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Abstract6

The focus of this research is on supplying gasoline after a natural disaster. There are two7

aspects for this work: determination of which gas stations should be provided with generators8

(among those that do not have electric power) and determination of a delivery scheme that9

accounts for increased demand due to lack of public transportation and considerations such as10

equity. We develop a mixed integer program for this situation. Two case studies based on11

Hurricane Sandy in New Jersey are developed and solved in CPLEX. As expected, increasing12

equity increases cost and also tends to place generators to stations with large initial inventories.13

It is further observed that CPLEX can solve the largest instances of the problem for a 5 percent14

tolerance gap, indicating that the model is efficient.15
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1 Introduction17

Many critical activities of today’s industrialized societies rely on petroleum-based energy products,18

especially gasoline. Unfortunately, natural disasters such as hurricanes and earthquakes often cause19

supply chain disruptions of such petroleum goods due to lack of available supply, lack of ability to20

deliver the items to the customer, and damage to the transportation infrastructure. Another key21

aspect is that the requirements for the petroleum goods in question can change significantly as a22

result of a natural disaster. These supply chain disruptions can severely impede the natural disaster23

recovery process as seen during the mind-boggling gasoline shortage after 2012’s Superstorm Sandy;24

aggravate an existing food shortage as seen after the 2010 Chilean Earthquake; and raise the prices25

of petroleum goods as seen after the 2008 China winter storm. These are only a few of the negative26

impacts that can result from a supply chain disruption of petroleum commodities after a natural27

disaster. Secondary disruptions are likely due to the shortage of petroleum-based energy products28

such as oil, diesel fuel, and gasoline. Important examples of such secondary disruptions include29

the inability of people to go to work and the difficulty with securing basic supplies due to lack of30

transportation.31

Supply chain disruptions of energy commodities, such as gasoline shortages, result in a multitude32

of problems. For example, after Superstorm Sandy, drivers in the New York City area and parts33

of New Jersey were waiting for hours in line for the chance to buy gasoline before it ran out. Due34

to electric power outrage caused by the hurricane, the production of gasoline was disrupted and35

pumps at some gas stations were inoperable. This gasoline crisis impeded relief and recovery efforts36

and prolonged the time-period for business operations to return to normalcy. The government took37

many steps to tone down the problem, such as lifting of restrictions banning certain methods of38

transporting gasoline by the federal and state government as well as gasoline rationing. Even so,39

the severe gasoline problem lingered for weeks. Palph Bombardiere, head of the New York State40

Association of Service Stations and Repair Shops believes “Once the gasoline starts to flow, we’ll go41

back to the same old habits.” Gongloff and Chun argued potential solutions to reduce vulnerability42

to this type of event “could be costly, politically infeasible or both” (Gongloff and Chun, 2012).43

In this paper, we focus on planning for effective and equitable distribution of gasoline after a44

natural disaster. We consider three unique characteristics of the problem: (1) we take account45
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of the increased gasoline demand due to lack of public transportation, (2) we determine which46

gas stations without electric power should be provided with electric-power generators, and (3)47

we consider equitable distribution of limited resources. We develop a mixed integer program use48

Superstorm Sandy as our case study to extensively explore the opportunity of quick recovery.49

It is noted that the model and analysis can be applied to other commodities that are typically50

in short supply after a disaster. For example, it is entirely possible that several grocery stores51

are out of power after a hurricane event. Restoring power to a grocery store allows the storage52

of perishable goods such as milk and meat products. There are similarities between the supply53

chain of perishable goods and that for gasoline which can be exploited to analyze the problem of54

delivering perishable goods in the aftermath of a natural disaster.55

2 Literature Review56

We now review the related work that mainly focuses on disaster operations management and57

emergency logistics. Disaster operations management has four phases: mitigation, preparedness,58

response, and recovery (Altay and Green, 2006; Caunhye et al., 2012; Galindo and Batta, 2013b).59

Several research studies in the disaster management literature concentrate on the disaster re-60

sponse phase. Haghani and Oh (1996) propose a multi-commodity multi-modal network flow model61

to determine the transportation of emergency supplies and relief personnel. Barbarosoglu and Arda62

(2004) investigate a two-stage stochastic programming model for the transportation planning of vi-63

tal first-aid commodities. Özdamar et al. (2004) propose a dynamic time-dependent transportation64

model, a hybrid model combining the multi-commodity network flow and vehicle routing problems,65

for emergency logistics planning. Gong and Batta (2007) formulate a model to locate and allocate66

ambulances after a disaster. Sheu (2007) provides a hybrid fuzzy clustering-optimization approach67

for efficient emergency logistics distribution. Sheu (2010) proposes a dynamic relief-demand man-68

agement methodology, which involves data fusion, fuzzy clustering, and the Technique for Order of69

Preference by Similarity to Ideal Solution (TOPSIS), for emergency logistics operations. Caunhye70

et al. (2015) focus on casualty response planning for catastrophic radiological incidents and propose71

a location-allocation model to locate alternative care facilities and allocate casualties for triage and72

treatment.73

Some recent research studies consider combining disaster preparedness and disaster response74
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decisions. Mete and Zabinsky (2010) propose a two-stage stochastic programming model for storing75

and distributing medical supplies and a mixed integer linear program for subsequent vehicle loading76

and routing for each scenario realization. Rawls and Turnquist (2010) propose a two-stage stochas-77

tic mixed integer program for prepositioning and distributing emergency supplies. Lodree et al.78

(2012) provide a two-stage stochastic programming model for managing disaster relief inventories.79

Rawls and Turnquist (2012) extend Rawls and Turnquist (2010) to incorporate dynamic delivery80

planning. Galindo and Batta (2013a) propose an integer programming model for prepositioning81

emergency supplies for hurricane situations. Rennemo et al. (2014) provide a three-stage stochastic82

mixed integer programming model for locating distribution centers and distributing aid. Galindo83

and Batta (2016) incorporate periodic forecast updates for predictable hurricanes and propose a84

forecast-driven dynamic model for prepositioning relief supplies. Caunhye et al. (2016) propose a85

stochastic location-routing model for prepositioning and distributing emergency supplies.86

In the context of gasoline supply disruption after a natural disaster, the response phase is87

most relevant. The response actions involve many emergency logistics problems that do not occur88

in normal daily operations, and include providing food, clothes, and other critical supplies for89

evacuees and impacted people. These supply problems to help disaster relief operations are often90

called humanitarian logistics problems Van Wassenhove (2006).91

The humanitarian logistics literature that addresses the critical notion of equity is limited92

(Huang et al., 2012). Fortunately Karsu and Morton (2015) reviewed the equity, balance of op-93

timization models in the operations research. Four types of equity approached was discussed in94

their paper. Relevant models include a max-min approach for customer satisfaction (Tzeng et al.,95

2007), a min-max approach for waiting time (Campbell et al., 2008), a multi-objective approach96

that minimizes unsatisfied demand along with other costs (Lin et al., 2011), and a multi-objective97

approach that minimizes the maximum pairwise difference in delivery times (Huang et al., 2012).98

In our paper, we utilize the max-min approach to address equity concerns.99

3 Modeling100

In the aftermath of a natural disaster, especially when supply chain infrastructures are largely101

destroyed, supply chain disruption occurs. Gasoline delivery is highly impacted and limited, since102

there are number of refineries and terminals out of operation. With limited gasoline resource103
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and generators available, effective and equitable gasoline delivery and generator allocation highly104

impact the recovery and rebuilding of the community. As illustrated in Figure 1, a typical gasoline105

supply chain consists of four stages: producing/importing crude oil, refining into gasoline, blending106

gasoline with ethanol, and retailing and transportation between them. A disruption by a natural107

disaster can happen in any stage (U.S. Energy Information Administration, 2013). Let us take108

Superstorm Sandy as an example. After Sandy’s arrival, a total of 9 refineries in the area were shut109

down and a total of 57 petroleum terminals were either shut down or were running with reduced110

capacity (Benfield, 2013). Motivated by such a scenario, we will try to maximize the total gasoline111

sale of all gasoline stations across the regions, and at the same time incorporate the requirement112

of equity of delivery across the regions. To capture this objective, we maximize the total gasoline113

delivery plus equity. Since it is important to fulfill the gasoline demands of the communities to114

have a speedy recovery from disaster, in our model we will not consider any cost or profit factor,115

instead we aim at fast and efficient delivery of gasoline. We consider all the related constraints,116

e.g., gas station capacity. We also consider that each gas station will have a gasoline sale cap, which117

is usually not the case considered in regular gas station operations. But after Superstorm Sandy,118

people and cars were waiting in a line to fill gas for their home electric generators and cars. We119

thus have limited gasoline pumps to fulfill the demands of the community.120

Figure 1: Gasoline Supply Chain Overview (Source: U.S. Energy Information Administration 2013)

Based on the fact that many refineries and petroleum terminals were shut down in the aftermath121

of Hurricane Sandy, in this paper we assume that we have a single depot for available gasoline122
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resource and delivery trucks. We further assume that this depot will only supply gasoline to the123

affected regions. There is limited gasoline resource available in this single depot. And because of124

that, we will also assume each gas station in the affected regions will only demand gasoline. Of125

course these gas stations will have reserve capacity and sale capacity limitations. After Superstorm126

Sandy, New Jersey and New York city both ordered a mandatory ration to regulate access to gas127

stations for a few weeks. So we consider our model with a limited time period. This time period128

can be as short as a day or as long as a few weeks according to the severity of the aftermath of a129

natural disaster. We will assume each delivery truck will deliver on a full truck load to one single130

gasoline station and we cannot partially deliver gasoline. This is typical for gasoline delivery, where131

a compartment of a truck should ideally emptied to minimize the danger of an explosion due to132

the creation of gasoline vapour. We can also deliver a few truck loads to a single gas station if one133

single delivery of gasoline would not satisfy the demand. In the aftermath of Superstorm Sandy,134

lots of gasoline stations were out of power even though these stations still had gasoline in stock.135

To address this, we assume a pool of available generators that can be assigned to the gas stations136

which are out of power. Then, based on the assigned generators, we will assign trucks to deliver137

full truck load gasoline to those stations.138

We assume that there is a set of regions I, indexed by i. Let J be the set of all gas stations in139

all regions, indexed by j. J = J1 ∪J2, where J1 is the set of gas stations with power aftermath and140

J2 is the set of gas stations which are out of power. We assume T as the number of time periods.141

Let Gi be the set of gas stations in region i. For each gasoline station, let Wj be the storage142

capacity at gas station j, Oj be the maximum output at gas station j, and Vj be the initial storage143

inventory at gas station j. Now let us assume that there is a set of available generators B. For the144

simplification of the modeling and at the same time without loss of generality, we assume that there145

are two types of gasoline delivery trucks available, type 1 truck and type 2 truck. Each truck tank146

only contains a single compartment (which makes sense after a natural disaster since high demand147

quantities at gas stations will be highly likely). For the two types of trucks parameters, the total148

number of available type 1 delivery trucks is denoted by A1, while the total number of available149

type 2 delivery trucks is denoted by A2. Let C1 be the capacity of a type 1 delivery truck, C2 be150

the capacity of a type 2 delivery truck. In our model, we have a combined demand for each region151

for each time period since we assume that the customers can only fulfill their demands within their152
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residential regions. Let Dit represents the total demand in region i at time period t and Ei be the153

truck delivery efficiency for region i. For example, if region i has a truck delivery efficiency value of154

2 in period t, each truck delivering gasoline in region i can be utilized two times in period t. This155

allows us to make appropriate assignments of trucks to regions during each time period. Finally,156

we assume that the quantity of available gasoline resource at time t is Rt.157

Let sjt denote the variable for usable inventory at gas station j at time t. We want to place158

generators into gas stations which are out of power aftermath. Let xj be the binary variable, which159

is equal to 1 if we locate a generator to gas station j in the set of J2, 0 otherwise. After placing the160

generators, we are able to allocate the available gasoline resource to the gas stations. Define y1
jt as161

the nonnegative integer variable which represents the number of type 1 truck deliveries to the gas162

station j at time t, and y2
jt as the nonnegative integer variable which represents the number of type163

2 truck deliveries to the gas station j at time t. Let qjt be the fulfilled quantity at gas station j164

at time t. Last, define z as the equity variable with parameter λ. As stated in Section 2, we have165

selected a max-min approach to modeling equity. This is why we wish to maximize the minimum166

ratios of total output quantities of the region’s demand. Here the ratio of total output quantities167

of the region’s demand signifies a level of service. The constraints in the model are designed to168

ensure that the equity variable z takes on this value.169

The parameter λ comes into play since a multi-objective approach is used, which weights the gas170

station output with equity. Here λ is the weight of the equity variable, clearly, alternative schemes171

for handling the multi-objective nature of this problem can be used. For example, a constraint172

could be set on the value of the equity variable instead of incorporating equity directly in the173

objective function.174

The list of notation is summarized as follows:175

Sets176

I: The set of regions, indexed by i177

J1: The set of gas stations which still operate aftermath178

J2: The set of gas stations which run out of power aftermath179

J : The set of all gas stations, indexed by j. J = J1 ∪ J2180

Gi: The set of gas stations in region i181

Parameters182
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T : Time period indexed by t183

Wj : The storage capacity at gas station j184

Oj : The maximum output at gas station j185

Vj : The initial inventory at gas station j186

B: Total number of generators available187

A1: Total number of type 1 trucks available188

A2: Total number of type 2 trucks available189

C1: The capacity of type 1 trucks190

C2: The capacity of type 2 trucks191

Ei: Efficiency of truck delivery for region i192

Dit: The total demand of region i at time period t193

Rt: The total available gasoline resource at time period t194

λ: The parameter for equity variable195

Decision Variables196

sjt: The usable inventory variable for gas station j at time period t197

xj : Binary variable equal to 1 if a generator is located at gas station j, 0 otherwise198

y1
jt: The integer variables for the number of type 1 truck deliveries to gas station j at time t199

y2
jt: The integer variables for the number of type 2 truck deliveries to gas station j at time t200

qjt: The output of gas station j at time period t201

z: The equity variable202

203

The following linear integer program model represents our formulation:204

[Obj] max
T∑
t=1

∑
j∈J

qjt + λz (1)

s.t.
∑
j∈J2

xj ≤ B, (2)

sj,0 = Vj , ∀j ∈ J1, (3)

sj,0 = xjVj , ∀j ∈ J2, (4)

sj,t = sj,t−1 + C1y
1
j,t + C2y

2
j,t − qj,t, ∀j ∈ J, for t = 1, 2, ..., T, (5)
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qjt ≤ Oj , ∀j ∈ J, for t = 1, 2, ..., T, (6)

C1y
1
jt ≤Wjxj , ∀j ∈ J2, for t = 1, 2, ..., T, (7)

C2y
2
jt ≤Wjxj , ∀j ∈ J2, for t = 1, 2, ..., T, (8)

sj,t−1 + C1y
1
jt + C2y

2
jt ≤Wj , ∀j ∈ J, for t = 1, 2, ..., T, (9)

qjt ≤ sj,t−1 + C1y
1
j,t + C2y

2
j,t, ∀j ∈ J, for t = 1, 2, ..., T, (10)∑

j∈Gi

qjt ≤ Dit, ∀i ∈ I, for t = 1, 2, ..., T, (11)

∑
i∈I

∑
j∈Gi

(1/Ei)y
1
jt ≤ A1, for t = 1, 2, ..., T, (12)

∑
i∈I

∑
j∈Gi

(1/Ei)y
2
jt ≤ A2, for t = 1, 2, ..., T, (13)

∑
j∈J

(C1y
1
jt + C2y

2
jt) ≤ Rt, for t = 1, 2, ..., T, (14)

z ≤
∑

j∈Gi
qjt

Dit
, ∀i ∈ I, for t = 1, 2, ..., T, (15)

xj ∈ {0, 1}, ∀j ∈ J, (16)

sjt ≥ 0, ∀j ∈ J, for t = 1, 2, ..., T, (17)

qjt ≥ 0, ∀j ∈ J, for t = 1, 2, ..., T, (18)

y1
jt, y

2
jt ∈ I+, ∀j ∈ J, for t = 1, 2, ..., T, (19)

z ≥ 0. (20)

The objective function (1) is to maximize the total fulfilled gasoline outputs plus equity. Con-205

straint (2) makes sure that the number of generators that we will locate in the set J2 is less than206

or equal to the total number of available generators. Constraint (3) assigns initial inventory for the207

set J1. Constraint (4) assigns initial inventory for the set of J2 since only inventories in those gas208

stations located with generators are countable. Constraint (5) sets next period usable inventory209

for each gas station at time period t. Constraint (6) ensures that the fulfilled gasoline quantity210

at each gas station is less or equal to the maximum output of the gas station at time period t.211

Constraints (7, 8) ensure that only gas stations located with generators in the set J2 can have212

gasoline deliveries. Constraint (9) makes sure that the usable inventory is less than the capacity213

of the gas station. Constraint (10) ensures the fulfilled gasoline output is less than or equal to the214

usable inventory of the gas station at time period t. Constraint (11) makes sure that the total215
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output quantity in each region is less than or equal to the regional demand at time t. Constraints216

(12, 13) ensure that the number of utilized trucks does not exceed the total number of available217

trucks of each type. Constraint (14) makes sure the total allocated gasoline resource could not218

exceed the available resource at time t. Constraint (15) is the equity constraint. Here we set our219

equity as the maximum of the minimum ratio of total output quantities over the region’s demand.220

Constraint (16) is the binary constraint to place generators. Constraints (17), (18), and (20) are221

the nonnegative constraints since we cannot sell any gasoline if our inventory stock is negative.222

Constraint (19) is the nonnegative integer constraint which means that we could deliver multiple223

truck loads of gasoline to one single gas station based upon appropriate situations, e.g., the gas224

station is the only station that is still open within the region. In the sections that follow, intuitions225

and deductions are italicized to enhance readability for a practitioner/decision maker.226

4 Numerical Example227

We now provide a numerical example to explain the model. For simplicity, we will only consider four228

small regions with gas stations. Figure 2 shows the regions, along with a gasoline station diagram229

where gas stations with/without power are indicated. In order to simplify the display, we will just230

assume that the single depot is located in the center of four regions. We test different efficiency231

parameters for different regions. If the efficiency parameter is 2, it means that each single truck232

can transport two truck loads to the region. Thus the utilization of each type of truck assigned to233

those regions with efficiency parameter 2 will be doubled. Table 1 lists all the parameters and their234

values.235

We tested three values of λ: 0, 100, and 200 for different equitability scenarios to gain a236

perspective on the impact of parameter λ on the performance. We run this model using IBM ILOG237

CPLEX for a total of three scenarios. All these scenarios utilize the same parameter data set as238

listed in Table 1. For scenario 1, we set parameter λ for equitability z as 0, scenario 2 with the239

value of λ as 100, and scenario 3 with the value of λ as 200. Figures 3 and 4 shows the results of240

where we are going to place the generators for different scenarios.241

From Figure 3, we can see that, for scenario 1 where the value of λ is zero, we tend to place the242

only 2 available generators to gas stations 4 and 6 with the objective value of 212. When the equity243

parameter λ is zero, our goal is to maximize the total gasoline sale. Hence placing the two available244
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Figure 2: An Illustrative Example.

Table 1: Parameter Values
Parameter Description Value
I Set of regions {1, 2, 3, 4}
J1 Set of gasoline stations which still operate aftermath {2, 5, 9, 10, 11}
J2 Set of gasoline stations which run out of power aftermath {1, 3, 4, 6, 7, 8, 12}
J The set of all gas stations, indexed by j. J = J1 ∪ J2 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
Wj The storage capacity at gas station j 20, 10, 8, 24, 30, 26, 12, 18, 20, 24, 30, 26
Oj The maximum output at gas station j 10, 5, 4, 12, 15, 14, 6, 9, 10, 12, 15, 13
Vj The initial inventory at gas station j 12, 2, 3, 20, 4, 19, 6, 12, 0, 12, 5, 18
T Time period indexed by t 1, 2, 3, 4, 5
B Total number of generators available 2
A1 Total number of type 1 trucks available 3
A2 Total number of type 2 trucks available 6
C1 The capacity of type 1 trucks 10
C2 The capacity of type 2 trucks 6
Dit The total demand of region i at time period t 100 for each region at period t
Rt The total available gasoline resource at time period t 30 for each period t
Ei Efficiency of truck delivery for region i E1=3, E2=2, E3=2, E4=3
λ The parameter for equity variable 0, 100, 200
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Figure 3: Generator Placement for the Illustrative Example.

Figure 4: Generator Placement for the Illustrative Example (continued).
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generators at gas stations 4 and 6 is optimal since these two gas stations have the largest initial245

gasoline inventory. Consider scenario 2 in Figure 3, in this case, we will still place the two available246

generators to gas station 4 and gas station 6, but since we slightly increase the weight of the equity247

factor λ to 100, we obtain the objective value of 216.67 with the equity value z=0.0467. When248

we increase the weight of the equity parameter λ (but not large enough to overcome the impact of249

large initial inventories), we still place our available generators at gas stations with large initial250

inventory. Now let us look at scenario 3 in Figure 4 where the value of λ is equal to 200. In this251

case, we place the two generators at gas station 1 and gas station 6 which will produce the objective252

value of 224 while generating the largest equity value z as 0.1 across these three scenarios. We note253

that the first two scenarios only produce equity values 0 and 0.0467, respectively.254

Figure 5: Truck Assignments for Scenario 3 Period 1.

In our numerical study we test 5 periods. Figures 5–9 provide us detailed information regarding255

truck assignments for each period. In these five figures, the numbers above the arrows means256

numbers of each type of delivery trucks. For example, in Figure 5, 1(2)above the arrow means one257

type 2 truck, 2(2) means two type 2 trucks, 1(1) in Figure 6 means one type 1 truck etc. The case258

that we show in Figures 5–9 is for scenario 3 where the value of the equity factor λ is 200. From259
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Figure 6: Truck Assignments for Scenario 3 Period 2.

Figure 7: Truck Assignments for Scenario 3 Period 3.

13



Figure 8: Truck Assignments for Scenario 3 Period 4.

Figure 9: Truck Assignments for Scenario 3 Period 5.
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Figure 5, we can see that for period 1, we will assign one type 2 truck to gas stations 2, 5, and 6260

and two type 2 trucks to gas station 9 since gas station 9 has power but with zero initial inventory261

available. As for period 2 in Figure 6, we will assign one type 1 truck to gas stations 1, 5, and 10.262

In period 3 from Figure 7, we will continue to assign two type 1 trucks to gas station 5 and one263

type 1 truck to gas station 6. We then assign one type 2 truck to gas stations 1 ,2, 6, 9, and 11264

in period 4 as in Figure 8. Finally, in period 5 showed in Figure 9, one type 1 truck is assigned to265

gas stations 1, 5, and 6. The total sale value is 204 for all periods with 42, 40, 40, 41 and 41 for266

each period, respectively. As we mentioned earlier, for scenario 3 we have the value of the equity267

factor λ as 200 and an equity variable value of 0.1. Our finally objective is 224, including the total268

sale quantity and equity weight. From this numerical case study we can see that our model is quite269

flexible and sensitive when we want to maximize sale quantity with the equity weight considered.270

We can see that as the value of λ increases, the equity variable z and the objective value gets larger.271

To maximize the outputs of all gasoline stations, we tend to place generators at stations with large272

initial inventories. However when we increase the value of equity parameter λ, we tend to evenly273

distribute generators so as to improve the equity value.274

5 Case Study for Two Counties in the State of New Jersey275

In late October of 2012, Superstorm Sandy hit the Eastern Coastal areas of the United States. The276

total loss or damage by Superstorm Sandy was roughly 72 billion dollars. Among them, the State277

of New Jersey and New York City were badly hit by Sandy (Benfield, 2013). In this case study,278

we utilize gasoline station data we obtain from the New Jersey Office of GIS Open Data source279

online to apply our model (New Jersey Office of GIS, 2016). After Superstorm Sandy, most of the280

refineries and terminals were shut down due to the damage of the storm, the State of New Jersey281

encountered gasoline shortage and trucks are waiting in the line to fill gas. Houses, cars, and trucks282

etc were out of power, and the need of gasoline dramatically increased, trucks and individuals were283

lined up in the queue to wait for gas fulfillment.284

Among counties in the State of New Jersey, we pick Monmouth and Ocean Counties for our285

case study since these two counties are the most hit counties across New Jersey state. Figure 10286

provides a glance at the gas station map in these two counties. After Superstorm Sandy, about287

40 percent of gasoline stations in New Jersey were closed either because of power loss or gasoline288
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Figure 10: Gas Station Map for Monmouth and Ocean Counties in New Jersey

shortage (Smith, 2012). In this case study, we will consider the case with 40 percent of gas stations289

out of power. In order to reflect the fact of the gasoline demand crisis, we will assume our demand290

is three times of maximum gasoline outputs for all gasoline stations within the region. The gasoline291

stations within the same region will share the demand of the region. We also assume customers292

within the region will be only served by the gasoline stations in the region.293

Since we only have the gas station location information, it is impossible to get all the parameters294

for each single gas station. So we randomly generate parameters such as Wj the storage capacity at295

gas station j, Oj the maximum output at gas station j, and Vj the initial inventory at gas station j.296

We randomly generate the storage capacity of gas stations within a range of 8000 gallons to 35000297

gallons, and generate initial inventory Vj of each gas station j randomly within a range of 0 gallon298

to Wj (the storage capacity at gas station j). Then we assume the maximum output of each gas299

station j is half of its respective storage capacity. Based on the same set of gas station parameter300

data, we construct 12 cases in two groups. For each of the 12 cases, we generate 30 replications301

based on the fact that 40 percent of gasoline stations are out of power. So for each replication, we302
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randomly select gas stations and let these stations have power. These 30 replications are shared303

by each individual case so that we can conduct valid comparisons on the same data set. All 12304

cases are developed based on the factors of truck numbers, truck capacities, number of available305

generators, equity parameter λ, available resource and region efficiencies. We run our cases by IBM306

ILOG CPLEX (version 12.6.1) with a computer processor of Intel (R) Xeon (R) CPU e5-2630 v3307

@2.4GHz and 32GM installed memory (RAM). In order to speed up the case study all cases are308

run with a 5 percentage of tolerance gap from optimal.309

As we said previously, we conduct these 12 cases in two different groups. One group consists of310

8 cases. All these 8 cases are generated by differentiating truck parameters while keeping the same311

total delivery capacity. Table 2 provides detailed information regarding each individual case. For312

each case, there are 72 regions, 453 gas stations, 12 periods, 30 generators, an equity parameter313

weight λ = 2× 109, resource at period t Rt = 106 , and region efficiency = 2. The objective value,314

equity z, total delivery, and CPU time are average values of the 30 replications for each single case.315

From Table 2 (rows with parameter changes are boldfaced), we can see that, with the same total316

delivery capacity 1,150,000 gallons in total, the size and numbers of each type of truck affect our317

result quite significantly. We see that when we have more trucks with smaller capacities for both318

types of trucks, e.g., cases 3, 4, 6, and 7, our objective value, total delivery quantities and equity319

variable can all achieve better results while the CPU solving time tends to take much longer. While320

in the cases where we have large capacities of trucks, e.g., cases 1, 5, and 8, our solution solving321

time improves dramatically without sacrificing the objective value and equity much. As for case322

2, we see that if we have really unbalanced number of types of vehicles and the truck capacity is323

relatively large, the total delivery quantity is not affected much. We actually improve the solution324

solving time but with the sacrifice on equity and objective value.325

For group 2, we pick one of the cases in the previous group (case 8). Then we fix the trucks326

parameters, such as number of available trucks and capacity of each different size of trucks. We327

simply change one parameter for each case as listed in Table 3. Similar to group 1, We run each of328

30 replications again for these 5 cases. The results are listed in Table 3. Here, each case have 72329

regions, 453 gas stations, 12 periods, 34 type 1 trucks, 15,000 type 1 truck capacity, 80 type 2 trucks,330

and 8,000 type 2 truck capacity. Again, the objective value, equity z, total delivery, and CPU time331

are averaged cross 30 replications for each case. Case 8 serves as the baseline for this group. We see332
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that if we decrease the equity parameter λ, we will still achieve a similar total delivery quantity. The333

equity value z is hardly affected although the solution solving time significantly improves. As for case334

10, we decrease the number of available generators. Usually generators are very expensive and the335

stakeholder of the relative parties (e.g. New Jersey government) would not have lots of generators336

on hand. Thus the result of case 10 demonstrates that the equity value will drop significantly even337

though we only reduce 20 generators. The total delivery drops not much due to the fact that we338

have very limited resource, while solving time increases quite a bit. Case 11 is quite obvious since339

we double our available resource. In this case, the objective value, equity value, and total delivery340

quantity increase significantly while solution solving time just increases a little bit. In case 12, we341

simply change all the region efficiency values from 2 to 1. It means that, each type of truck can only342

be utilized once for each single period. But in other cases, each type of truck can by utilized twice343

in each period. This implies that we have affectively reduced the total number of available trucks.344

We see that the solution time is reduced but other values, e.g., objective value, equity, and total345

delivery actually do not change much. This is because the number of available trucks are enough to346

carry out the delivery job.347

Table 3: Five Cases with Fixed Truck Parameters
Case 8 Case 9 Case 10 Case 11 Case 12

Number of generators 30 30 10 30 30
Weight of equity (λ) 200,000,000 200 200,000,000 200,000,000 200,000,000
Resource at t (Rt) 1,000,000 1,000,000 1,000,000 2,000,000 1,000,000
Region efficiency 2 2 2 2 1
Objective value 26,835,218 14,256,237 14,834,092 38,364,007 26,851,117
Equity z 0.0623860 0.0000000 0.0039128 0.0649604 0.0625146
Total delivery (gallons) 14,358,023 14,256,237 14,051,529 25,371,920 14,348,197
CPU time (s) 9.91 0.83 65.93 12.15 6.29

6 Case Study for All Counties in the State of New Jersey348

We follow the same process as the previous case study to utilize gasoline station data which we349

obtain from the New Jersey Office of GIS Open Data source online (New Jersey Office of GIS, 2016).350

We still consider the case with 40 percent of gas stations out of power. Same as the previous case351

study, we will assume our demand is three times of the maximum gasoline outputs for all gasoline352

stations within each region. The gasoline stations within the same region will share the demand of353

the region. Customers within the region will be only served by the gasoline stations in the region.354
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We also randomly generate gas station parameters such as Wj , Oj , and Vj . The storage capacity355

of gas stations will also be generated within the range of 8,000 gallons to 35,000 gallons, and initial356

inventory Vj of each gas station j randomly within the range of 0 gallon to Wj . The maximum357

output of each gas station j is half of its respective storage capacity. Based on the same set of358

gas station parameter data, we construct 8 cases. For all these cases, we will only generate one359

replication based on the fact that 40 percent of gasoline stations are out of power. All these cases360

will share the same data set. Again we run these 9 cases by IBM ILOG CPLEX (version 12.6.1)361

on the same pc as the previous case study. All cases are run with a 5 percentage of tolerance gap362

from optimal since the data set is really large (e.g., there are a total of 3,387 gas stations in the363

state of New Jersey). Table 4 provides us detailed information regarding each individual case, with364

each case having 489 regions, 3387 gas stations, 12 periods, 400 type 1 trucks, 15,000 capacity for365

type 1 trucks, 500 type 2 trucks, and 8,000 capacity for type 2 trucks. Since the data set is large366

when we consider all gas stations in New Jersey, the region efficiency parameters are set to 2 for367

some regions close to the depot and 1 for the rest of regions. Cases 1, 2, and 3 in Table 4 show us368

that once we increase the number of available generators, we can obtain a much better equity value369

while decreasing the solution solving time significantly. Now let us compare cases 4, 5, and 2 since370

in these cases we simply change the equity weight parameter value from 0 as in case 4, 20,000 as in371

case 5, and 200,000,000 in case 2. We see that for the large data set, in order to achieve a better372

equity value, we have to use a very large value for equity weight parameter. Now compare case373

6 with case 2. We see that if we change all the region efficiency parameter to 1, in this case, the374

change does not affect the results much. The reason is because we have enough trucks available.375

Last let us compare cases 2, 7, and 8. We see that the available resource affects our objective value376

very much. When we get more available gasoline resource, our objective value and total delivery377

increase. The solution solving time for a smaller resource value as in case 8 is significantly longer378

when we try to achieve a better equity value and total delivery. From this large case study, we379

conclude that our model is effective and efficient.380

7 Hazardous Nature of Gasoline Delivery and Future Work381

Gasoline and other petroleum-based energy products such as diesel fuel, kerosene, and liquefied382

petroleum gas (LPG) are considered as ‘hazardous materials’ (hazmat) as defined by Pipeline and383
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Hazardous Materials Safety Administration (2013). In hazmat transportation, risk management384

against accidents with hazmat spills is a critical issue to protect the environment, communities, and385

the road infrastructure. In the literature of hazmat transportation using trucks, the key attributes386

in risk management are accident probabilities and accident consequences (Batta and Kwon, 2013;387

Erkut et al., 2007; Sun et al., 2015; Toumazis and Kwon, 2015; Esfandeh et al., 2016). After a388

natural disaster, with damaged infrastructure, the probability of hazmat spill increases significantly;389

hence hazmat transportation can potentially lead to a catastrophic environmental disaster.390

In fact, fuel oil, diesel fuel, and gasoline are the three hazardous materials with the highest391

probability of being involved in a transportation-related accident after a natural disaster. For392

example, out of 170 cases of accidents involving hazardous materials triggered by flooding reported393

by the European Directive on dangerous substances, 142 of them were fuel oil, diesel fuel, or gasoline394

(Cozzani et al., 2010). Thus transport risk should be incorporated as part of model to make it395

more realistic.396

Our model presented in this paper may be extended to consider such hazardous nature of397

gasoline delivery after a natural disaster as follows to minimize the risk of hazmat accidents during398

the delivery. First, the model needs to take account of the routing component. The model in399

this paper only considers delivery schedules, without determining which routes to take to travel400

between gas stations and the depot. Since the accident probability and consequence are dependent401

on the routes chosen, the road condition, and the weather condition, a robust routing method402

based on robust optimization (Kwon et al., 2013) or averse risk measure (Toumazis and Kwon,403

2015) will be necessary. Second, a real-time component for monitoring road condition needs to404

be incorporated. The damages to the road conditions after a natural disaster are often collected405

with delays, and the situation can be worsened with time, for which case a time-dependent routing406

method (Toumazis and Kwon, 2013) would be useful. Third, equity of hazmat risk should be407

considered. In the distribution of gasoline, people near the destination of shipping benefits. On408

the other hand, people near the shipping routes will be exposed to risk of hazmat spills. Thus, it409

is important to balance the equity of gasoline distribution (this paper) and the equity of hazmat410

risk avoidance (Kang et al., 2014).411

22



8 Conclusions412

In the aftermath of a natural disaster, the gasoline supply chain may be disrupted. Gasoline413

shortage may become a key factor to the recovery of the community. In our model, we consider414

a single depot and two types of delivery trucks with limited gasoline resource in a limited time415

period. We utilize the limited back up generators and optimize the generators assignment and416

truck deliveries to the gas stations to achieve maximum gasoline delivery, and at the same time417

incorporate the equity factor across the different regions.418

Our major conclusions are as follows:419

• As the equity parameter increases, we get an increase in cost. Thus a tradeoff is needed.420

• To maximize output of gasoline stations, we tend to place generators at stations with large421

initial inventories.422

• Increasing the equity parameter tends to evenly distribute generators across stations.423

• Reusing trucks when possible does not have a significant effect due to limited supply of424

gasoline.425

• It is important to have a large number of available generators to achieve more equitable426

solutions.427

• The model is effective and efficient, with solution within 5 percent tolerance level achievable428

for a realistic case study using a commercial solver like CPLEX.429

In addition to the future research directions mentioned in Section 7, we also need to understand430

how individuals seek gas in a gas shortage situation, to evaluate the true impact of our model.431

Analytical models based on queueing and simulation models and their interactions with the base432

model presented in this paper would be useful contributions.433
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