759 1.8034 1,059 7,742 1,059 0.99 0.90 0.49
200 1.1899 0.0377 0.8764 1,263 8,934 1,263 1.00 0.89 0.34

Finding a better lower bound more quickly with NeuralSEP can be beneficial in two ways. In

most cutting plane methods within the branch-and-cut or branch-price-and-cut algorithms, RCIs

are applied first, after which other types of cuts—for example, strengthened comb inequalities—are

applied. Since NeuralSEP converges more quickly, we can employ the other cuts earlier in the

cutting plane method, potentially finding tighter bounds more quickly. With a better lower bound,

we can also reduce the number of branch-and-bound vertices to explore after the cutting plane

method. As the branch-and-bound procedure for large-scale problems takes a lot of time, any

improvement in the lower bound can be helpful.

6.5 Performance on Separation Problems

In this section, we provide experimental results for the separation problems. The test data is

collected using the exact separation algorithm in advance. We measure the average violations, the

average number of inequalities found by each separation algorithm, and the success rate, which

indicates how many times the separation algorithm succeeds in finding at least one RCI.

As shown in Table 4, the average of violations observed in NeuralSEP lies between the exact

separation algorithm and CVRPSEP. The small average violations observed with CVRPSEP can be

attributed to its propensity for generating a multitude of inequalities in comparison to alternative

separation algorithms. CVRPSEP gives more than five times of others. Note that the exact

separation and NeuralSEP only find inequalities as many as the number of vehicles at maximum.

Though ours can find more violated cuts on average than CVRPSEP, our method achieves the

lowest success rate. Consequently, NeuralSEP usually converges to the higher optimality gap when

NeuralSEP is embedded into the cutting plane method. It can be interpreted as NeuralSEP is

less effective if the computation time is enough or the problem sizes are relatively small. Further

analysis for extensive experiments is also provided in the online supplement (EC.2 and EC.3).

7 Conclusion

This study suggests enhancing the cutting plane method for RCIs by employing the neuralized

separation algorithm, called NeuralSEP. Even though the cutting plane method is one of the

successful methods to solve many CO problems, the performance highly depends on the separation

algorithm. The separation problem is a CO problem known as NP-hard, so the exact separation
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algorithm requires massive computation. Therefore, several human-designed heuristics have been

introduced and proved their practicality, but they often find cuts that need to be tighter.

We utilize graph coarsening to discretize the continuous prediction of the neural network model.

NeuralSEP iteratively reduces the size of the problem with graph coarsening and re-predicts the

assignment probabilities on the coarser graph. The contracted edges are excluded from the final

crossing edge set, so the coarsening process can be interpreted as gradual decision-making for

excluding edges. Our model effectively learns the exact separation algorithm with O(|V ||E| log |V |)
worst-case time complexity for inferencing.

The experiments show that NeuralSEP finds tighter cuts at each iteration than CVRPSEP, a

competitive heuristic library. Though the model is trained using instances whose customers range

from [50, 100] with uniformly distributed demands, it is scalable to larger-sized or new instances

with unseen demand distributions. Moreover, ours outperforms CVRPSEP for problems whose size

is more than 400 when the number of separation iterations is limited. These results indicate that

NeuralSEP would be useful for finding exact solutions for large-scale CVRPs with 400 or more.

Incorporating NeuralSEP within the state-of-the-art branch-price-and-cut algorithms and de-

veloping neural separation algorithms for other types of cuts will be important for future research

topics to measure the practical implications of NeuralSEP.
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Appendices

Proof. Proof of Proposition 1 Suppose the coarser graph as G̃ = (Ṽ, Ẽ) is obtained by contracting edge

(u, v) from G = (V, E). We need to prove
∑

(i,j)∈δ(S) xij =
∑

(i,j)∈δ(S̃) xij and
∑

i∈S di =
∑

i∈S̃ di,

where S and S̃ are the sets consisting of the vertices with ŷi = 1.

First, we show that contracting edge (u, v) preserves the crossing edge weights and total demand,

if ŷu = ŷv (i.e., the edge (u, v) is none of the crossing edges). We denote ṽ as a super-vertex, i.e., u

and v are merged into ṽ, with ŷṽ = ŷu = ŷv. The demand of ṽ is set to du + dv and the demand

of other vertices remain the same, so
∑

i∈V diŷi =
∑

i∈Ṽ diŷi; thus,
∑

i∈S di =
∑

i∈S̃ di. The edges

connected to ṽ are updated as follows:

xṽl =


xul + xvl if l ∈ N (u) ∩N (v)

xul if l ∈ N (u) \ N (v)

xvl if l ∈ N (v) \ N (u)

(30)

Since the (u, v) /∈ δ(S), removing (u, v) does not affect the crossing edge weights. If (u, l) ∈ δ(S) or

(v, l) ∈ δ(S) (i.e., ŷl ̸= ŷu = ŷv), then (ṽ, l) ∈ δ(S̃) and the weight of the (ṽ, l) is preserved by (30).

The edges disconnected with ṽ remain the same; thus,
∑

(i,j)∈δ(S) xij =
∑

(i,j)∈δ(S̃) xij .

Second, we show that the crossing edges are not selected to contract if maxi ϵi < 1/2. Let ϵi be

the prediction error for vertex i. Then, we can compute qij with pi = |ŷi − ϵi| as follows:

qij =



(1− ϵi)(1− ϵj) + ϵiϵj , if ŷi = 1, ŷj = 1

ϵi(1− ϵj) + (1− ϵi)ϵj , if ŷi = 0, ŷj = 1

(1− ϵi)ϵj + ϵi(1− ϵj), if ŷi = 1, ŷj = 0

ϵiϵj + (1− ϵi)(1− ϵj), if ŷi = 0, ŷj = 0

Since we select the edge to contract greedily according to qij , the end points of the selected edge

have the same value of ŷ, when

1− ϵi − ϵj + 2ϵiϵj > ϵi + ϵj − 2ϵiϵj

⇐⇒ 4ϵiϵj − 2ϵi − 2ϵj + 1 > 0

⇐⇒
(
ϵi −

1

2

)(
ϵj −

1

2

)
> 0.

(31)

If the vertex prediction error ϵi is bounded to 1/2 (i.e., maxi∈Vt ϵi < 1/2), the condition (31) is

satisfied. As the crossing edges are not contracted, the crossing edge weights and the total demand

are preserved. □

Proof. Proof of Proposition 2 We analyze the time complexity for each part of the forward propaga-

tion described in Section 4.
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• Graph embedding: We employ message passing GNN whose time complexity is known as O(|E|)
(Wu et al., 2020).

• Graph coarsening: Computing the t-th coarse graph requires (1 − γ)γt−1|V| times of edge

contractions (see Algorithm 1). A single edge contraction consists of argmax operations for the

edges, and sum operations for the selected vertices and their connected edges; thus, it is bounded

to O(|E|). The time complexity of coarsening is bounded to O(γt−1(1− γ)|V||E|) = O(|V||E|).

• Set assignment: Set assignment conducts simple rounding and argmax operations for scalar

vertex values, so it has O(|V|) worst time complexity.

• Graph uncoarsening: As we keep tracking the vertex information in the coarsening phase, we

can directly map the coarsened vertices to the original vertices. Therefore, the time complexity

of uncoarsening is bounded to O(|V|).

Coarsening conducts T iterations of feature embedding and graph coarsening. After T iterations,

we get the coarsest graph with three vertices (i.e., |VT | = ⌊γT |V|⌋ = 3), so the number of iterations

is bounded to O(log |V|). The coarsening process terminates when 1) the number of vertices is

three or 2) every edge has zero contraction probability. Since the graph is coarsened with ratio γ,

the number of vertices at iteration t is |Vt| = ⌊γ|Vt−1|⌋ ≤ γt|V|. Thus, the number of iterations is

bounded by O(log |V|). The second case is an early stopping criterion. For example, at iteration

t, if there is only one possible edge to be contracted, but (1 − γ)γt−1|V| > 1, then it means the

other edge values are zero. Therefore, the coarsening process terminates early, which means the

number of iterations is less than in the first case. Accordingly, the number of iterations is bounded

by O(log |V|) in both cases. Thus, the total time complexity is

T∑
t=0

O(|Et|+ |Vt||Et|) +O(|Vt|) +O(|Vt|) =
T∑
t=0

O(|Vt||Et|) = O (T (|V||E|)) = O(|V||E| log |V|),

which completes the proof. □
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A Computation Time

A.1 Detailed Results with Limited Computation Time

The detailed results with the limited computation time of 2 hours are provided in Tables 5 and 6.

Table 5: The average lower bound of randomly generated instances in 2 hours.

Method Size Avg. Gap (↓) Avg. LB (↑) Avg. Runtime Avg. Iter. Winning Ratio

CVRPSEP

50 1.968% 9,363.659 0.42 26 1.0
75 2.770% 13,355.294 5.53 40 1.0
100 4.535% 15,937.833 5.53 52 1.0
200 6.283% 21,377.624 1,260.95 118 1.0
300 11.486% 30,140.539 6,854.07 120 0.8
400 18.767% 40,421.297 7,361.86 96 0.5
500 21.255% 47,447.202 7,468.32 103 0.4
750 29.682% 64,821.892 7,376.40 133 0.1

1,000 33.353% 63,031.672 7,575.62 101 0.2

NeuralSEP
(ours)

50 4.222% 9,146.218 25.59 41 0.0
75 5.204% 13,063.576 69.54 62 0.0
100 6.840% 15,577.428 153.06 96 0.0
200 9.382% 20,688.686 1,933.56 123 0.0
300 13.832% 29,549.060 5,888.07 69 0.2
400 18.785% 40,558.797 7,395.57 30 0.5
500 20.617% 47,784.854 7,502.68 26 0.4
750 26.022% 67,807.911 7,550.21 22 0.9

1,000 31.107% 65,140.072 7,544.50 17 0.8

Table 6: The average lower bound of X-instances in 2 hours.

Method Range Avg. Gap (↓) Avg. LB (↑) Avg. Runtime Avg. Iter. Winning Ratio

CVRPSEP

[100, 200) 4.324% 24,565.945 719.96 102 1.00
[200, 300) 7.979% 38,046.310 5,727.53 151 0.77
[300, 400) 14.196% 47,360.608 7,349.83 89 0.67
[400, 500) 17.354% 62,581.232 7,421.87 101 0.70
[500, 600) 17.556% 72,695.153 7,480.25 106 0.78
[600, 700) 21.157% 66,344.396 7,408.76 118 0.67
[700, 800) 25.358% 66,440.507 7,407.79 116 0.17
[800, 900) 23.101% 86,058.138 7,413.13 106 0.33
[900, 1000] 27.505% 111,911.010 7,391.01 90 0.60

NeuralSEP
(ours)

[100, 200) 6.602% 24,024.549 1,463.85 140 0.00
[200, 300) 10.439% 37,041.290 6,238.87 107 0.23
[300, 400) 15.835% 46,065.654 7,245.67 51 0.33
[400, 500) 18.257% 61,082.248 7,573.36 24 0.30
[500, 600) 18.442% 72,135.238 7,456.23 23 0.22
[600, 700) 21.992% 65,606.320 7,779.46 22 0.33
[700, 800) 23.424% 67,376.144 7,597.79 24 0.83
[800, 900) 22.606% 85,758.536 7,637.42 23 0.67
[900, 1000] 28.483% 107,405.257 7,643.43 18 0.40
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A.2 Performance-Time Comparison on Randomly Generated CVRP

We provide the optimality gap improvement over time (≤ 2 hours). Following the guideline of

Accorsi et al. (2022), we compare the performances of CVRPSEP and NeuralSEP over time, in

Figures 8 to 10.
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Figure 8: Optimality gap comparisons on each instance from N = 50 to N = 100 with limited time
(2h). 34
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Figure 9: Optimality gap comparisons on each instance from N = 200 to N = 400 with limited
time (2h). 35
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Figure 10: Optimality gap comparisons on each instance from N = 500 to N = 1000 with limited
time (2h). 36



B Error Bound of NeuralSEP in Coarsening Procedures

The experiments measure the average error and ratio of vertices with prediction errors larger than

0.5 on separation problems, presented in Table 7. The test data is collected from the randomly

generated CVRP test instances via the exact separation algorithm in advance. Since the largest

prediction error can exceed 0.5, NeuralSEP has a possibility of finding infeasible solutions which

violate the total demand constraints. However, cuts are valid for the original CVRP problems by

definition regardless of violating these constraints.

Table 7: Absolute prediction errors on separation problems.

Size Avg. Error Ratio of ϵ ≥ 0.5

50 0.1432 0.1401
75 0.1337 0.1320
100 0.1441 0.1427
200 0.1766 0.1754
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C Ablation Study

We implement two different neuralized separation algorithms for RCIs to verify the effect of graph

coarsening. The first one is an auto-regressive prediction model like Khalil et al. (2017a) and Park

et al. (2021), which starts with an empty subset S and sequentially includes a vertex based on the

current composition. The second algorithm is a one-shot prediction model, which directly predicts

the selection probability for each vertex at once. As the probability is a soft assignment, an extra

projection scheme, such as rounding (Schuetz et al., 2022), is required to get a de-randomized graph.

Auto-regressive prediction model. It takes the support graph and the current partial solution

as inputs and decides on which vertices to add to the current solution. Initially, a dummy vertex is

introduced to signify the ‘end of selection’, and edges from other vertices to the dummy are added

to aggregate information about the current set composition. The edges connected to the dummy

vertex have their weights set to 0, and an edge feature is added to indicate that the source vertex

presently belongs to the set S. During training, the model randomly selects a vertex from those

labeled as 1. The model learns the probability p̂i in a supervised manner, and the probability is

calculated with the exact labels, i.e.,

p̂i =


ŷi∑

i∈Vc\S ŷi
if i ̸= dummy

1−
∑

j∈|VC | p̂j otherwise.

The trained model greedily selects a vertex according to the prediction in the inference phase.

Algorithm 3 Training auto-regressive RCI separation

Input: A graph G and label ŷ
Output: Trained parameter θ
1: Initialize parameter θ
2: Initialize set S = ∅
3: for v ← 0 to |VC | − 1 do
4: Compute vertex probability {pi}i∈VC\S(n) ← fθ(G,S)
5: Update θ ← ∇L({pi}i∈VC\S , {p̂i}i∈VC\S)
6: Randomly choose a vertex j such that ŷi = 1 and i ∈ VC \ S
7: if j = dummy then
8: End of selection
9: else

10: S ← S ∪ {j}
11: end if
12: end for

One-shot prediction model. Using the same input graph with NeuralSEP, a one-shot prediction

model directly calculates the independent vertex probabilities of belonging to S. This procedure

can be considered as the same as NeuralSEP without graph coarsening, i.e., a coarsening ratio of

γ = 1. As the model gives the probabilities {pi}i∈V independently, we train the model to imitate the
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Figure 11: (Ablation) The range of the lower bound gap with HGS.

exact label ŷi as the true selection probability. To discretize the continuous prediction, we employ a

simple round rule, which choose vertices with probability higher than 0.5.

Algorithm 4 Training one-shot RCI separation

Input: A graph G and label ŷ
Output: Trained parameter θ
1: Initialize parameter θ
2: Predict vertex selection probability {pi}i∈VC

← fθ(G)
3: p0 ← 0 ▷ The depot is excluded
4: yi ← round(pi),∀i ∈ VC

5: S = {i ∈ VC : yi = 1}
6: Update θ ← ∇L({pi}i∈V , {ŷi}i∈V )

Comparing performances. We compute the lower bound of random CVRP instances in the

[50, 500] range. Evaluations are conducted following the same process described in Section 6.2.

As shown in Figure 11a, our model outperforms the other neuralized models for every test size.

Also, the optimality gap of the one-shot prediction model shows a significant increase when

the number of customers exceeds 400. We infer that the one-shot model is too challenging to

consider the relationship between the vertices (i.e., variables), making it difficult to decide on the

vertex assignments jointly. Further analysis for different neuralized separation algorithms is in

Appendix C.1.

Effectiveness of the positive weight loss. Since the exact labels are highly imbalanced

depending on M , NeuralSEP is trained using the positive weighted BCE loss. To verify the effect of

the positive weights, we train the models to minimize the BCE loss with and without the positive

weighted loss and compare the optimality gap. Figure 11b shows that NeuralSEP without the
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Table 8: The resulting lower bounds of cutting plane method with different neuralized separation
algorithms.

Size 50 100 200

Method Lower bound Iter. Lower bound Iter. Lower bound Iter.

Auto-regressive 9,083.812 41 15,447.107 90 20,519.765 169
One-shot 8,728.685 23 15,115.604 72 19,757.546 100
NeuralSEP w/o pos weight 8,922.991 26 14,847.875 48 19,593.371 94

NeuralSEP (ours) 9,162.498 38 15,593.334 96 20,742.544 127

Size 300 400 500

Method Lower bound Iter. Lower bound Iter. Lower bound Iter.

Auto-regressive 30,534.670 200 40,703.404 100 47,049.873 100
One-shot 28,847.493 117 38,388.527 90 36,655.254 28
NeuralSEP w/o pos weight 28,685.375 93 40,360.798 65 48,614.153 82

NeuralSEP (ours) 31,092.012 158 43,896.118 100 53,865.885 100

positive weights gives a higher average optimality gap for every size. Furthermore, the optimality

gap has larger variances when the model is trained without the positive weights.

C.1 Performance on Separation Problems

We generate test dataset with the exact separation We assess the performance of the models using

the test dataset described in Section 6.5 (100 RCI separation problem instances for each size within

the range of [50, 75, 100, 200]). We address the RCI separation problem presented in (10)–(16)

with various neuralized models, including our approach, NeuralSEP. For each size, we measure the

average violations, the average number of required inferences steps, and the ratio of feasible solutions

for the separation problem (denoted as Feasibility). As shown in Table 9, clearly indicate that

NeuralSEP requires fewer inference steps to find set S, albeit with a slight reduction in constraint

satisfaction.

C.2 Coarsening with Random Probabilities

In this section, we verify the effectiveness of GNN prediction by comparing performances on the

separation problems with GNN predictions and the random probabilities. As shown in Table 10,

NeuralSEP with GNN succeeds in finding more cuts, and their violations are larger than NeuralSEP

with random probabilities in the average sense. Consequently, NeuralSEP with GNN tends to

have a higher success rate than NeuralSEP with random probabilities; it shows GNN prediction’s

fundamental and influential roles in NeuralSEP.
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Table 9: Experimental results on RCI separation with models. The values are reported as averages
of 100 separation problem instances.

Size 50 75

Violations Feasibility Iterations Violations Feasibility Iterations

Auto-regressive 1.1126 1.00 22.93 1.9669 1.00 35.09
One-shot 0.9520 0.81 1.00 1.7911 0.67 1.00

Coarsening (ours) 1.4579 0.65 8.89 2.3529 0.59 9.77

Size 100 200

Violations Feasibility Iterations Violations Feasibility Iterations

Auto-regressive 1.4095 1.00 48.44 0.6064 1.00 95.86
One-shot 1.2502 0.49 1.00 0.5090 0.63 1.00

Coarsening (ours) 1.8034 0.41 10.79 0.8764 0.37 12.96

Table 10: Performances on separation problems with GNN predictions and random probabilities.

Size Avg. Violations Num. of Cuts Success Rate

GNN Random GNN Random GNN Random

50 2.4540 0.6453 247 79 0.68 0.33
75 4.4779 0.3931 384 214 0.56 0.34
100 3.8272 0.3241 339 92 0.49 0.28
200 3.1650 0.1880 211 66 0.34 0.14
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D Experiments with Limited Iterations

We provide instance-wise results for the experiments with limited iterations on randomly generated

CVRP instances and X-instances.

D.1 CVRPSEP on Randomly Generated Instances with Limited Iterations

Table 11: The results of CVRPSEP on randomly generated instances with limited iterations
(N < 300).

Name Size K Best Known LB Gap (%) Runtime Iterations

random-24-X-n50 50 3 6,686 6,542.30 2.15 22.42 21
random-4-X-n50 50 4 7,684 7,579.00 1.37 0.13 20
random-28-X-n50 50 7 11,557 11,081.25 4.12 0.50 35
random-0-X-n50 50 8 12,735 12,237.23 3.91 0.38 28
random-16-X-n50 50 5 10,190 10,091.62 0.97 0.33 28
random-20-X-n50 50 6 10,126 9,929.22 1.94 0.25 22
random-32-X-n50 50 4 7,483 7,395.72 1.17 0.15 19
random-12-X-n50 50 4 8,317 8,242.66 0.89 0.21 25
random-36-X-n50 50 8 14,188 13,864.51 2.28 1.08 45
random-8-X-n50 50 3 6,733 6,672.50 0.90 0.08 19
random-17-X-n75 75 20 34,431 33,177.82 3.64 14.69 103
random-21-X-n75 75 7 9,726 9,566.20 1.64 1.24 26
random-25-X-n75 75 6 10,931 10,665.02 2.43 1.94 29
random-5-X-n75 75 11 14,930 14,214.31 4.79 3.81 52
random-9-X-n75 75 5 9,361 9,132.53 2.44 1.06 24
random-29-X-n75 75 7 11,893 11,510.49 3.22 2.46 33
random-1-X-n75 75 7 11,225 10,881.53 3.06 1.90 37
random-13-X-n75 75 6 9,652 9,568.77 0.86 1.34 32
random-37-X-n75 75 4 9,479 9,323.30 1.64 1.14 23
random-33-X-n75 75 13 16,151 15,510.78 3.96 3.45 35
random-2-X-n100 100 11 17,242 16,297.85 5.48 10.27 47
random-30-X-n100 100 6 12,151 11,600.25 4.53 5.18 36
random-14-X-n100 100 12 16,934 15,821.30 6.57 13.83 48
random-6-X-n100 100 14 24,832 23,837.97 4.00 25.70 78
random-34-X-n100 100 8 10,752 10,488.63 2.45 2.50 29
random-26-X-n100 100 11 15,654 14,898.14 4.83 12.50 47
random-18-X-n100 100 7 11,171 10,924.95 2.20 3.16 26
random-22-X-n100 100 20 27,022 25,565.19 5.39 32.26 100
random-38-X-n100 100 11 13,766 13,057.45 5.15 5.41 37
random-10-X-n100 100 12 17,727 16,874.02 4.81 16.01 54
random-19-X-n200 200 12 16,102 15,348.33 4.68 109.09 68
random-27-X-n200 200 13 21,609 20,267.07 6.21 512.74 108
random-23-X-n200 200 23 26,556 24,751.86 6.79 1,041.36 136
random-7-X-n200 200 13 17,182 16,310.80 5.07 122.22 61
random-11-X-n200 200 20 29,495 27,328.39 7.35 1,259.20 184
random-35-X-n200 200 15 24,854 23,170.51 6.77 600.63 110
random-15-X-n200 200 18 23,121 21,455.68 7.20 857.63 133
random-3-X-n200 200 13 19,644 18,395.66 6.35 340.87 93
random-31-X-n200 200 21 31,684 29,459.92 7.02 1,782.94 185
random-39-X-n200 200 11 18,271 17,292.16 5.36 207.96 86
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Table 12: The results of CVRPSEP on randomly generated instances with limited iterations
(N ≥ 300).

Name Size K Best Known LB Gap (%) Runtime Iteration

random-7-X-n300 300 19 27,269 25,089.83 7.99 10,752.32 200
random-1-X-n300 300 25 30,181 27,441.55 9.08 7,393.51 200
random-5-X-n300 300 40 53,305 48,350.51 9.29 11,862.99 200
random-0-X-n300 300 46 55,614 48,022.52 13.65 9,509.19 200
random-8-X-n300 300 15 20,636 19,246.52 6.73 1,804.49 119
random-6-X-n300 300 40 42,079 37,349.29 11.24 13,628.17 200
random-4-X-n300 300 20 24,324 22,420.79 7.82 3,313.94 150
random-2-X-n300 300 32 47,765 42,192.72 11.67 6,082.62 200
random-3-X-n300 300 20 23,414 21,693.83 7.35 3,601.48 161
random-9-X-n300 300 17 21,740 20,650.12 5.01 2,581.74 145
random-14-X-n400 400 46 61,276 48,943.70 20.13 2,010.72 100
random-6-X-n400 400 54 52,025 41,185.82 20.83 122.49 100
random-10-X-n400 400 47 59,487 48,453.81 18.55 2,520.35 100
random-2-X-n400 400 42 61,447 49,817.53 18.93 3,932.83 100
random-12-X-n400 400 30 37,545 31,247.76 16.77 4,453.37 100
random-0-X-n400 400 61 77,967 60,363.40 22.58 330.90 100
random-16-X-n400 400 38 57,273 45,576.33 20.42 2,426.53 100
random-18-X-n400 400 27 34,643 29,671.97 14.35 4,475.51 100
random-4-X-n400 400 27 29,917 26,033.42 12.98 886.89 100
random-8-X-n400 400 20 30,953 27,161.80 12.25 4,986.98 100
random-17-X-n500 500 128 134,831 103,890.56 22.95 236.99 100
random-15-X-n500 500 44 48,692 38,678.16 20.57 5,118.92 100
random-19-X-n500 500 28 34,861 29,628.24 15.01 4,894.90 100
random-1-X-n500 500 41 40,287 33,753.87 16.22 2,375.75 100
random-9-X-n500 500 29 43,607 34,512.15 20.86 2,399.52 100
random-13-X-n500 500 36 46,414 38,117.21 17.88 6,162.58 100
random-5-X-n500 500 67 85,332 58,089.69 31.93 204.34 100
random-11-X-n500 500 48 66,720 52,384.72 21.49 2,608.28 100
random-3-X-n500 500 33 56,591 45,755.36 19.15 8,234.68 100
random-7-X-n500 500 32 48,159 39,004.70 19.01 4,518.39 100
random-6-X-n750 750 99 137,429 95,799.59 30.29 420.56 50
random-12-X-n750 750 56 81,988 55,760.41 31.99 577.54 50
random-4-X-n750 750 49 55,938 39,756.97 28.93 567.76 50
random-14-X-n750 750 87 98,971 63,748.86 35.59 269.42 50
random-8-X-n750 750 37 54,145 33,747.53 37.67 179.62 50
random-2-X-n750 750 79 76,471 50,531.31 33.92 250.65 50
random-16-X-n750 750 72 77,111 51,126.53 33.70 241.96 50
random-0-X-n750 750 115 137,798 90,281.87 34.48 243.31 50
random-18-X-n750 750 50 85,348 59,132.00 30.72 330.39 50
random-10-X-n750 750 88 119,393 71,039.53 40.50 227.42 50
random-5-X-n1000 1,000 133 130,385 83,331.33 36.09 733.87 50
random-1-X-n1000 1,000 81 86,706 59,149.56 31.78 992.48 50
random-7-X-n1000 1,000 64 81,052 46,913.14 42.12 454.30 50
random-3-X-n1000 1,000 65 76,005 49,372.56 35.04 621.01 50
random-9-X-n1000 1,000 57 81,448 48,681.65 40.23 480.47 50
random-21-X-n1000 1,000 81 109,492 70,788.21 35.35 813.29 50
random-19-X-n1000 1,000 56 73,749 46,835.88 36.49 723.70 50
random-13-X-n1000 1,000 72 92,888 58,417.12 37.11 854.00 50
random-15-X-n1000 1,000 88 112,383 68,069.31 39.43 655.51 50
random-11-X-n1000 1,000 96 102,522 63,246.17 38.31 601.86 50
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D.2 NeuralSEP on Randomly Generated Instances with Limited Iterations

Table 13: The results of NeuralSEP on randomly generated instances with limited iterations
(N < 300).

Name Size K Best Known LB Gap (%) Runtime Iterations

random-24-X-n50 50 3 6,686 6,367.50 4.76 44.32 24
random-4-X-n50 50 4 7,684 7,371.75 4.06 44.03 30
random-28-X-n50 50 7 11,557 10,879.39 5.86 85.94 44
random-0-X-n50 50 8 12,735 11,988.86 5.86 77.72 46
random-16-X-n50 50 5 10,190 9,861.49 3.22 67.56 45
random-20-X-n50 50 6 10,126 9,673.80 4.47 61.03 38
random-32-X-n50 50 4 7,483 7,271.80 2.82 46.29 34
random-12-X-n50 50 4 8,317 8,050.70 3.20 53.11 39
random-36-X-n50 50 8 14,188 13,544.30 4.54 119.05 62
random-8-X-n50 50 3 6,733 6,615.40 1.75 25.27 20
random-17-X-n75 75 20 34,431 32,928.26 4.36 270.34 138
random-21-X-n75 75 7 9,726 9,328.00 4.09 63.62 55
random-25-X-n75 75 6 10,931 10,342.26 5.39 76.36 60
random-5-X-n75 75 11 14,930 13,897.23 6.92 110.07 68
random-9-X-n75 75 5 9,361 8,904.56 4.88 38.74 33
random-29-X-n75 75 7 11,893 11,233.17 5.55 70.98 63
random-1-X-n75 75 7 11,225 10,554.27 5.98 80.04 42
random-13-X-n75 75 6 9,652 9,343.66 3.19 102.21 44
random-37-X-n75 75 4 9,479 9,086.54 4.14 31.26 33
random-33-X-n75 75 13 16,151 15,030.65 6.94 92.11 72
random-2-X-n100 100 11 17,242 15,894.13 7.82 311.12 82
random-30-X-n100 100 6 12,151 11,328.48 6.77 96.06 66
random-14-X-n100 100 12 16,934 15,460.18 8.70 327.45 83
random-6-X-n100 100 14 24,832 23,563.31 5.11 722.95 151
random-34-X-n100 100 8 10,752 10,198.10 5.15 212.20 67
random-26-X-n100 100 11 15,654 14,449.84 7.69 366.77 96
random-18-X-n100 100 7 11,171 10,606.30 5.06 260.43 89
random-22-X-n100 100 20 27,022 25,272.13 6.48 652.56 125
random-38-X-n100 100 11 13,766 12,729.94 7.53 274.03 75
random-10-X-n100 100 12 17,727 16,522.61 6.79 499.69 126
random-19-X-n200 200 12 16,102 14,987.19 6.92 379.03 106
random-27-X-n200 200 13 21,609 19,394.04 10.25 629.38 14
random-23-X-n200 200 23 26,556 24,065.07 9.38 860.20 129
random-7-X-n200 200 13 17,182 15,806.86 8.00 374.99 97
random-11-X-n200 200 20 29,495 26,865.37 8.92 1,265.93 1
random-35-X-n200 200 15 24,854 22,524.61 9.37 610.36 123
random-15-X-n200 200 18 23,121 20,884.73 9.67 762.41 140
random-3-X-n200 200 13 19,644 17,562.08 10.60 273.43 65
random-31-X-n200 200 21 31,684 28,697.36 9.43 1,177.47 1
random-39-X-n200 200 11 18,271 16,638.14 8.94 429.73 104
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Table 14: The results of NeuralSEP on randomly generated instances with limited iterations
(N ≥ 300).

Name Size K Best Known LB Gap (%) Runtime Iterations

random-7-X-n300 300 19 27,269 24,034.53 11.86 1,862.09 141
random-1-X-n300 300 25 30,181 26,725.37 11.45 2,885.56 163
random-5-X-n300 300 40 53,305 48,507.47 9.00 11,676.94 200
random-0-X-n300 300 46 55,614 50,157.63 9.81 16,801.28 200
random-8-X-n300 300 15 20,636 18,437.43 10.65 862.25 106
random-6-X-n300 300 40 42,079 37,803.43 10.16 9,308.73 198
random-4-X-n300 300 20 24,324 21,475.71 11.71 1,097.75 108
random-2-X-n300 300 32 47,765 43,083.19 9.80 7,222.68 200
random-3-X-n300 300 20 23,414 20,917.74 10.66 1,409.45 130
random-9-X-n300 300 17 21,740 19,777.62 9.03 1,246.46 131
random-14-X-n400 400 46 61,276 53,617.60 12.50 11,987.44 100
random-6-X-n400 400 54 52,025 45,945.06 11.69 13,493.71 100
random-10-X-n400 400 47 59,487 52,358.07 11.98 13,724.54 100
random-2-X-n400 400 42 61,447 53,415.57 13.07 9,539.34 100
random-12-X-n400 400 30 37,545 32,197.64 14.24 4,189.92 100
random-0-X-n400 400 61 77,967 69,408.09 10.98 23,402.69 100
random-16-X-n400 400 38 57,273 49,504.23 13.56 8,178.77 100
random-18-X-n400 400 27 34,643 29,893.23 13.71 3,297.47 100
random-4-X-n400 400 27 29,917 26,251.05 12.25 2,719.40 100
random-8-X-n400 400 20 30,953 26,370.65 14.80 2,143.08 100
random-17-X-n500 500 128 134,831 118,339.16 12.23 114,284.80 100
random-15-X-n500 500 44 48,692 41,815.35 14.12 20,440.35 100
random-19-X-n500 500 28 34,861 29,784.53 14.56 6,280.44 100
random-1-X-n500 500 41 40,287 34,640.88 14.01 13,466.05 100
random-9-X-n500 500 29 43,607 36,706.30 15.82 5,688.73 100
random-13-X-n500 500 36 46,414 39,878.50 14.08 12,784.47 100
random-5-X-n500 500 67 85,332 73,263.27 14.14 37,489.01 100
random-11-X-n500 500 48 66,720 57,611.89 13.65 21,513.01 100
random-3-X-n500 500 33 56,591 48,404.06 14.47 10,710.02 100
random-7-X-n500 500 32 48,159 41,055.34 14.75 10,333.96 100
random-6-X-n750 750 99 137,429 108,463.69 21.08 17,350.75 50
random-12-X-n750 750 56 81,988 64,623.86 21.18 7,331.80 50
random-4-X-n750 750 49 55,938 45,452.19 18.75 6,913.54 50
random-14-X-n750 750 87 98,971 78,299.49 20.89 17,672.38 50
random-8-X-n750 750 37 54,145 42,891.12 20.78 4,610.99 50
random-2-X-n750 750 79 76,471 61,806.29 19.18 17,627.05 50
random-16-X-n750 750 72 77,111 62,503.97 18.94 16,090.71 50
random-0-X-n750 750 115 137,798 111,144.58 19.34 33,456.77 50
random-18-X-n750 750 50 85,348 67,568.33 20.83 6,777.19 50
random-10-X-n750 750 88 119,393 93,767.57 21.46 12,912.12 50
random-5-X-n1000 1,000 133 130,385 103,063.96 20.95 66,056.58 50
random-1-X-n1000 1,000 81 86,706 68,155.52 21.39 26,764.95 50
random-7-X-n1000 1,000 64 81,052 61,231.50 24.45 12,991.33 50
random-3-X-n1000 1,000 65 76,005 58,949.37 22.44 15,041.69 50
random-9-X-n1000 1,000 57 81,448 62,013.38 23.86 12,558.03 50
random-21-X-n1000 1,000 81 109,492 84,745.47 22.60 18,843.46 50
random-19-X-n1000 1,000 56 73,749 56,017.06 24.04 11,689.04 50
random-13-X-n1000 1,000 72 92,888 70,772.29 23.81 19,045.15 50
random-15-X-n1000 1,000 88 112,383 86,132.80 23.36 22,440.06 50
random-11-X-n1000 1,000 96 102,522 80,326.55 21.65 32,849.70 50
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D.3 CVRPSEP on X-instances with Limited Iterations

Table 15: The results of CVRPSEP on X-instances with limited iterations (N < 300).

Name Size K Best Known LB Gap (%) Runtime Iteration

X-n101-k25 100 25 27,591.00 26,512.38 3.91 28.97 61
X-n106-k14 105 14 26,362.00 25,879.17 1.83 64.33 106
X-n110-k13 109 13 14,971.00 14,308.15 4.43 8.83 37
X-n115-k10 114 10 12,747.00 12,359.04 3.04 9.28 38
X-n120-k6 119 6 13,332.00 12,681.53 4.88 14.21 48
X-n125-k30 124 30 55,539.00 53,923.10 2.91 143.55 133
X-n129-k18 128 18 28,940.00 27,568.78 4.74 135.38 121
X-n134-k13 133 13 10,916.00 10,369.83 5.00 57.61 68
X-n139-k10 138 10 13,590.00 13,044.87 4.01 19.01 46
X-n143-k7 142 7 15,700.00 15,180.60 3.31 31.76 49
X-n148-k46 147 46 43,448.00 41,316.64 4.91 626.94 200
X-n153-k22 152 22 21,220.00 19,982.41 5.83 409.02 124
X-n157-k13 156 13 16,876.00 16,618.66 1.52 97.06 78
X-n162-k11 161 11 14,138.00 13,575.88 3.98 36.46 50
X-n167-k10 166 10 20,557.00 19,584.43 4.73 118.56 81
X-n172-k51 171 51 45,607.00 42,251.84 7.36 1,108.68 200
X-n176-k26 175 26 47,812.00 45,193.62 5.48 2,130.09 183
X-n181-k23 180 23 25,569.00 24,398.14 4.58 455.81 107
X-n186-k15 185 15 24,145.00 22,347.34 7.45 444.69 114
X-n190-k8 189 8 16,980.00 16,583.73 2.33 200.01 85
X-n195-k51 194 51 44,225.00 41,999.89 5.03 1,967.60 166
X-n200-k36 199 36 58,578.00 56,996.65 2.70 3,586.23 200
X-n204-k19 203 19 19,565.00 18,333.69 6.29 447.43 128
X-n209-k16 208 16 30,656.00 28,608.21 6.68 1,162.27 131
X-n214-k11 213 11 10,856.00 10,219.10 5.87 690.16 109
X-n219-k73 218 73 117,595.00 113,112.76 3.81 3,637.84 200
X-n223-k34 222 34 40,437.00 38,045.03 5.92 3,305.02 200
X-n228-k23 227 23 25,742.00 25,039.94 2.73 3,126.88 187
X-n233-k16 232 16 19,230.00 18,242.21 5.14 543.57 109
X-n237-k14 236 14 27,042.00 25,307.84 6.41 1,950.97 163
X-n242-k48 241 48 82,751.00 75,449.39 8.82 2,738.27 200
X-n247-k50 246 50 37,274.00 32,019.77 14.10 1,017.96 200
X-n251-k28 250 28 38,684.00 35,214.78 8.97 3,438.49 200
X-n256-k16 255 16 18,839.00 18,139.08 3.72 385.16 79
X-n261-k13 260 13 26,558.00 24,828.30 6.51 2,590.26 147
X-n266-k58 265 58 75,478.00 66,739.62 11.58 7,336.65 200
X-n270-k35 269 35 35,291.00 32,280.32 8.53 9,462.50 200
X-n275-k28 274 28 21,245.00 19,820.88 6.70 5,970.59 200
X-n280-k17 279 17 33,503.00 31,570.36 5.77 9,818.21 200
X-n284-k15 283 15 20,215.00 19,246.92 4.79 4,378.42 185
X-n289-k60 288 60 95,151.00 86,080.70 9.53 12,465.89 200
X-n294-k50 293 50 47,161.00 42,986.60 8.85 18,273.82 200
X-n298-k31 297 31 34,231.00 31,428.49 8.19 11,120.24 200
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Table 16: The results of CVRPSEP on X-instances with limited iterations (N ≥ 300).

Name Size K Best Known LB Gap (%) Runtime Iteration

X-n303-k21 302 21 21,736.00 20,206.01 7.04 1,853.02 100
X-n308-k13 307 13 25,859.00 23,604.19 8.72 2,509.98 100
X-n313-k71 312 71 94,043.00 80,064.40 14.86 639.29 100
X-n317-k53 316 53 78,355.00 62,504.84 20.23 924.83 100
X-n322-k28 321 28 29,834.00 26,567.21 10.95 2,910.12 100
X-n327-k20 326 20 27,532.00 23,951.60 13.00 2,471.64 100
X-n331-k15 330 15 31,102.00 28,411.45 8.65 3,660.40 100
X-n336-k84 335 84 139,111.00 110,001.49 20.93 126.13 100
X-n344-k43 343 43 42,050.00 35,303.85 16.04 2,054.34 100
X-n351-k40 350 40 25,896.00 21,978.41 15.13 2,803.55 100
X-n359-k29 358 29 51,505.00 43,843.32 14.88 3,867.86 100
X-n367-k17 366 17 22,814.00 21,769.80 4.58 3,863.48 100
X-n376-k94 375 94 147,713.00 127,888.06 13.42 2,418.53 100
X-n384-k52 383 52 65,928.00 50,690.62 23.11 2,025.74 100
X-n393-k38 392 38 38,260.00 32,587.57 14.83 3,513.08 100
X-n401-k29 400 29 66,154.00 59,662.80 9.81 2,796.02 100
X-n411-k19 410 19 19,712.00 17,491.22 11.27 5,374.02 100
X-n420-k130 419 130 107,798.00 92,047.99 14.61 198.08 100
X-n429-k61 428 61 65,449.00 51,626.06 21.12 536.81 100
X-n439-k37 438 37 36,391.00 31,964.71 12.16 3,794.93 100
X-n449-k29 448 29 55,233.00 46,788.87 15.29 6,694.38 100
X-n459-k26 458 26 24,139.00 20,324.60 15.80 7,617.54 100
X-n469-k138 468 138 221,824.00 183,191.64 17.42 266.86 100
X-n480-k70 479 70 89,449.00 73,973.70 17.30 321.13 100
X-n491-k59 490 59 66,483.00 49,084.13 26.17 2,815.12 100
X-n502-k39 501 39 69,226.00 63,832.74 7.79 609.96 50
X-n513-k21 512 21 24,201.00 21,550.82 10.95 626.26 50
X-n524-k153 523 153 154,593.00 109,550.43 29.14 108.63 50
X-n536-k96 535 96 94,846.00 79,360.10 16.33 257.74 50
X-n548-k50 547 50 86,700.00 64,612.82 25.48 301.63 50
X-n561-k42 560 42 42,717.00 35,167.56 17.67 254.82 50
X-n573-k30 572 30 50,673.00 45,612.21 9.99 291.91 50
X-n586-k159 585 159 190,316.00 136,796.23 28.12 145.28 50
X-n599-k92 598 92 108,451.00 75,614.53 30.28 294.84 50
X-n613-k62 612 62 59,535.00 45,743.97 23.16 175.96 50
X-n627-k43 626 43 62,164.00 43,583.15 29.89 227.82 50
X-n641-k35 640 35 63,682.00 48,888.64 23.23 346.44 50
X-n655-k131 654 131 106,780.00 92,899.10 13.00 410.49 50
X-n670-k130 669 130 146,332.00 101,853.13 30.40 180.02 50
X-n685-k75 684 75 68,205.00 48,557.66 28.81 191.29 50
X-n701-k44 700 44 81,923.00 62,064.95 24.24 293.63 50
X-n716-k35 715 35 43,373.00 25,178.71 41.95 165.18 50
X-n733-k159 732 159 136,187.00 109,703.52 19.45 370.38 50
X-n749-k98 748 98 77,269.00 50,300.63 34.90 242.56 50
X-n766-k71 765 71 114,417.00 79,143.46 30.83 262.03 50
X-n783-k48 782 48 72,386.00 47,780.75 33.99 587.52 50
X-n801-k40 800 40 73,305.00 50,881.77 30.59 638.84 50
X-n819-k171 818 171 158,121.00 128,903.79 18.48 380.09 50
X-n837-k142 836 142 193,737.00 134,096.53 30.78 359.44 50
X-n856-k95 855 95 88,965.00 68,589.17 22.90 387.87 50
X-n876-k59 875 59 99,299.00 79,874.87 19.56 576.98 50
X-n895-k37 894 37 53,860.00 37,348.31 30.66 530.00 50
X-n916-k207 915 207 329,179.00 263,864.60 19.84 1,012.29 50
X-n936-k151 935 151 132,715.00 86,332.86 34.95 785.04 50
X-n957-k87 956 87 85,465.00 57,049.05 33.25 767.18 50
X-n979-k58 978 58 118,976.00 77,735.33 34.66 731.12 50
X-n1001-k43 1,000 43 72,355.00 49,968.96 30.94 578.95 50
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D.4 NeuralSEP on X-instances with Limited Iterations

Table 17: The results of NeuralSEP on X-instances with limited iterations (N < 300).

Name Size K Best Known LB Gap (%) Runtime Iteration

X-n101-k25 100 25 27,591 25,910.93 6.09 403.91 146
X-n106-k14 105 14 26,362 25,571.17 3.00 259.14 116
X-n110-k13 109 13 14,971 14,053.06 6.13 201.96 100
X-n115-k10 114 10 12,747 11,872.71 6.86 84.15 44
X-n120-k6 119 6 13,332 12,259.17 8.05 120.19 66
X-n125-k30 124 30 55,539 53,337.66 3.96 696.05 164
X-n129-k18 128 18 28,940 27,302.55 5.66 572.17 169
X-n134-k13 133 13 10,916 10,147.61 7.04 257.51 96
X-n139-k10 138 10 13,590 12,793.52 5.86 168.65 74
X-n143-k7 142 7 15,700 14,560.98 7.25 153.09 76
X-n148-k46 147 46 43,448 40,530.16 6.72 1,435.58 175
X-n153-k22 152 22 21,220 19,605.98 7.61 739.35 173
X-n157-k13 156 13 16,876 16,285.92 3.50 435.82 139
X-n162-k11 161 11 14,138 13,177.84 6.79 246.75 97
X-n167-k10 166 10 20,557 18,977.03 7.69 325.36 115
X-n172-k51 171 51 45,607 41,355.43 9.32 2,101.63 200
X-n176-k26 175 26 47,812 44,435.03 7.06 1,419.78 200
X-n181-k23 180 23 25,569 24,072.99 5.85 876.88 164
X-n186-k15 185 15 24,145 21,747.39 9.93 595.21 137
X-n190-k8 189 8 16,980 16,215.64 4.50 473.58 148
X-n195-k51 194 51 44,225 40,560.67 8.29 2,892.24 200
X-n200-k36 199 36 58,578 56,544.78 3.47 2,646.58 200
X-n204-k19 203 19 19,565 17,968.43 8.16 675.70 140
X-n209-k16 208 16 30,656 27,953.22 8.82 1,185.83 199
X-n214-k11 213 11 10,856 9,839.28 9.37 409.17 94
X-n219-k73 218 73 117,595 113,583.88 3.41 10,257.70 200
X-n223-k34 222 34 40,437 37,398.68 7.51 2,650.13 200
X-n228-k23 227 23 25,742 24,200.82 5.99 1,868.99 200
X-n233-k16 232 16 19,230 17,425.02 9.39 677.63 129
X-n237-k14 236 14 27,042 24,293.46 10.16 825.13 136
X-n242-k48 241 48 82,751 78,184.79 5.52 9,229.45 200
X-n247-k50 246 50 37,274 33,321.06 10.61 4,236.57 161
X-n251-k28 250 28 38,684 35,302.92 8.74 3,068.44 190
X-n256-k16 255 16 18,839 17,389.07 7.70 794.24 125
X-n261-k13 260 13 26,558 23,953.16 9.81 1,420.07 200
X-n266-k58 265 58 75,478 69,649.00 7.72 20,585.99 200
X-n270-k35 269 35 35,291 31,636.57 10.36 4,168.12 199
X-n275-k28 274 28 21,245 19,305.42 9.13 2,196.95 145
X-n280-k17 279 17 33,503 30,280.47 9.62 1,733.84 148
X-n284-k15 283 15 20,215 18,581.85 8.08 1,097.92 126
X-n289-k60 288 60 95,151 87,681.75 7.85 25,286.28 200
X-n294-k50 293 50 47,161 42,343.29 10.22 10,987.50 192
X-n298-k31 297 31 34,231 30,577.97 10.67 3,473.35 143
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Table 18: The results of NeuralSEP on X-instances with limited iterations (N ≥ 300).

Name Size K Best Known LB Gap (%) Runtime Iteration

X-n303-k21 302 21 21,736 19,812.05 8.85 1,169.65 100
X-n308-k13 307 13 25,859 22,805.38 11.81 924.02 100
X-n313-k71 312 71 94,043 84,502.88 10.14 16,158.87 100
X-n317-k53 316 53 78,355 70,831.31 9.60 7,938.16 100
X-n322-k28 321 28 29,834 26,332.21 11.74 1,931.83 100
X-n327-k20 326 20 27,532 23,505.43 14.63 1,589.05 100
X-n331-k15 330 15 31,102 27,322.48 12.15 1,079.60 100
X-n336-k84 335 84 139,111 124,896.82 10.22 21,509.50 100
X-n344-k43 343 43 42,050 36,895.96 12.26 6,137.49 100
X-n351-k40 350 40 25,896 22,935.61 11.43 5,450.06 100
X-n359-k29 358 29 51,505 45,270.07 12.11 3,005.49 100
X-n367-k17 366 17 22,814 21,325.92 6.52 1,463.57 100
X-n376-k94 375 94 147,713 135,463.80 8.29 31,588.39 100
X-n384-k52 383 52 65,928 57,070.33 13.44 13,115.44 100
X-n393-k38 392 38 38,260 33,612.93 12.15 6,774.73 100
X-n401-k29 400 29 66,154 61,012.35 7.77 4,078.36 100
X-n411-k19 410 19 19,712 17,023.96 13.64 2,125.48 100
X-n420-k130 419 130 107,798 95,906.27 11.03 48,854.36 100
X-n429-k61 428 61 65,449 57,304.75 12.44 34,063.29 100
X-n439-k37 438 37 36,391 32,488.08 10.72 8,657.48 100
X-n449-k29 448 29 55,233 48,163.49 12.80 7,613.25 100
X-n459-k26 458 26 24,139 20,810.97 13.79 6,303.35 100
X-n469-k138 468 138 221,824 196,837.78 11.26 79,395.42 100
X-n480-k70 479 70 89,449 81,096.02 9.34 37,420.42 100
X-n491-k59 490 59 66,483 56,587.62 14.88 23,968.00 100
X-n502-k39 501 39 69,226 64,789.03 6.41 2,110.44 50
X-n513-k21 512 21 24,201 21,141.54 12.64 1,107.42 50
X-n524-k153 523 153 154,593 122,588.06 20.70 26,417.86 50
X-n536-k96 535 96 94,846 82,197.60 13.34 14,714.35 50
X-n548-k50 547 50 86,700 71,748.84 17.24 3,729.06 50
X-n561-k42 560 42 42,717 36,327.10 14.96 3,367.25 50
X-n573-k30 572 30 50,673 46,984.58 7.28 2,215.85 50
X-n586-k159 585 159 190,316 156,462.19 17.79 46,154.85 50
X-n599-k92 598 92 108,451 87,105.51 19.68 15,048.64 50
X-n613-k62 612 62 59,535 50,293.44 15.52 7,980.65 50
X-n627-k43 626 43 62,164 49,797.03 19.89 3,875.62 50
X-n641-k35 640 35 63,682 52,534.53 17.50 2,962.10 50
X-n655-k131 654 131 106,780 94,090.82 11.88 33,223.92 50
X-n670-k130 669 130 146,332 118,182.78 19.24 43,463.74 50
X-n685-k75 684 75 68,205 56,504.72 17.15 13,147.28 50
X-n701-k44 700 44 81,923 66,834.82 18.42 4,230.34 50
X-n716-k35 715 35 43,373 33,985.75 21.64 4,052.05 50
X-n733-k159 732 159 136,187 115,042.24 15.53 57,758.21 50
X-n749-k98 748 98 77,269 62,061.73 19.68 26,154.08 50
X-n766-k71 765 71 114,417 95,005.16 16.97 10,943.14 50
X-n783-k48 782 48 72,386 56,458.89 22.00 5,723.48 50
X-n801-k40 800 40 73,305 58,712.20 19.91 5,494.41 50
X-n819-k171 818 171 158,121 135,312.87 14.42 76,540.68 50
X-n837-k142 836 142 193,737 156,412.90 19.27 42,641.06 50
X-n856-k95 855 95 88,965 73,364.09 17.54 28,967.76 50
X-n876-k59 875 59 99,299 86,655.19 12.73 13,939.99 50
X-n895-k37 894 37 53,860 42,149.44 21.74 6,314.78 50
X-n916-k207 915 207 329,179 263,784.85 19.87 65,778.81 50
X-n936-k151 935 151 132,715 105,179.72 20.75 77,435.93 50
X-n957-k87 956 87 85,465 65,760.48 23.06 19,419.16 50
X-n979-k58 978 58 118,976 85,894.79 27.80 14,451.28 50
X-n1001-k43 1,000 43 72,355 55,940.74 22.69 9,545.57 50
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E Experiments with Limited Time

We provide instance-wise results for the experiments with limited time (2 hours) on randomly

generated CVRP instances and X-instances.

E.1 CVRPSEP on Randomly Generated Instances with Limited Time

Table 19: The results of CVRPSEP on randomly generated instances with 2 hours limit (N < 300).

Name Size K Best Known LB Gap (%) Runtime Iterations

random-24-X-n50 50 3 6,686.00 6,542.30 2.15 0.13 24
random-4-X-n50 50 4 7,684.00 7,579.00 1.37 0.15 23
random-28-X-n50 50 7 11,557.00 11,081.25 4.12 0.66 37
random-0-X-n50 50 8 12,735.00 12,237.15 3.91 0.55 30
random-16-X-n50 50 5 10,190.00 10,091.62 0.97 0.42 30
random-20-X-n50 50 6 10,126.00 9,929.22 1.94 0.28 21
random-32-X-n50 50 4 7,483.00 7,395.72 1.17 0.20 21
random-12-X-n50 50 4 8,317.00 8,242.66 0.89 0.27 25
random-36-X-n50 50 8 14,188.00 13,865.18 2.28 1.45 42
random-8-X-n50 50 3 6,733.00 6,672.50 0.90 0.10 20
random-17-X-n75 75 20 34,431.00 33,179.35 3.64 25.28 102
random-21-X-n75 75 7 9,726.00 9,566.20 1.64 2.29 30
random-25-X-n75 75 6 10,931.00 10,665.78 2.43 3.45 31
random-5-X-n75 75 11 14,930.00 14,214.27 4.79 6.60 57
random-9-X-n75 75 5 9,361.00 9,132.53 2.44 1.74 25
random-29-X-n75 75 7 11,893.00 11,510.04 3.22 3.46 31
random-1-X-n75 75 7 11,225.00 10,881.53 3.06 3.04 44
random-13-X-n75 75 6 9,652.00 9,568.79 0.86 1.71 28
random-37-X-n75 75 4 9,479.00 9,323.24 1.64 1.38 21
random-33-X-n75 75 13 16,151.00 15,511.21 3.96 6.33 37
random-2-X-n100 100 11 17,242.00 16,297.07 5.48 22.23 59
random-30-X-n100 100 6 12,151.00 11,601.50 4.52 8.76 39
random-14-X-n100 100 12 16,934.00 15,824.98 6.55 20.71 53
random-6-X-n100 100 14 24,832.00 23,843.05 3.98 42.47 85
random-34-X-n100 100 8 10,752.00 10,488.65 2.45 4.23 29
random-26-X-n100 100 11 15,654.00 14,898.68 4.83 21.44 54
random-18-X-n100 100 7 11,171.00 10,924.95 2.20 5.49 27
random-22-X-n100 100 20 27,022.00 25,568.21 5.38 49.57 93
random-38-X-n100 100 11 13,766.00 13,055.80 5.16 8.75 38
random-10-X-n100 100 12 17,727.00 16,875.43 4.80 27.47 57
random-19-X-n200 200 12 16,102.00 15,348.20 4.68 220.59 75
random-27-X-n200 200 13 21,609.00 20,265.09 6.22 938.70 106
random-23-X-n200 200 23 26,556.00 24,752.47 6.79 2,013.09 139
random-7-X-n200 200 13 17,182.00 16,309.84 5.08 309.61 68
random-11-X-n200 200 20 29,495.00 27,327.73 7.35 2,480.86 190
random-35-X-n200 200 15 24,854.00 23,171.60 6.77 1,184.40 122
random-15-X-n200 200 18 23,121.00 21,456.20 7.20 1,463.78 137
random-3-X-n200 200 13 19,644.00 18,396.41 6.35 692.01 109
random-31-X-n200 200 21 31,684.00 29,457.48 7.03 2,927.82 164
random-39-X-n200 200 11 18,271.00 17,291.22 5.36 378.66 82
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E.2 NeuralSEP on Randomly Generated Instances with Limited Time
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E.3 CVRPSEP on X-Instances with Limited Time
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E.4 NeuralSEP on X-Instances with Limited Time
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Table 20: The results of CVRPSEP on randomly generated instances with 2 hours limit (N ≥ 300).

Name Size K Best Known LB Gap (%) Runtime Iterations

random-7-X-n300 300 19 27,269.00 24,406.82 10.50 7,298.81 101
random-1-X-n300 300 25 30,181.00 26,291.65 12.89 7,245.98 103
random-5-X-n300 300 40 53,305.00 45,354.34 14.92 7,394.68 96
random-0-X-n300 300 46 55,614.00 45,887.00 17.49 7,293.01 139
random-8-X-n300 300 15 20,636.00 19,247.28 6.73 4,451.55 121
random-6-X-n300 300 40 42,079.00 35,040.64 16.73 7,326.92 100
random-4-X-n300 300 20 24,324.00 22,408.96 7.87 7,240.73 133
random-2-X-n300 300 32 47,765.00 40,433.12 15.35 7,258.44 140
random-3-X-n300 300 20 23,414.00 21,685.64 7.38 7,385.74 142
random-9-X-n300 300 17 21,740.00 20,649.95 5.01 5,644.84 137
random-14-X-n400 400 46 61,276.00 48,235.95 21.28 7,461.90 84
random-6-X-n400 400 54 52,025.00 43,470.21 16.44 7,484.48 178
random-10-X-n400 400 47 59,487.00 47,845.20 19.57 7,292.72 81
random-2-X-n400 400 42 61,447.00 47,243.19 23.12 7,276.18 88
random-12-X-n400 400 30 37,545.00 29,964.51 20.19 7,258.80 73
random-0-X-n400 400 61 77,967.00 61,120.33 21.61 7,616.12 111
random-16-X-n400 400 38 57,273.00 44,864.98 21.66 7,204.49 86
random-18-X-n400 400 27 34,643.00 28,844.59 16.74 7,415.83 78
random-4-X-n400 400 27 29,917.00 26,176.14 12.50 7,380.92 117
random-8-X-n400 400 20 30,953.00 26,447.86 14.55 7,227.20 72
random-17-X-n500 500 128 134,831.00 107,082.25 20.58 7,252.18 267
random-15-X-n500 500 44 48,692.00 37,853.14 22.26 7,533.25 68
random-19-X-n500 500 28 34,861.00 28,871.61 17.18 7,584.79 62
random-1-X-n500 500 41 40,287.00 33,402.08 17.09 7,372.43 71
random-9-X-n500 500 29 43,607.00 33,301.59 23.63 7,578.53 86
random-13-X-n500 500 36 46,414.00 37,124.83 20.01 7,261.60 88
random-5-X-n500 500 67 85,332.00 62,336.44 26.95 7,561.80 165
random-11-X-n500 500 48 66,720.00 52,425.61 21.42 7,596.60 80
random-3-X-n500 500 33 56,591.00 44,730.87 20.96 7,534.12 78
random-7-X-n500 500 32 48,159.00 37,343.59 22.46 7,407.96 77
random-6-X-n750 750 99 137,429.00 98,868.48 28.06 7,470.59 83
random-12-X-n750 750 56 81,988.00 57,965.98 29.30 7,419.30 85
random-4-X-n750 750 49 55,938.00 40,718.69 27.21 7,349.32 68
random-14-X-n750 750 87 98,971.00 66,760.17 32.55 7,278.94 149
random-8-X-n750 750 37 54,145.00 38,279.80 29.30 7,435.26 127
random-2-X-n750 750 79 76,471.00 54,006.62 29.38 7,230.53 164
random-16-X-n750 750 72 77,111.00 55,454.36 28.09 7,401.46 172
random-0-X-n750 750 115 137,798.00 96,981.14 29.62 7,281.99 219
random-18-X-n750 750 50 85,348.00 60,168.13 29.50 7,624.74 88
random-10-X-n750 750 88 119,393.00 79,015.54 33.82 7,271.90 183
random-5-X-n1000 1,000 133 130,385.00 87,242.97 33.09 7,248.90 129
random-1-X-n1000 1,000 81 86,706.00 60,687.40 30.01 8,065.51 88
random-7-X-n1000 1,000 64 81,052.00 51,391.41 36.59 7,275.56 150
random-3-X-n1000 1,000 65 76,005.00 51,650.38 32.04 7,220.39 84
random-9-X-n1000 1,000 57 81,448.00 54,437.42 33.16 8,242.49 87
random-21-X-n1000 1,000 81 109,492.00 72,858.65 33.46 7,277.37 74
random-19-X-n1000 1,000 56 73,749.00 50,131.42 32.02 7,218.79 66
random-13-X-n1000 1,000 72 92,888.00 61,856.48 33.41 7,896.94 87
random-15-X-n1000 1,000 88 112,383.00 74,290.96 33.89 8,045.55 97
random-11-X-n1000 1,000 96 102,522.00 65,769.61 35.85 7,264.73 155
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Table 21: The results of NeuralSEP on randomly generated instances with 2 hours limit (N < 300).

Name Size K Best Known LB Gap (%) Runtime Iterations

random-24-X-n50 50 3 6,686.00 6,367.50 4.76 31.68 25
random-4-X-n50 50 4 7,684.00 7,349.22 4.36 24.37 32
random-28-X-n50 50 7 11,557.00 10,941.28 5.33 47.55 59
random-0-X-n50 50 8 12,735.00 12,047.69 5.40 47.37 58
random-16-X-n50 50 5 10,190.00 9,888.76 2.96 32.30 47
random-20-X-n50 50 6 10,126.00 9,615.55 5.04 19.20 32
random-32-X-n50 50 4 7,483.00 7,202.71 3.75 23.01 35
random-12-X-n50 50 4 8,317.00 8,013.90 3.64 30.97 42
random-36-X-n50 50 8 14,188.00 13,398.57 5.56 48.13 68
random-8-X-n50 50 3 6,733.00 6,637.00 1.43 11.50 23
random-17-X-n75 75 20 34,431.00 32,932.32 4.35 227.15 143
random-21-X-n75 75 7 9,726.00 9,157.96 5.84 30.57 35
random-25-X-n75 75 6 10,931.00 10,263.20 6.11 39.84 45
random-5-X-n75 75 11 14,930.00 13,962.14 6.48 83.27 78
random-9-X-n75 75 5 9,361.00 8,964.61 4.23 38.67 45
random-29-X-n75 75 7 11,893.00 11,210.32 5.74 59.52 65
random-1-X-n75 75 7 11,225.00 10,527.92 6.21 47.17 51
random-13-X-n75 75 6 9,652.00 9,393.86 2.67 43.63 51
random-37-X-n75 75 4 9,479.00 9,090.87 4.09 40.18 50
random-33-X-n75 75 13 16,151.00 15,132.58 6.31 85.39 71
random-2-X-n100 100 11 17,242.00 15,805.67 8.33 117.18 78
random-30-X-n100 100 6 12,151.00 11,285.49 7.12 59.92 51
random-14-X-n100 100 12 16,934.00 15,505.90 8.43 195.62 123
random-6-X-n100 100 14 24,832.00 23,439.36 5.61 210.09 118
random-34-X-n100 100 8 10,752.00 10,192.72 5.20 79.78 66
random-26-X-n100 100 11 15,654.00 14,383.01 8.12 113.36 76
random-18-X-n100 100 7 11,171.00 10,654.17 4.63 104.97 89
random-22-X-n100 100 20 27,022.00 25,295.08 6.39 306.89 142
random-38-X-n100 100 11 13,766.00 12,717.58 7.62 134.56 95
random-10-X-n100 100 12 17,727.00 16,495.30 6.95 208.28 127
random-19-X-n200 200 12 16,102.00 14,943.18 7.20 290.05 80
random-27-X-n200 200 13 21,609.00 19,478.09 9.86 1,280.86 164
random-23-X-n200 200 23 26,556.00 24,104.65 9.23 1,440.31 147
random-7-X-n200 200 13 17,182.00 15,764.02 8.25 431.37 96
random-11-X-n200 200 20 29,495.00 26,880.69 8.86 3,549.49 181
random-35-X-n200 200 15 24,854.00 21,948.80 11.69 7,208.87 55
random-15-X-n200 200 18 23,121.00 20,877.38 9.70 1,321.08 149
random-3-X-n200 200 13 19,644.00 17,755.18 9.62 823.92 130
random-31-X-n200 200 21 31,684.00 28,674.53 9.50 2,702.84 183
random-39-X-n200 200 11 18,271.00 16,460.33 9.91 286.85 55
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Table 22: The results of NeuralSEP on randomly generated instances with 2 hours limit (N ≥ 300).

Name Size K Best Known LB Gap (%) Runtime Iterations

random-7-X-n300 300 19 27,269.00 23,044.48 15.49 7,644.58 40
random-1-X-n300 300 25 30,181.00 25,414.03 15.79 7,221.22 34
random-5-X-n300 300 40 53,305.00 45,360.13 14.90 7,243.09 43
random-0-X-n300 300 46 55,614.00 45,744.42 17.75 7,363.66 27
random-8-X-n300 300 15 20,636.00 18,441.22 10.64 4,591.89 106
random-6-X-n300 300 40 42,079.00 35,537.00 15.55 7,232.09 41
random-4-X-n300 300 20 24,324.00 21,529.87 11.49 5,766.47 120
random-2-X-n300 300 32 47,765.00 39,811.32 16.65 7,698.99 34
random-3-X-n300 300 20 23,414.00 20,833.70 11.02 2,717.39 131
random-9-X-n300 300 17 21,740.00 19,774.43 9.04 1,401.29 119
random-14-X-n400 400 46 61,276.00 49,067.94 19.92 7,367.43 28
random-6-X-n400 400 54 52,025.00 43,321.56 16.73 7,441.60 28
random-10-X-n400 400 47 59,487.00 46,769.01 21.38 7,409.53 23
random-2-X-n400 400 42 61,447.00 47,604.21 22.53 7,425.46 22
random-12-X-n400 400 30 37,545.00 30,561.31 18.60 7,753.21 27
random-0-X-n400 400 61 77,967.00 63,208.14 18.93 7,245.91 25
random-16-X-n400 400 38 57,273.00 45,066.40 21.31 7,357.66 25
random-18-X-n400 400 27 34,643.00 28,432.87 17.93 7,408.93 28
random-4-X-n400 400 27 29,917.00 26,075.97 12.84 7,249.05 62
random-8-X-n400 400 20 30,953.00 25,480.56 17.68 7,296.95 38
random-17-X-n500 500 128 134,831.00 105,320.49 21.89 7,345.30 23
random-15-X-n500 500 44 48,692.00 38,607.00 20.71 7,423.73 27
random-19-X-n500 500 28 34,861.00 28,682.55 17.72 7,389.24 28
random-1-X-n500 500 41 40,287.00 33,310.63 17.32 7,310.64 28
random-9-X-n500 500 29 43,607.00 34,372.49 21.18 7,693.79 29
random-13-X-n500 500 36 46,414.00 37,129.61 20.00 8,078.90 26
random-5-X-n500 500 67 85,332.00 65,489.98 23.25 7,564.97 25
random-11-X-n500 500 48 66,720.00 52,889.71 20.73 7,230.58 28
random-3-X-n500 500 33 56,591.00 44,399.02 21.54 7,737.21 25
random-7-X-n500 500 32 48,159.00 37,647.06 21.83 7,252.42 27
random-6-X-n750 750 99 137,429.00 96,083.93 30.08 7,464.41 19
random-12-X-n750 750 56 81,988.00 61,158.35 25.41 7,780.01 26
random-4-X-n750 750 49 55,938.00 43,692.58 21.89 7,798.33 29
random-14-X-n750 750 87 98,971.00 71,928.07 27.32 7,449.78 21
random-8-X-n750 750 37 54,145.00 40,921.64 24.42 7,563.02 29
random-2-X-n750 750 79 76,471.00 58,001.14 24.15 7,214.89 23
random-16-X-n750 750 72 77,111.00 57,241.26 25.77 7,530.01 21
random-0-X-n750 750 115 137,798.00 101,146.05 26.60 7,329.49 17
random-18-X-n750 750 50 85,348.00 64,477.76 24.45 7,979.79 31
random-10-X-n750 750 88 119,393.00 83,428.34 30.12 7,392.41 18
random-5-X-n1000 1,000 133 130,385.00 89,682.18 31.22 7,292.06 13
random-1-X-n1000 1,000 81 86,706.00 61,709.45 28.83 7,524.19 19
random-7-X-n1000 1,000 64 81,052.00 56,005.99 30.90 7,388.92 20
random-3-X-n1000 1,000 65 76,005.00 53,818.87 29.19 8,099.69 20
random-9-X-n1000 1,000 57 81,448.00 56,977.59 30.04 8,026.05 21
random-21-X-n1000 1,000 81 109,492.00 74,077.00 32.34 7,319.67 17
random-19-X-n1000 1,000 56 73,749.00 50,049.83 32.13 7,376.29 23
random-13-X-n1000 1,000 72 92,888.00 61,416.81 33.88 7,272.27 18
random-15-X-n1000 1,000 88 112,383.00 76,714.60 31.74 7,596.17 17
random-11-X-n1000 1,000 96 102,522.00 70,958.39 30.79 7,549.73 16
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Table 23: The results of CVRPSEP on X-instances with 2 hours limit (N < 300).

Name Size K Best Known LB Gap (%) Runtime Iterations

X-n101-k25 100 25 27,591.00 26,515.75 3.90 30.18 61
X-n106-k14 105 14 26,362.00 25,879.30 1.83 77.18 107
X-n110-k13 109 13 14,971.00 14,308.37 4.43 10.95 40
X-n115-k10 114 10 12,747.00 12,359.39 3.04 13.12 41
X-n120-k6 119 6 13,332.00 12,681.59 4.88 17.64 47
X-n125-k30 124 30 55,539.00 53,924.08 2.91 181.01 137
X-n129-k18 128 18 28,940.00 27,567.53 4.74 223.4 120
X-n134-k13 133 13 10,916.00 10,369.38 5.01 88.87 67
X-n139-k10 138 10 13,590.00 13,044.95 4.01 29.91 50
X-n143-k7 142 7 15,700.00 15,180.77 3.31 52.11 54
X-n148-k46 147 46 43,448.00 41,316.40 4.91 983.79 190
X-n153-k22 152 22 21,220.00 19,984.43 5.82 631.68 127
X-n157-k13 156 13 16,876.00 16,618.67 1.52 151.74 75
X-n162-k11 161 11 14,138.00 13,576.00 3.98 52.84 52
X-n167-k10 166 10 20,557.00 19,584.11 4.73 197.83 83
X-n172-k51 171 51 45,607.00 42,450.98 6.92 2,143.16 233
X-n176-k26 175 26 47,812.00 45,196.82 5.47 4,401.36 209
X-n181-k23 180 23 25,569.00 24,398.14 4.58 861.37 114
X-n186-k15 185 15 24,145.00 22,347.05 7.45 821.38 110
X-n190-k8 189 8 16,980.00 16,583.88 2.33 411.04 79
X-n195-k51 194 51 44,225.00 41,997.26 5.04 3,738.60 166
X-n200-k36 199 36 58,578.00 57,109.68 2.51 7,282.56 219
X-n204-k19 203 19 19,565.00 18,334.36 6.29 892.68 120
X-n209-k16 208 16 30,656.00 28,607.49 6.68 2,973.10 130
X-n214-k11 213 11 10,856.00 10,219.05 5.87 1,487.51 122
X-n219-k73 218 73 117,595.00 112,918.63 3.98 7,249.62 255
X-n223-k34 222 34 40,437.00 38,264.77 5.37 6,946.13 232
X-n228-k23 227 23 25,742.00 25,038.99 2.73 7,127.05 195
X-n233-k16 232 16 19,230.00 18,242.69 5.13 1,471.70 110
X-n237-k14 236 14 27,042.00 25,307.83 6.41 3,911.70 156
X-n242-k48 241 48 82,751.00 75,267.15 9.04 7,281.26 188
X-n247-k50 246 50 37,274.00 32,745.11 12.15 7,281.76 254
X-n251-k28 250 28 38,684.00 35,204.68 8.99 7,269.84 190
X-n256-k16 255 16 18,839.00 18,139.32 3.71 768.98 78
X-n261-k13 260 13 26,558.00 24,827.74 6.52 5,991.14 155
X-n266-k58 265 58 75,478.00 64,678.19 14.31 7,259.49 148
X-n270-k35 269 35 35,291.00 31,059.44 11.99 7,310.35 122
X-n275-k28 274 28 21,245.00 19,574.72 7.86 7,209.91 143
X-n280-k17 279 17 33,503.00 30,288.59 9.59 7,231.36 83
X-n284-k15 283 15 20,215.00 19,129.89 5.37 7,209.97 139
X-n289-k60 288 60 95,151.00 81,876.16 13.95 7,277.73 118
X-n294-k50 293 50 47,161.00 40,083.54 15.01 7,306.95 69
X-n298-k31 297 31 34,231.00 30,100.81 12.07 7,264.81 124
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Table 24: The results of CVRPSEP on X-instances with 2 hours limit (N ≥ 300).

Name Size K Best Known LB Gap (%) Runtime Iterations

X-n303-k21 302 21 21,736.00 20,337.11 6.44 7,321.90 123
X-n308-k13 307 13 25,859.00 23,567.35 8.86 7,239.33 88
X-n313-k71 312 71 94,043.00 81,237.09 13.62 7,206.92 100
X-n317-k53 316 53 78,355.00 65,549.59 16.34 7,360.92 98
X-n322-k28 321 28 29,834.00 26,218.74 12.12 7,204.95 76
X-n327-k20 326 20 27,532.00 23,880.89 13.26 7,362.26 108
X-n331-k15 330 15 31,102.00 27,794.10 10.64 7,361.60 76
X-n336-k84 335 84 139,111.00 114,463.78 17.72 7,493.30 147
X-n344-k43 343 43 42,050.00 34,904.34 16.99 7,260.78 64
X-n351-k40 350 40 25,896.00 21,606.32 16.57 7,333.42 84
X-n359-k29 358 29 51,505.00 42,473.08 17.54 7,372.45 81
X-n367-k17 366 17 22,814.00 21,365.22 6.35 7,307.58 63
X-n376-k94 375 94 147,713.00 125,654.91 14.93 7,718.01 88
X-n384-k52 383 52 65,928.00 49,425.66 25.03 7,395.25 73
X-n393-k38 392 38 38,260.00 31,930.94 16.54 7,308.85 85
X-n401-k29 400 29 66,154.00 57,583.42 12.96 7,219.96 83
X-n411-k19 410 19 19,712.00 16,443.76 16.58 7,624.79 61
X-n420-k130 419 130 107,798.00 93,841.08 12.95 7,423.12 173
X-n429-k61 428 61 65,449.00 51,239.54 21.71 7,202.27 82
X-n439-k37 438 37 36,391.00 31,600.63 13.16 7,527.79 78
X-n449-k29 448 29 55,233.00 44,990.47 18.54 7,411.17 63
X-n459-k26 458 26 24,139.00 19,593.96 18.83 7,226.70 68
X-n469-k138 468 138 221,824.00 186,899.61 15.74 7,485.42 178
X-n480-k70 479 70 89,449.00 75,110.75 16.03 7,632.68 135
X-n491-k59 490 59 66,483.00 48,509.10 27.04 7,464.82 103
X-n502-k39 501 39 69,226.00 63,774.00 7.88 7,540.20 79
X-n513-k21 512 21 24,201.00 21,683.25 10.40 7,446.69 68
X-n524-k153 523 153 154,593.00 114,553.96 25.90 7,854.83 233
X-n536-k96 535 96 94,846.00 80,221.69 15.42 7,367.61 109
X-n548-k50 547 50 86,700.00 67,066.62 22.65 7,833.62 75
X-n561-k42 560 42 42,717.00 35,588.83 16.69 7,211.30 56
X-n573-k30 572 30 50,673.00 46,270.37 8.69 7,236.77 61
X-n586-k159 585 159 190,316.00 146,075.79 23.25 7,473.77 193
X-n599-k92 598 92 108,451.00 79,021.85 27.14 7,357.50 89
X-n613-k62 612 62 59,535.00 47,957.36 19.45 7,608.40 99
X-n627-k43 626 43 62,164.00 45,782.68 26.35 7,399.07 76
X-n641-k35 640 35 63,682.00 51,046.27 19.84 7,730.31 72
X-n655-k131 654 131 106,780.00 94,054.09 11.92 7,218.24 96
X-n670-k130 669 130 146,332.00 105,819.53 27.69 7,234.44 256
X-n685-k75 684 75 68,205.00 53,406.45 21.70 7,262.09 113
X-n701-k44 700 44 81,923.00 62,445.00 23.78 7,269.73 72
X-n716-k35 715 35 43,373.00 32,543.30 24.97 7,756.89 136
X-n733-k159 732 159 136,187.00 114,274.34 16.09 7,586.90 107
X-n749-k98 748 98 77,269.00 52,782.04 31.69 7,251.99 168
X-n766-k71 765 71 114,417.00 87,351.74 23.65 7,206.01 147
X-n783-k48 782 48 72,386.00 49,246.62 31.97 7,375.25 69
X-n801-k40 800 40 73,305.00 52,226.09 28.76 7,539.07 81
X-n819-k171 818 171 158,121.00 132,373.46 16.28 7,223.79 136
X-n837-k142 836 142 193,737.00 140,391.04 27.54 7,207.06 181
X-n856-k95 855 95 88,965.00 71,456.53 19.68 7,795.56 90
X-n876-k59 875 59 99,299.00 81,176.69 18.25 7,306.66 79
X-n895-k37 894 37 53,860.00 38,725.02 28.10 7,406.62 77
X-n916-k207 915 207 329,179.00 273,122.37 17.03 7,210.64 119
X-n936-k151 935 151 132,715.00 93,866.93 29.27 7,207.63 127
X-n957-k87 956 87 85,465.00 58,963.75 31.01 7,220.80 86
X-n979-k58 978 58 118,976.00 82,838.05 30.37 7,486.87 64
X-n1001-k43 1,000 43 72,355.00 50,763.96 29.84 7,829.11 61
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Table 25: The results of NeuralSEP on X-instances with 2 hours limit (N < 300).

Name Size K Best Known LB Gap (%) Runtime Iterations

X-n101-k25 100 25 27,591.00 25,918.66 6.06 389.39 144
X-n106-k14 105 14 26,362.00 25,616.21 2.83 332.18 145
X-n110-k13 109 13 14,971.00 14,001.96 6.47 153.15 89
X-n115-k10 114 10 12,747.00 12,000.24 5.86 90.94 55
X-n120-k6 119 6 13,332.00 12,243.66 8.16 80.28 49
X-n125-k30 124 30 55,539.00 53,400.40 3.85 1,015.84 201
X-n129-k18 128 18 28,940.00 27,238.26 5.88 789.12 187
X-n134-k13 133 13 10,916.00 10,204.77 6.52 415.97 141
X-n139-k10 138 10 13,590.00 12,735.65 6.29 163.22 79
X-n143-k7 142 7 15,700.00 14,548.26 7.34 168.76 85
X-n148-k46 147 46 43,448.00 40,615.79 6.52 1,938.51 211
X-n153-k22 152 22 21,220.00 19,651.38 7.39 1,095.70 195
X-n157-k13 156 13 16,876.00 16,274.00 3.57 503.99 124
X-n162-k11 161 11 14,138.00 13,120.66 7.20 229.02 76
X-n167-k10 166 10 20,557.00 18,924.79 7.94 577.94 101
X-n172-k51 171 51 45,607.00 41,212.37 9.64 2,973.53 182
X-n176-k26 175 26 47,812.00 44,546.09 6.83 3,265.94 231
X-n181-k23 180 23 25,569.00 24,083.26 5.81 1,388.97 155
X-n186-k15 185 15 24,145.00 21,626.28 10.43 6,921.55 158
X-n190-k8 189 8 16,980.00 16,005.00 5.74 2,647.27 118
X-n195-k51 194 51 44,225.00 40,547.81 8.31 5,599.59 243
X-n200-k36 199 36 58,578.00 56,653.84 3.28 6,818.21 307
X-n204-k19 203 19 19,565.00 17,975.48 8.12 906.66 135
X-n209-k16 208 16 30,656.00 27,376.68 10.70 7,767.69 54
X-n214-k11 213 11 10,856.00 9,829.78 9.45 5,595.68 122
X-n219-k73 218 73 117,595.00 105,902.38 9.94 7,202.23 49
X-n223-k34 222 34 40,437.00 37,513.84 7.23 7,209.79 248
X-n228-k23 227 23 25,742.00 24,132.53 6.25 4,737.00 248
X-n233-k16 232 16 19,230.00 17,547.16 8.75 1,256.60 154
X-n237-k14 236 14 27,042.00 23,928.88 11.51 7,327.54 54
X-n242-k48 241 48 82,751.00 75,960.65 8.21 7,287.55 85
X-n247-k50 246 50 37,274.00 33,062.28 11.30 7,259.27 95
X-n251-k28 250 28 38,684.00 33,403.39 13.65 7,409.13 39
X-n256-k16 255 16 18,839.00 17,305.61 8.14 652.95 77
X-n261-k13 260 13 26,558.00 23,279.13 12.35 7,243.39 52
X-n266-k58 265 58 75,478.00 65,158.57 13.67 7,296.77 59
X-n270-k35 269 35 35,291.00 31,485.26 10.78 7,224.90 125
X-n275-k28 274 28 21,245.00 19,362.50 8.86 7,112.48 231
X-n280-k17 279 17 33,503.00 29,327.79 12.46 7,567.12 49
X-n284-k15 283 15 20,215.00 18,338.74 9.28 7,224.13 45
X-n289-k60 288 60 95,151.00 76,317.29 19.79 7,264.45 27
X-n294-k50 293 50 47,161.00 41,772.39 11.43 7,376.37 80
X-n298-k31 297 31 34,231.00 29,274.21 14.48 7,515.28 30
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Table 26: The results of NeuralSEP on X-instances with 2 hours limit (N ≥ 300).

Name Size K Best Known LB Gap (%) Runtime Iterations

X-n303-k21 302 21 21,736.00 19,938.02 8.27 3,933.31 154
X-n308-k13 307 13 25,859.00 22,397.40 13.39 7,274.41 46
X-n313-k71 312 71 94,043.00 75,117.74 20.12 7,263.09 24
X-n317-k53 316 53 78,355.00 62,199.48 20.62 7,411.41 28
X-n322-k28 321 28 29,834.00 26,488.19 11.21 7,202.03 167
X-n327-k20 326 20 27,532.00 22,688.84 17.59 7,604.80 35
X-n331-k15 330 15 31,102.00 26,659.59 14.28 7,806.68 46
X-n336-k84 335 84 139,111.00 112,767.84 18.94 7,351.89 23
X-n344-k43 343 43 42,050.00 35,955.08 14.49 7,258.62 52
X-n351-k40 350 40 25,896.00 22,626.52 12.63 7,237.75 62
X-n359-k29 358 29 51,505.00 42,849.38 16.81 7,707.43 32
X-n367-k17 366 17 22,814.00 20,724.15 9.16 7,590.30 37
X-n376-k94 375 94 147,713.00 117,727.54 20.30 7,428.06 21
X-n384-k52 383 52 65,928.00 51,272.17 22.23 7,448.32 23
X-n393-k38 392 38 38,260.00 31,572.87 17.48 8,166.90 25
X-n401-k29 400 29 66,154.00 57,074.33 13.73 7,676.01 30
X-n411-k19 410 19 19,712.00 16,124.06 18.20 7,622.04 33
X-n420-k130 419 130 107,798.00 88,849.67 17.58 7,290.00 22
X-n429-k61 428 61 65,449.00 52,037.26 20.49 7,475.36 21
X-n439-k37 438 37 36,391.00 31,073.00 14.61 7,567.86 25
X-n449-k29 448 29 55,233.00 45,677.56 17.30 7,716.79 27
X-n459-k26 458 26 24,139.00 19,492.12 19.25 7,200.25 27
X-n469-k138 468 138 221,824.00 175,116.74 21.06 7,744.14 20
X-n480-k70 479 70 89,449.00 74,934.40 16.23 7,583.58 22
X-n491-k59 490 59 66,483.00 50,443.33 24.13 7,857.59 21
X-n502-k39 501 39 69,226.00 62,575.24 9.61 7,398.75 24
X-n513-k21 512 21 24,201.00 20,929.20 13.52 7,609.47 32
X-n524-k153 523 153 154,593.00 113,971.11 26.28 7,693.55 16
X-n536-k96 535 96 94,846.00 78,591.70 17.14 7,442.80 24
X-n548-k50 547 50 86,700.00 67,402.45 22.26 7,438.18 27
X-n561-k42 560 42 42,717.00 35,574.41 16.72 7,652.30 31
X-n573-k30 572 30 50,673.00 45,677.46 9.86 7,218.23 26
X-n586-k159 585 159 190,316.00 145,227.00 23.69 7,286.41 16
X-n599-k92 598 92 108,451.00 79,268.58 26.91 7,366.39 23
X-n613-k62 612 62 59,535.00 48,211.08 19.02 7,674.66 27
X-n627-k43 626 43 62,164.00 45,718.84 26.45 7,781.11 31
X-n641-k35 640 35 63,682.00 50,468.43 20.75 8,314.69 24
X-n655-k131 654 131 106,780.00 89,090.29 16.57 7,730.03 19
X-n670-k130 669 130 146,332.00 107,263.54 26.70 7,593.23 15
X-n685-k75 684 75 68,205.00 52,885.75 22.46 7,583.03 22
X-n701-k44 700 44 81,923.00 63,826.61 22.09 7,431.15 33
X-n716-k35 715 35 43,373.00 33,356.38 23.09 7,406.49 22
X-n733-k159 732 159 136,187.00 106,215.23 22.01 7,563.34 15
X-n749-k98 748 98 77,269.00 57,245.71 25.91 7,490.58 22
X-n766-k71 765 71 114,417.00 90,317.27 21.06 7,771.10 26
X-n783-k48 782 48 72,386.00 53,295.68 26.37 7,924.05 31
X-n801-k40 800 40 73,305.00 56,019.77 23.58 7,292.66 31
X-n819-k171 818 171 158,121.00 126,058.45 20.28 7,722.77 14
X-n837-k142 836 142 193,737.00 140,721.87 27.36 7,651.02 17
X-n856-k95 855 95 88,965.00 68,424.15 23.09 7,813.42 21
X-n876-k59 875 59 99,299.00 82,748.95 16.67 7,688.78 26
X-n895-k37 894 37 53,860.00 40,578.03 24.66 7,655.85 32
X-n916-k207 915 207 329,179.00 249,003.30 24.36 7,488.85 13
X-n936-k151 935 151 132,715.00 95,191.50 28.27 7,635.62 12
X-n957-k87 956 87 85,465.00 58,277.54 31.81 7,803.57 19
X-n979-k58 978 58 118,976.00 81,131.82 31.81 7,816.89 23
X-n1001-k43 1000 43 72,355.00 53,422.13 26.17 7,472.21 26
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