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Abstract

This paper recognizes that in many decision environments in which revenue optimization is attempted,
an actual demand curve and its parameters are generally unobservable. Herein we describe the dynamics
of demand as a continuous time differential equation based on an evolutionary game theory perspective.
We then observe realized sales data to obtain estimates of parameters that govern the evolution of
demand; these are refined on a discrete time scale The resulting model takes the form of a differential
variational inequality. We present an algorithm based on a gap function for the differential variational
inequality and report its numerical performance for an example revenue optimization problem.
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1 Introduction

In rapidly growing literature on revenue management – see Talluri and van Ryzin (2004) and McGill and
van Ryzin (1999) for comprehensive studies and survey – one of the most important issues is how to model
service provider demand learning. Demand is usually represented as a function of price, explicitly and/or
implicitly, and the root tactic upon which revenue management is based is to change prices dynamically to
maximize immediate or short-run revenue. In this sense, the more accurate the model of demand employed
in revenue optimization, the more revenue we can generate. Although demand may be viewed theoretically
as the result of utility maximization, an actual demand curve and its parameters are generally unobservable
in most markets. In this paper, we first describe the dynamics of demand as a differential equation based
on an evolutionary game theory perspective and then observe the actual sales data to obtain estimates of
parameters that govern the evolution of demand.

A dynamic non-zero sum evolutionary game among service providers who have no variable costs and
hold no inventories is employed, in this paper, as a mathematical formulation, in particular a differential
variational inequality. The providers also have fixed upper bounds on output as each has capacity constraints
of available resources. We intend to provide numerical examples for the revenue management model we will
introduce later in this paper with presenting effective and efficient numerical methods, which are specific for
the problem structures.
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1.1 Revenue Management Model

The service providers of interest are in oligopolistic game theoretic competition according to a learning
process that is similar to evolutionary game-theoretic dynamics and for which price changes are proportional
to their signed excursion from a market clearing price. We stress that in this model firms are setting prices
for their services while simultaneously determining the levels of demand they will serve. This is unusual in
that, typically, firms in oligopolistic competition are modelled as setting either prices or output flows. The
joint adjustment of prices and output is modelled here as determined by comparing current price to the price
that would have cleared the market for the demand that has most recently been served. However, the service
providers are unable to make this comparison until the current round of play is completed as knowledge of
the total demand served by all competitors is required.

Kachani et al. (2004) put forward a revenue management model for service providers to address such
joint pricing and demand learning in an oligopoly setting under fixed capacity constraints. The model they
consider assumes a service provider’s demand is a linear function of its price and other competitors’ prices;
each company learns to set their parameters over time, though the impact of a change in price on demand
in one period does not automatically propagate to latter time periods. In our work we allow this impact to
propagate to all the time periods down the line.

In this paper, we will only be considering a class of customers, so-called bargain-hunting buyers Dasgupta
and Das (2000), who may represent the general public who are searching for personal or, to a limited
extent, business services or products at the most competitive price; these buyers are willing to sacrifice some
convenience for the sake of a lower price. Because the services and products are assumed to be homogeneous,
if two sellers offer the same price, the tie is broken randomly. In other words, the consumer has no concept
of brand preference.

1.2 Differential Variational Inequalities and Differential Games

The differential variational inequalities, or DVIs, are infinite-dimensional variational inequalities with a
special structure, which involves ordinary differential equations, called the state dynamics in the optimal
control theory. The importance and application of DVIs are rising in mechanics, mathematical economics,
transportation research, and many other complex engineering systems. Recently, Pang and Stewart (2007)
introduced DVIs formally, and found applications in ordinary differential equations with discontinuous right-
hand sides, differential Nash games, and multi-rigid-body dynamics. Moreover, Friesz et al. (2006) used a
DVI to model shippers’ oligopolistic competition on networks. The DVI of our interest should not be confused
with the differential variational inequality has been used in Aubin and Cellina (1984), which may be called
a variational inequality of evolution, a name suggested by Pang and Stewart (2007).

The non-cooperative dynamic oligopolistic competition amongst the service providing agents may be
placed in the form of a dynamic variational inequality wherein each individual agent develops for itself a
distribution plan that is based on current and future knowledge of non-own price patterns. Each such agent is,
therefore, described by an optimal control problem for which the control variables are the price of its various
service classes; this optimal control problem is constrained by dynamics that describe how the agent’s share
of demand alters with time. The Cournot-Nash assumption that game agents are non-cooperative allows the
optimal control problems for individual agents to be combined to obtain a single DVI.

1.3 Demand Learning, Model Parameter Estimation and the Kalman Filtering

Forecasting demand is crucial in pricing and planning for any firm in that the forecasts have huge impacts
on the revenues. In revenue management literature, most of the research models demand as an exogenous
stochastic process from a known distribution (Gallego and van Ryzin, 1994; Feng and Gallego, 1995). Such
models are restrictive because (1) they depend largely on the complete knowledge of the demand character-
istics before the pricing starts; (2) they do not incorporate any learning mechanisms which will improve the
demand estimation as more information becomes available.

In this paper, the demand for each firm is governed by a dynamics controlled by prices set by its own and
its competitors. However, the parameters in this demand dynamics are unknown. The demand forecasting is
flexible in the sense that it is able to handle incomplete information about the demand function. Furthermore,
the demand is learned over time and each firm can update its demand function as new information becomes

2



available. By using such kind of learning mechanism, the firm can better estimate the demand function
thereby improving its profitability. Thus, less restriction is enforced in modeling the demand in this paper
which makes the model more attractive in real world situations.

Demand learning has been studied extensively in many research areas. The typical approach to model
the learning effect is the Bayesian learning technique. For the Bayesian learning approach, usually demand
at any time can be model as a stochastic process following certain distribution with unknown parameter
(or parameters). The unknown parameter has a known distribution which is called the prior distribution.
Observed demand data are used to modify the belief about the unknown parameter based on Bayes’ rule.
In this approach, uncertainty in the parameter is resolved as more observations become available, and the
distribution of the demand will approach its true distribution (Murray Jr and Silver, 1966; Eppen and
Iyer, 1997; Bitran and Wadhwa, 1996). Recently, researchers have developed other learning mechanisms to
resolve the demand uncertainty. To name a few, Bertsimas and Perakis (2006) develop a demand learning
mechanism which estimates the parameters for the linear demand function by virtue of a least square method.
Yelland and Lee (2003) use class II mixture models to capture both the uncertainty in model specification
and demand changes in regime. They demonstrate that the class II mixture models are more efficient in
forecasting the product demand for Sun Microsystems Inc. Lin (2006) proposes to use the real time demand
data to improve the estimation of the customer arrival rate which in turn can be used to better predict the
future demand distribution, and develops a variable-rate policy which is very immune to the changes in the
customer arrival rate.

The learning demand approach proposed in this paper is Kalman Filter. As a state-space estimation
method, the Kalman filtering has gained attention recently in economics and revenue management as one
of the most successful forecasting methods. The Kalman filters, which is developed by Kalman (1960) and
Kalman and Bucy (1961), originally to filter out system and sensor noise in electrical/mechanical systems,
is based on a system of linear state dynamics, observation equations and normally distributed noise terms
with mean zero. The Kalman filter provides a prior estimate for the model parameter, which is adjusted to
a posteriori estimate by combining the observations. With this new model parameter, we repeatedly solve
the dynamic pricing problem to maximize the revenue in the next time periods. For the detailed discussion
and derivations of the Kalman filter dynamics, see Bryson and Ho (1975), or, for an introduction suitable
for revenue management researchers, Talluri and van Ryzin (2004).

Among economics and revenue management literature, Balvers and Cosimano (1990) study a stochastic
linear demand model in a dynamic pricing problem and obtain a dynamic programming formulation to
maximize revenue. They use the Kalman filter to estimate the exact value of the intercept and elasticity in
the stochastic linear demand model. Closely related, Carvalho and Puterman (2007) consider a log-linear
demand model whose parameters are also stochastic, and test the model using the Monte Carlos simulation
techniques. In addition, Xie et al. (1997) find an application of the Kalman filter in estimation of new product
diffusion models, where they concluded the Kalman filter approach gives superior prediction performance
compared to other estimation methods in such environment.

1.4 Numerical Methods for Solving DVIs

Among the algorithms to solve the variational inequality problems, decent methods with gap functions
have special structures in themselves: a variational inequality problem can be converted to an equivalent
optimization problem, whose objective function is always nonnegative and optimal objective function value
is zero if and only if the optimal solution solves the original variational inequality problem. A number
of algorithms in this class has been developed for the finite-dimensional variational inequalities, see, for
example, Zhu and Marcotte (1994) and Yamashita et al. (1997). For the infinite-dimensional problems, Zhu
and Marcotte (1998) and Konnov et al. (2002) extended descent methods using gap functions in Banach
spaces and Hilbert spaces, respectively.

However, only a few number of numerical schemes for the DVIs has been reported in the literature
despite of the increasing importance of the DVIs with applications in differential games. Pang and Stewart
(2007) suggested two algorithms, namely, the time stepping method and the sequential linearization method.
The former discretize the time horizon with finite differences for the state dynamics, and then constitute
a discrete system with finite-dimensional variational inequalities. To ensure the convergence of the time
stepping method, we need linearity with respect to control in state dynamics. To overcome this limitation,
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the later scheme, the sequential linearization method, sequentially approximate the given DVI by a sub-
DVI at each iterative state and control variable, and then solve each sub-DVI by available algorithms such
as the time stepping method. To add a numerical method for solving DVIs and show how it works in
differential games, we adopt the descent method using gap functions devised by Kwon and Friesz (2007)
who extended gap functions for infinite-dimensional variational inequalities to obtain an equivalent optimal
control problem.

1.5 Organization of the Paper

The remainder of the paper is organized as follows : Section 2 provides an introductory overview of DVIs.
This is followed by a detailed exposition of our revenue management model of dynamic competition in
Section 3. A model parameter estimation technique, which is called the Kalman filtering, is described for
the revenue management model in Section 4. We provide a scenario for a firm and a numerical method to
solve its optimal control problem without considering the game in Section 5. Section 6 shows how dynamic
revenue management competition may be expressed as a DVI. In Section 7 we outline a descent method
using gap functions for DVIs which is used in the next section to solve an example. Section 8 provides a
detailed numerical example to show some interesting behaviors of the agents. Section 9 summarizes our
findings and describes future research.

2 Abstract DVI

The finite- or infinite-dimensional variational inequality problem (VIP) is, for a compact and convex set U
and function F , to find u∗ ∈ U such that

〈F (u∗) , u− u∗〉 ≥ 0 ∀u ∈ U

where 〈·, ·〉 denotes the corresponding inner product. It is well-known that a VIP is closely related to
an optimization problem. When a variable of an optimization problem has a representation of an ordinary
differential equation, we call the problem an optimal control problem, which is closely related to a differential
variational inequality problem we will introduce. We begin by letting

u ∈
(
L2 [t0, tf ]

)m
x (u, t) = arg

{
dy

dt
= f (y, u, t) , y (t0) = y,Γ [y (tf ) , tf ] = 0

}
∈
(
H1 [t0, tf ]

)n
(1)

The entity x (u, t) is to be interpreted as an operator that tells us the state variable x for each vector u and
each time t ∈ [t0, tf ] ⊂ R1

+; constraints on u are enforced separately. We assume that every control vector
is constrained to lie in a set U , where U is defined so as to ensure the terminal conditions may be reached
from the initial conditions intrinsic to (1). In light of the operator (1), the variational inequality of interest
to us takes the form:

find u∗ ∈ U such that

〈F (x (u∗, t) , u∗, t) , u− u∗〉 ≥ 0 for all u ∈ U (2)

where

U ⊆
(
L2 [t0, tf ]

)m
(3)

x0 ∈ Rn (4)

F :
(
H1 [t0, tf ]

)n × (L2 [t0, tf ]
)m × R1

+ −→
(
L2 [t0, tf ]

)m
(5)

f :
(
H1 [t0, tf ]

)n × (L2 [t0, tf ]
)m × R1

+ −→
(
L2 [t0, tf ]

)n
(6)

Γ :
(
H1 [t0, tf ]

)n ×<1
+ −→

(
H1 [t0, tf ]

)r
(7)
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Note that
(
L2 [t0, tf ]

)m
is the m-fold product of the space of square-integrable functions L2 [t0, tf ] and the

inner product in (2) is defined by

〈F (x (u∗, t) , u∗, t) , u− u∗〉 ≡
∫ tf

t0

[F (x (u∗, t) , u∗, t)]
T

(u− u∗) ≥ 0

while
(
H1 [t0, tf ]

)n
is the n-fold product of the Sobolev space H1 [t0, tf ]. We refer to (2) as a differential

variational inequality and give it the symbolic name DV I(F, f, U).
To analyze (2) we will rely on the following notion of regularity:

Definition 1 (Regularity) We call DV I(F, f, U) regular if:

1. x (u, t) :
(
L2 [t0, tf ]

)m ×R1
+ −→

(
H1 [t0, tf ]

)n
exists and is continuous and Gateaux-differentiable with

respect to u1;

2. Γ (x, t) : is continuously differentiable with respect to x;

3. F (x, u, t) is continuous with respect to x and u;

4. f (x, u, t) is convex and continuously differentiable with respect to x and u;

5. U is convex and compact; and

6. x0 ∈ Rn is known and fixed.

The motivation for this definition of regularity is to parallel as closely as possible those assumptions needed
to analyze traditional optimal control problems from the point of view of infinite dimensional mathematical
programming.

Furthermore, there is a fixed point form of DV I(F, f, U). In particular we state the following result
without proof (see Mookherjee, 2006):

Theorem 2 (Fixed Point Problem) When regularity in the sense of Definition 1 holds, DV I(F, f, U) is
equivalent to the following fixed point problem:

u = PU [u− αF (x(u), u, t)]

where PU [.] is the minimum norm projection onto U ⊆
(
L2 [t0, τ ]

)m
and α ∈ R1

++.

We now state and prove the following existence result (for the proof, see Mookherjee, 2006):

Theorem 3 (Existence) When the regularity in the sense of Definition 1 holds, DV I(F, f, U) has a solu-
tion.

We are now ready give the revenue management model of our interest.

3 Revenue Management Model

A set of service providers are competing in an oligopolistic setting, each with the objective of maximizing
their revenue. These service providers have very high fixed costs compared to their relatively low variable
or operating costs. Therefore, the providers focus only on maximizing their own revenue.

Each company provides a set of services where each service type is assumed to be homogeneous. For
example, the difference between an economy class seat on Southwest and an economy class seat on Jet Blue
is indiscernible by customers; the only differences that the customers perceive are the prices charged by the
different service providers.

All service providers can set the price for each of their services. The price that they charge for each
service in one time period will affect the demand that they receive for that service in the next time period.
The price that the service provider charges is compared to the rolling average price of their competitors and
the provider’s demand is affected accordingly. The amount of service that each company can provide has
an upper bound. The providers must therefore choose prices that create an amount of demand for their
services that will maximize their revenue while ensuring that the demands do not exceed their capacities.

1This condition is guaranteed when the other regualrity conditions are satisifed. See Bressan and Piccoli (2005).

5



3.1 Basic Notation

We denote the set of revenue managing firms as F , each of whom is providing a set of services S. Continuous
time is denoted by the scalar t ∈ R1

+, while t0 is the finite initial time and tf ∈ R1
++ the finite terminal time

so that t ∈ [t0, tf ] ⊂ R1
+.

Each firm f ∈ F controls price
πfi ∈ L

2 [t0, tf ]

corresponding to each service type i ∈ S, where L2 [t0, tf ] is the space of square-integrable functions for the
real time interval [t0, tf ] ∈ R1

+. The control vector of each firm f ∈ F is

πf ∈
(
L2 [t0, tf ]

)|S|
which is the concatenation of

π ∈
(
L2 [t0, tf ]

)|S|×|F|
,

the complete vector of controls.
We also let

Df
i (π, t) :

(
L2 [t0, tf ]

)|S|×|F| × R1
+ −→ H1 [t0, tf ]

denote the demand for service i ∈ S of firm f ∈ F and define the vector of all such demands for firm f to be

Df ∈
(
H1 [t0, tf ]

)|S|
and all such demands for service i ∈ S of firm f ∈ F

D ∈
(
H1 [t0, tf ]

)|S|x|F|
We will use the notation

D−f = (Dg
i : i ∈ S, g ∈ F − {f})

for the vector of all service levels provided by the competitors of the firm f ∈ F .

3.2 Demand Dynamics

In evolutionary game theory the notion of comparing a moving average to the current state is used to develop
ordinary differential equations describing learning processes; see Fudenberg and Levine (1999). To proceed,
we first assume the qualities of services provided by different agents are homogeneous, hence the customers’
decision is only dependent on their prices. One possible extension to consider service qualities in demand
dynamics is defining a utility function dependent on both price and quality. If the quality levels are exogenous
to the problem and remain constant within the time horizon, we can always recast the utility-based model
to price-based model. Hence our formulation in this paper is readily applicable to consider quality levels.

The demand for the service offerings of firm f ∈ F evolve according to the following evolutionary game-
theoretic dynamics:

dDf
i

dt
= ηfi ·

(
π̃i − πfi

)
∀i ∈ S, f ∈ F (8)

Df
i (t0) = Kf

i,0 ∀i ∈ S, f ∈ F (9)

where π̃i is the moving average price for service i ∈ S given by

π̃i (t) =
1

|F| (t− t0)

∫ t

t0

∑
g∈F

πgi (τ)dτ ∀i ∈ S

while Kf
i,0 ∈ R1

++ and ηfi ∈ R1
++ are exogenous parameters for each i ∈ S and f ∈ F . The firms set the

parameter ηfi by analyzing the past demand data and the sensitivity of the demand with respect to price.
The demand for a service type i of a firm f changes over time in accordance with the excess between the
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firm’s price and the moving average of all agents’ prices for the particular service. The coefficient ηfi controls
how quickly demand reacts to price changes for each firm f and service type i. Some providers may specialize
in certain services and may be able to adjust more quickly than their competitors.

In the literature, most assumes that observed demand in period t and t+ 1 are independent and demand
at time t is influenced by price at time t (which is set at time t − 1 prior observing the demand for period
t), this is a stronger assumption and we know in reality there are some learning that takes place in terms of
consumer’s expectations and price-anticipation. In our model we captured this ‘learning’ behavior in a naive
way: customers have some ‘reference price’ of a differentiated commodity which gets updates at the end of
every period as they learn about the market condition and demand for service/goods is proportional to the
price differential (tatonnement dynamics). This way demand at time t not only depends on price set at time
t, but on the complete price trajectories [0, t]. In this sense, the dynamic equation (8) based on ‘moving
average price’ of demand learning is more realistic. The ‘replicator dynamics (see Hofbauer and Sigmund,
1998)’, of which equation (8) is an instance, reflects a widely respect theoretical view or hypothesis that
learning is the notion of comparison to the moving average.

These dynamics represent a learning mechanism for the firms. As stated here, the dynamics are reminis-
cent of replicator dynamics which are used in evolutionary games. The rate of growth of demand, can be
viewed as the rate of growth of the firm f with respect to service type i. This growth follows the “basic
tenet of Darwinism” and may be interpreted as the difference between the fitness (price) of the firm for the
service and the rolling average fitness of all the agents for that service.

3.3 Constraints

There are positive upper and lower bounds, based on market regulations or knowledge of customer behavior,
on service prices charged by firms. Thus we write

πfmin,i ≤ π
f
i ≤ π

f
max,i ∀i ∈ S, f ∈ F

where the πfmin,i ∈ R1
++ and πfmax,i ∈ R1

++ are known constants. Similarly, there will be an upper bound on
the demand for services of each type by each firm as negative demand levels are meaningless; that is

Df
i ≥ 0 ∀i ∈ S, f ∈ F

Let R be the set of resources that the firms can utilize to provide the services, |R|, cardinality of the set R,
denotes number of resources at firm’s disposal. Define the incidence matrix (Talluri and van Ryzin, 2004)
A = (alm) as

alm = 1 if resource l is used by the service type m

= 0 otherwise

Let Cf be firm f ’s capacity of resources. Joint resource-constraints for firm f are

0 ≤ ADf
i ≤ C

f
i ∀i ∈ S, f ∈ F (10)

3.4 The Firm’s Optimal Control Problem

Since revenue management firms have very little variable costs and high fixed costs, each firm’s objective is
to maximize revenue which in turn ensures the maximum profit since the variable costs are negligible. We
further note that each firm f ∈ F faces the following problem: with the π−f as exogenous inputs, solve the
following optimal control problem:

max
πf

Jf (πf , π−f , t) =

∫ tf

t0

e−ρt

(∑
i∈S

πfi ·D
f
i

)
dt− e−ρt0Ψf

0 (11)

subject to
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dDf
i

dt
= ηfi ·

(
π̃i − πfi

)
∀i ∈ S, f ∈ F (12)

Df
i (t0) = Kf

i,0 ∀i ∈ S (13)

πfmin,i ≤ π
f
i ≤ π

f
max,i ∀i ∈ S (14)

0 ≤ ADf
i ≤ C

f
i ∀i ∈ S (15)

where Ψf
0 is the fixed cost of production for firm f which can be dropped from the problem later, ρ is the

nominal discount rate compounded continuously, and
∫ tf
t0

e−ρt
(∑

i∈S π
f
i ·D

f
i

)
dt is the net present value

(NPV) of revenue. From the familiarity with these dynamics, we may restate them as: for all f ∈ F

dDf
i

dt
= ηfi ·

(
yi

|F| (t− t0)
− πfi

)
∀i ∈ S (16)

dyi
dt

=
∑
g∈F

πgi ∀i ∈ S (17)

Nf
i (t0) = Kf

i,0 ∀i ∈ S (18)

yi (t0) = 0 ∀i ∈ S (19)

As a consequence we may rewrite the optimal control problem of firm f ∈ F as

max
πf

Jf (πf , π−f , t) =

∫ tf

t0

e−ρt

(∑
i∈S

πfi ·D
f
i

)
dt (20)

subject to

dDf
i

dt
= ηfi ·

(
yi

|F| (t− t0)
− πfi

)
∀i ∈ S (21)

dyi
dt

=
∑
g∈F

πgi ∀i ∈ S (22)

Df
i (t0) = Kf

i,0 ∀i ∈ S (23)

yi (t0) = 0 ∀i ∈ S (24)

πfmin,i ≤ π
f
i ≤ π

f
max,i ∀i ∈ S (25)

0 ≤ ADf
i ≤ C

f
i ∀i ∈ S (26)

Consequently,

D (π) = arg

{
dDf

i

dt
= ηfi ·

(
yi

|F| (t− t0)
− πfi

)
dyi
dt

=
∑
g∈F

πgi ; Df
i (t0) = Kf

i,0

0 ≤ ADf
i ≤ C

f
i ∀ f ∈ F , i ∈ S

}
(27)

where we implicitly assume that the dynamics have solutions for all feasible controls. In compact notation
this problem can be expressed as: with the π−f as exogenous inputs, compute πf in order to solve the
following optimal control problem:

max Jf (πf , π−f , t)

subject to πf ∈ Λf

}
∀f ∈ F (28)
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where
Λf =

{
πf : (21) , (22) , (23) , (24), (25) and (26) hold

}
4 Estimation of Model Parameter

So far, we have introduced a revenue management model for service providers wherein every parameter and
dynamics are known to be deterministic. However, in reality, the model parameter are usually unknown to
the modeler and the firm, and follows stochastic distributions. Let us suppose the sales season or the total
planning time horizon of the service commodities is [T0, TF ], and we want to update model parameters L
times within the season. Hence, the time horizon [T0, TF ] is divided by L sub-intervals as

[T0, T0 + ∆T ] , [T0 + ∆T, T0 + 2∆T ] , ..., [T0 + (L− 1) ∆T, TF ]

where ∆T = (TF − T0) /L. In the time moment at t = T0 + l∆T , each firm updates model parameters based
on the observation in [T0 + (l − 1) ∆T, t = T0 + l∆T ], for l = 1, 2, ..., L− 1.

Assuming that the modelling error and observation error follows Normal distributions, in this section, we
introduce a forecasting method for the model parameter, ηfi ’s, so-called the Kalman filtering, which originated
from estimating the state space in electric control systems. The Kalman filter method is to minimize the
squared estimation error. The posterior estimates are updated as long as the new observations are available;
therefore Kalman filter utilizes all the up-to-date information. For other methods, the estimation is conducted
only once and ignores the rich information contained in the new observations. Also, Kalman filter is robust
in a sense that it can handle inaccurate observations. Other methods usually assume that the observations
are accurate.

For the brevity of the presentation, we drop the superscript f for each firm. Recall the dynamics for the
demand is then

dDi (t)

dt
= ηi

(∫ t
t0

∑
g∈F π

g
i (τ)dτ

t− t0
− π (t)

)
(29)

The speed of change in demand, ηi, is fixed for solving the dynamic pricing problem, but it is stochastic and
the real value of it is unknown. After one planning horizon is over, we want to update the model parameter,
ηi, so that we would have more precise pricing policy for the next planning horizon. For this purpose, we
assume we collect the data during the previous planning horizon. Although we decide the pricing policy in
continuous time, most of collecting data activities occur in discrete time in practice. Let us denote such
discrete time index by k, and assume we collect data K times in a planning horizon. With the vector notation
η = (ηi : i ∈ S), the dynamics of η is given by the following process

η (k + 1) = η (k) + ξ (k)

where ξ (k) is a random noise from a Normal distribution N (0, Q). The matrix Q is known and called the
process-noise covariance matrix.

The value of the parameter η can not be observed directly but only by the change of realized demand,
which can be defined as

z (k) ≡ ∆D (k) = η (k)

(∑k
j=0

∑
g∈F π

g
i (j)

k∆k
− π (k)

)
∆k + ω (k) (30)

where

∆D (k) = D (k + 1)−D (k)

D = (Di : i ∈ S)

∆k ≡ tf − t0
K

and ω (k) is a random noise of observation from a normal distribution N (0, R) . The matrix R is known and
called the measurement noise covariance matrix. The expression (30) is obtained by discretizing the state
dynamics (29) of D.
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Referring Section 12.6 of Bryson and Ho (1975), we obtain the Kalman filter dynamics

η̂ (k) = η̄ (k) + V (k) [z (k)−H (k) η̄ (k)]

η̄ (k + 1) = η̄ (k)

P (k) =
[
M (k)

−1
+H (k)

T
R−1H (k)

]−1
M (k + 1) = P (k) +Q

where we defined

V (k) ≡ P (k)H (k)R−1

H (k) ≡

(∑k
j=0

∑
g∈F π

g
i (j)

k∆k
− π (k)

)
∆k

and η̄ (k) is a priori estimate of η (k) before observation and η̂ (k) is a posteriori estimate after observation.
Hence, the process of the estimation is followed:

1. Observe the previous planning time horizon to obtain sequences of exercised optimal price {π (k)} and
observed change in demand {z (k)}.

2. Let the time index k = 0 and assume the initial values P0 = 1 and η̄0 = η (the value we used for the
previous planning).

3. At index k, we forecast

η̄ (k + 1) = η̄ (k)

M (k + 1) = P (k) +Q

4. Based on the observation zk+1, we update

η̂ (k) = η̄ (k) + V (k) [z (k)−H (k) η̄ (k)]

where

H (k) ≡

(∑k
j=0

∑
g∈F π

g
i (j)

k∆k
− π (k)

)
∆k

P (k + 1) =
[
M (k + 1)

−1
+H (k + 1)

T
R−1H (k + 1)

]−1
V (k + 1) ≡ P (k + 1)H (k + 1)R−1

5. Let η̄ (k + 1) = η̂ (k + 1) .

6. If k = K stop; otherwise set k = k + 1 and go to step 3.

When we finish the estimation process, we have η̄ (K) at hand, which is the value of η which will be used
in the planning for the next time horizon.

5 A Numerical Example of the Single Firm’s Problem

Before we proceed to the game-theoretic model for the competition of service providers, we first describe the
solution method, so-called the gradient projection algorithm, for the case when only one firm exists in the
market. We obtain an optimal control problem, in which the criterion is nonlinear, the state dynamics are
linear, and the control set is convex and compact with a state-space constraint (10). Although the gradient
projection algorithm is very popular among optimal control researchers, it is not easy to find a written

10



statement of the algorithm in the revenue management literature. More information such as convergence
and varieties of the method is found in Minoux (1986), Polak (1971) and Bryson Jr. (1999).

To continue discussion in general form of the problem, we penaltize the state-space constraint so that
the criteria becomes

max
πf

Jf (πf , π−f , t) =

∫ t1

t0

[
e−ρt

(∑
i∈S

πfi ·D
f
i

)
− µ

2

{
max

(
0, ADf − Cf

)2
+ min

(
0, Df

)2}]
dt

where µ is the penalty coefficient. With the above penalty functions, our problem is reduced to the following
general class of optimal control problems:

min J (u) = K [x (tf ) , tf ] +

∫ tf

t0

f0 ((x, u, t) dt (31)

subject to

dx

dt
= f (x, u, t) (32)

x (t0) = x0 (33)

u ∈ U ⊂ V (34)

where x0 is a known, fixed vector and both t0 and tf are fixed. In addition V is a Hilbert space, in particular,
V =

(
L2 [t0, tf ]

)m
which is a m-fold square-integrable space.

Note that
H (x, u, λ, t) = f0(x, u, t) + λT f (x, u, t)

is the Hamiltonian for the unconstrained problem (31), (32) and (33).

Gradient Projection Algorithm

Step 0. Initialization. Set k = 0 and pick u0 (t) ∈
(
L2 [t0, tf ]

)m
.

Step 1. Find State Trajectory. Using uk (t) solve the state initial value problem

dx

dt
= f

(
x, u0, t

)
x (t0) = x0

and call the solution xk (t).

Step 2. Find Adjoint Trajectory. Using uk (t) and xk (t) solve the adjoint final value problem

(−1)
dλ

dt
=
∂H

(
xk, uk, λ, t

)
∂x

λ (tf ) =
∂K [x (tf ) , tf ]

∂x

and call the solution λk (t).

Step 3. Find Gradient. Using uk (t), xk (t) and λk (t) calculate

∇uJ(uk) =
∂H

(
xk, uk, λ, t

)
∂u

=
∂f0(xk, uk, t)

∂u
+
(
λk
)T ∂f (xk, uk, t)

∂u

Step 4. Update and Apply Stopping Test. For a suitably small step size θk, update according to

uk+1 = PU
[
uk − θk∇J

(
uk
)]

11



Revenue

a priori $119, 990

observed $145, 180

a posteriori $154, 110

Table 1: A priori, observed and a posteriori revenue of the firm

where PU [·] denotes the minimum norm projection onto U . If an appropriate stopping test is satisfied,
declare

u∗ (t) ≈ uk+1 (t)

Otherwise set k = k + 1 and go to Step1.

5.1 A Numerical Example

Let us consider a market where a single service provider f is offering four services. The planning horizon for
this problem is a month or 30 days. Each firm updates the model parameter once based on daily demand
observations. The firm wants to maximize the revenue with the given parameters:

η =


0.1
0.08
0.12
0.09



πmin =


30
40
60
130

 , πmax =


85
135
180
205

 , A =


1 0 0 1
1 1 0 1
0 0 1 0
0 1 0 1
1 0 0 1

 , C =


300
210
150
60
255


Once they have the optimal pricing policy, they exercise it for the planning horizon and observe what really
happens in the market. The observation of the actual realized demand occurs every week so that the firm has
52 observations for the year. With this data, the firm learns the model parameter η with the process-noise
covariance and the measurement noise covariance matrices are given as

Q =


0.3 0.1 0.1 0.1
0.1 0.5 0.1 0.1
0.1 0.1 0.2 0.1
0.1 0.1 0.1 0.3

 , R =


0.2 0.2 0.1 0.1
0.1 0.3 0.2 0.1
0.1 0.2 0.2 0.1
0.1 0.1 0.1 0.3


As the results are presented in Table 1, the observed revenue is higher than the a priori revenue estimation

which is obtained by solving the RM model with the initial η. This means that the actual speed of change
in demand dynamics is slower than the value used in planning. Hence, the firm could increase price of
service without worrying the demand to be much decreased. With the Kalman filter dynamics, we adjust
the parameter η as

ηadjusted =


0.0403
0.0436
0.0775
0.0471


which are less than the original value as we expected. With this new forecast, we perform another dynamic
price planning for the next year.
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Figure 1: A priori demand, observed demand and a posteriori demand for each service

Figure 2: A priori optimal price and a posteriori optimal price for each service

The demand and price for each service is presented in Figures 1 and 2, respectively. After the estimation,
the service prices are set at higher level generating more revenue. We should note that the problem solving
after estimation is not to follow the optimal pricing rule associated with the observed demand, but rather
to obtain more accurate pricing rule with updated parameters. Although the revenue to be generated at the
next planning could be less than planned in the reality, it would be even worse if we do not estimate the
exact value of the model parameter.

6 DVI Formulation of the Competition

Each service provider is a Cournot-Nash agent that knows and employs the current instantaneous values of
the decision variables of other firms to make its own non-cooperative decisions. Therefore (28) defines a set
of coupled optimal control problems, one for each firm f ∈ F . It is useful to note that (28) is an optimal
control problem with fixed terminal time and fixed terminal state. Its Hamiltonian is

Hf

(
πf ;Df ;λf ;σ, αf , βf ;π−f ; t

)
≡ e−ρt

(∑
i∈S

πfi ·D
f
i

)
+ Φf

(
πf ;Df ;λf ;σf ;αf ;βf ;π−f

)
(35)

where

Φf
(
πf ;Df ;λf ;σ, αf , βf ;π−f

)
=

∑
i∈S

λfi

[
ηfi ·

(
yi

|F| (t− t0)
− πfi

)]
+
∑
i∈S

σi

πfi +
∑
g∈F\f

πgi


+
∑
i∈S

αfi

(
−Df

i

)
+
∑
i∈S

βfi

(
ADf

i − C
f
i

)}
(36)

while λfi ∈ H1 [t0, tf ] is the adjoint variable for the dynamics associated with the firm f with service type

i and λ ∈
(
H1 [t0, tf ]

)|F|×|S|
, σi ∈ R1

+, α
f
i ∈ R1

+ and βfi ∈ R1
+ are the dual variables arising from the

auxiliary state variables (yi, i ∈ S) and state space constraints where σ ∈ R|S|+ , αf ∈ R|S|+ and βf ∈ R|S|+ . The

instantaneous revenue for firm f is
∑
i∈S π

f
i · D

f
i . We assume in the balance of this paper that the game

(28) is regular in the sense of Definition 1. Therefore, the maximum principle (Bryson and Ho, 1975) tells
us that an optimal solution to (28) is a sextuplet

{
πf∗ (t) , Df∗ (t) ;λf∗ (t) , σ∗, α∗f , β∗f

}
requiring that the

nonlinear program
maxHf s.t. πfmin ≤ π

f ≤ πfmax

be solved by every firm f ∈ F for every instant of time t ∈ [t0, tf ] where

πfmin =
{
πfi : i ∈ S

}
πfmax =

{
πfi : i ∈ S

}
Consequently, any optimal solution must satisfy at each time t ∈ [t0, tf ] :

πf∗ = arg

{
max

πf
min≤πf≤πf

max

Hf

(
πf ;Df ;λf ;σ, αf , βf ;π−∗f ; t

)}
(37)
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which in turn, by virtue of regularity, is equivalent to

[
∇π∗fH∗f

]T (
πf − π∗f

)
≤ 0 for all

(
πfmin

πfmin

)
≤
(
π∗f

πf

)
≤
(
πfmax

πfmax

)
(38)

where

H∗f ≡ e−ρt
(∑
i∈S

π∗fi ·D
∗f
i

)
+ Φ∗f (39)

and
Φ∗f = Φf

(
π∗f ;D∗f ;λ∗f ;σ∗f ;α∗f ;β∗f ;π−f

)
(40)

From (35)

[
∇π∗f

[
e−ρt

(∑
i∈S

π∗fi ·D
∗f
i

)]
+∇π∗f Φ∗f

]T (
πf − π∗f

)
≤ 0

for all

(
πfmin

πfmin

)
≤
(
π∗f

πf

)
≤
(
πfmax

πfmax

)

Further, adjoint dynamics and state dynamics govern

∂Hf

∂Df
i

= (−1)
dλf∗i
dt

(41)

∂Hf

∂λfi
=
dDf∗

i

dt
(42)

while due to absence of terminal time constraint, the transversality condition gives

λf∗ (tf ) = γT
∂Γ
[
Df∗ (tf ) , tf

]
∂Df∗ (tf )

= 0

which gives rise to a two point boundary value problem.
With this preceding background, we are now in a position to create a variational inequality for the non-

cooperative competition amongst the firms. We consider the following DVI which has solutions that are
Cournot-Nash equilibria for the game described above in which individual firms maximize their revenue in
light of current information about their competitors:

find π∗ ∈ Ω such that∫ tf

t0

∑
s∈S

∑
f∈F

∂H∗f

∂πfi

(
πfi − π

f∗
i

) dt ≤ 0 (43)

for all π ∈ Ω =
∏
f∈F

Ωf

where H∗f is defined in (39)-(40) and

Ωf =
{
πf : πfmin ≤ π

f ≤ πfmax

}
This DVI is regular in the sense of Definition 1 and a convenient way of expressing the Cournot-Nash game
that is our present interest.
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7 A Descent Method for Solving DVI

When the regularity conditions given in Definition 1 holds, DV I(F, f, U) is reduced to the class of variational
inequalities in a Hilbert space H considered by Konnov et al. (2002); i.e. U is a non-empty closed and convex
subset of a Hilbert space, and F is a continuously differentiable mapping of u. This allows us to analyze
DV I(F, f, U) by considering gap functions, which are defined by

Definition 4 A function ϕ : U −→ R+ is called a gap function for DV I (F, f, U) when the following
statements hold:

1. ϕ (u) ≥ 0 for all u ∈ U

2. ϕ (u) = 0 if and only if u is the solution of DV I (F, f, U)

Let us consider a function
ϕα (u) = max

v∈U
Φα (u, v) (44)

where

Φα (u, v) = 〈F (x, u, t) , u− v〉 − αφ (u, v)

x (u, t) = arg

{
dy

dt
= f (y, u, t) , y (t0) = y0

}
∈
(
H1 [t0, tf ]

)n
U ⊆

(
L2 [t0, tf ]

)m
and we assume φ is a function that satisfies following assumptions: (1) φ is continuously differentiable on(
L2 [t0, tf ]

)2m
; (2) φ is non-negative on

(
L2 [t0, tf ]

)2m
; (3) φ (u, ·) is strongly convex with modulus c > 0

for any u ∈
(
L2 [t0, tf ]

)m
; and (4) φ (u, v) = 0 if and only if u = v. The maximization problem (44) has a

unique solution since Φα (u, v) is strongly convex in v and U is convex. Let the solution of (44) vα (u) such
that ϕα (u) = Φα (u, vα (u)), then we have the following result from Kwon and Friesz (2007):

Lemma 5 The function ϕα (u) defined by (44) is a gap function for DV I (F, f, U), and u is the solution to
DV I (F, f, U) if and only if u = vα (u) .

In addition to the regular gap functions, let us introduce a special class of gap functions, so-called D-gap
functions, which are of the form

ψαβ (u) = ϕα (u)− ϕβ (u)

for 0 < α < β. While ϕα (u) is not differentiable in general, ψαβ (u) is Gateaux-differentiable. Among
many gap functions, Fukushima (1992) considered a case of gap function, the regularized gap function, and
Konnov et al. (2002) extended it to Hilbert spaces; in particular,

φ (u, v) =
1

2
‖v − u‖2 (45)

which satisfies the assumption on φ (·), the strong convexity with modulus c > 0. Adopting Fukushima
(1992)’s gap function, we obtain

Φα (u, v) = 〈F (x, u, t) , u− v〉 − α

2
‖v − u‖2

The corresponding D-gap function becomes

ψαβ (u) = 〈F (x, u, t) , vβ (u)− vα (u)〉 − α

2
‖vα (u)− u‖2 +

β

2
‖vβ (u)− u‖2 (46)

where we denote

vα (u) = arg max
v∈U

Φα (u, v) (47)

vβ (u) = arg max
v∈U

Φβ (u, v) (48)
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With the D-gap function (46), DV I(F, f, U) is equivalent to the following optimal control problem
OCP (ψαβ , f, U):

min ψαβ (u)

= 〈F (x, u, t) , vβ (u)− vα (u)〉 − α

2
‖vα (u)− u‖2 +

β

2
‖vβ (u)− u‖2

=

∫ tf

t0

{
F (x, u, t) [vβ (u)− vα (u)]− α

2
[vα (u)− u]

2
+
β

2
[vβ (u)− u]

2

}
dt (49)

subject to

dx

dt
= f (x, u, t) (50)

x (0) = x0 (51)

u ∈ U (52)

This is a Bolza form of standard optimal control problem, except the objective functional involves the
maximizers of subproblems defined by (47) and (48), vα (u) and vβ (u).

Now we are interested in the gradient of the objective functional ψαβ (u), which is, in fact, equivalent to
the gradient of the corresponding Hamiltonian function in the theory of optimal control. Let us define the
Hamiltonian function for OCP (ψαβ , f, U)

H (x, u, λ, t) = F (x, u, t) [vβ (u)− vα (u)]− α

2
[vα (u)− u]

2
+
β

2
[vβ (u)− u]

2
+ λf (x, u, t) (53)

The gradient of ψαβ (u) is determined as following:

Theorem 6 Suppose F (x, u, t) is Lipschitz continuous on every bounded subset of
(
L2 [t0, tf ]

)m
. Then

ψαβ (u) is continuously differentiable in the sense of Gateaux, and

∇ψαβ (u) =
∂

∂u
H (x, u, λ, t)

=
∂F (x, u, t)

∂u
[vβ (u)− vα (u)]

+ α [vα (u)− u]− β [vβ (u)− u] + λ
∂f (x, u, t)

∂u

We propose the following descent algorithm for OCP (ψαβ , f, U), in which the main philosophy remains
same as in usual optimal control problems except we need to solve the state dynamics, the adjoint dynamics
and two sub-maximization problems for vα and vβ to obtain the current information of the descent direction.

Step 0. Initialization. Choose 0 < α < β. Pick uk(t) ∈ U and set k = 0.

Step 1. Finding state variables. Solve the state dynamics

dx

dt
= f(x, uk, t)

x(0) = x0

and call the solution xk(t).

Step 2. Finding adjoint variables. Solve the adjoint dynamics

−dλ
dt

= ∇xH
(
xk, uk, λ, t

)
=
∂F
(
xk, uk, t

)
∂x

[
vβ
(
uk
)
− vα

(
uk
)]

+ λ
∂f
(
xk, uk, t

)
∂x

λ(tf ) = 0
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and call the solution λk(t), where

vα
(
uk
)

= PU

[
uk − 1

α
F
(
xk, uk, t

)]
vβ
(
uk
)

= PU

[
uk − 1

β
F
(
xk, uk, t

)]
Step 3. Finding the gradient. Determine

∇ψkαβ(t) = ∇uH
(
xk, uk, λk, t

)
=
∂F
(
xk, uk, t

)
∂u

[
vβ
(
uk
)
− vα

(
uk
)]

+ α
[
vα
(
uk
)
− uk

]
− β

[
vβ
(
uk
)
− uk

]
+ λ

∂f
(
xk, uk, t

)
∂u

Step 4. Updating the current control. For a suitably small step size

θk ∈ R1
++

determine
uk+1(t) = PU

[
uk(t)− θk∇ψkαβ (t)

]
Step 5. Stopping Test. For ε ∈ R1

++, a preset tolerance, stop if

||ψαβ
(
uk+1

)
|| < ε

and declare
u∗ ≈ uk+1

Otherwise set k = k + 1 and go to Step1.

The convergence result is stated as following without proof:

Theorem 7 (Convergence) Suppose the functional ψαβ : U −→ <+ is strongly convex with modulus ρ > 0
and ∇ψαβ (u) is defined and satisfies the Lipschitz condition

‖∇ψαβ (u1)−∇ψαβ (u2)‖ ≤ δ ‖u1 − u2‖ (54)

for all u1, u2 ∈ U . Then the decent algorithm converges to the minimum u∗of ψαβ on U for step size choices

θ ∈
(

0,
2ρ

δ2

)
(55)

The proofs of theorems in this section and detail discussions for gap functions are found in Kwon and
Friesz (2007).

8 A Numerical Example for the Competition with Model Param-
eter Update

Consider a market where two service providers f = 1, 2 are offering four services. The planning horizon for
this problem is a month or 30 days. Each firm updates the model parameter once based on daily demand
observations. The speed of change in demand η is assumed taking the values

Service type, i 1 2 3 4
η : Firm 1 0.10 0.08 0.12 0.09

Firm 2 0.11 0.07 0.10 0.15
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Revenue, Firm 1 Revenue, Firm 2

before estimation $65, 060 $48, 720

observed $90, 100 $71, 870

after estimation $396, 900 $440, 010

Table 2: A priori, observed and a posteriori revenue of the firm

Each firm’s initial demand at time t0 for services K0 is shown below.

Service type, i 1 2 3 4
K0 : Firm 1 10.0 17.5 22.5 30.0

Firm 2 9.5 16.5 20.0 31.0

The maximum resource of available for each firm C is considered as

Resource type, j 1 2 3 4 5
C : Firm 1 300 210 150 60 255

Firm 2 180 150 120 75 210

Assume the maximum price πmax and πmin are given as

Service type, i 1 2 3 4
πmax : Firm 1 85 135 180 205

Firm 2 75 108 185 210

and
Service type, i 1 2 3 4

πmin : Firm 1 30 40 60 130
Firm 2 45 50 65 115

Once they have the optimal pricing policy, they exercise it for the planning horizon and observe what
really happens in the market. The observation of the actual realized demand occurs every week so that
the firm has 52 observations for the year. With this data, the firm learns the model parameter η with the
process-noise covariance and the measurement noise covariance matrices are given for both firms as

Q =


0.3 0.1 0.2 0.2
0.1 0.5 0.1 0.1
0.1 0.1 0.2 0.1
0.1 0.2 0.2 0.3

 , R =


0.2 0.2 0.1 0.1
0.1 0.3 0.2 0.1
0.1 0.2 0.2 0.1
0.1 0.1 0.1 0.3


As the results are presented in Table 2, the observed revenue is higher than the projected a priori best

revenue estimation. This means that the actual speed of change in demand is slower than used in planning.
Then the firm could increase price of service without worrying the demand to be much decreased. With the
Kalman filter dynamics, we adjust the parameter η as

ηadjusted =


0.0403
0.0436
0.0775
0.0471


which are less than the original value as we expected. With this new forecast, we perform another dynamic
price planning for the next year.

The demand trajectories for each service is presented in Figures 3 and 4 for firms 1 and 2, respectively.
We observe that demand after estimation is less sensitive to the price than the demand before estimation

18



Figure 3: Firm 1’s demand trajectories (before estimation, observed, after estimation) for different services

Figure 4: Firm 2’s demand trajectories (before estimation, observed, after estimation) for different services

as the parameter value η is smaller. The trajectories of the price charged for each service is presented in
Figures 5 and 6 for firms 1 and 2, respectively. The prices are relatively at higher levels in the simulation
after estimation than before estimation. Although the revenue to be generated at the next year could be less
than planned in the reality, we would have more accurate dynamic pricing policy, as the learning process
repeats.

We note that the price will not reach a stationary state, in general. The optimal price trajectories we
would obtain in each sub-time horizon are up-to-date reflections of customers’ choice behavior, hence the
price trajectories will depend on current market state which is uncertain. However, if there is no shock in
market and we have a long enough time horizon, the price trajectory must reach a stationary state.

8.1 Computational Performance

The descent method described earlier converged after 10 iterations for this numerical example with the preset
tolerance ε = 10−4. In Figure 7, the objective values, which is the gap function value, at each iteration for a
priori and a posteriori problem solving are presented. Even though the sizes of the gap function are very big
at the first iterations for both problems, they decrease very rapidly towards zero, at which the equilibrium
point exists. The run time for this example is less than 10 seconds using a desktop computer with a Intel
Xeon processor and 4 GB RAM. The computer code for the descent method is written in MATLAB 7.0.

9 Concluding Remarks

This paper has provided a foundation for the evolutionary dynamic games with demand fluctuation and a
forecast methodology for model parameters. In addition, numerical methods for optimal control problems
and differential variational inequalities were described and shown to be effective in solving the revenue
management problems we introduced. In the model and examples we have presented, it is assumed that
the model parameters remain constant over the planning time horizon. At the end of the horizon, each firm
estimates its own model parameter using the Kalman filter based on the collection of observations gathered
in discrete times. The Kalman filtering has been proven to be one of the most effective and efficient tool to
remove the uncertainty in system dynamics and observation errors in many applications. However, each firm
does not update its parameter in real-time in the model developed in this paper. This motivates to study
more sophisticated models in the future. One possible extension will be the feedback control model using the
Kalman filter in real-time, although the assumption that the economic observations are made continuously
may be under debate. When we consider a firm’s optimal control problem, if the criterion is quadratic and
the dynamics is linear, so-called LQ control problem, it is well-known that the LQ regulator works very well
in most cases. However, the revenue management model usually does not have quadratic criterion, while
the system dynamics are most likely linear in state and control. Therefore, it will be desired that numerical
and/or analytical approximation techniques are developed.

Figure 5: Firm 1’s price trajectories (before estimation, after estimation) for different services
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Figure 6: Firm 2’s price trajectories (before estimation, after estimation) for different services

Figure 7: Change in gap function values
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