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Abstract

We consider a leader-follower game in the form of a bi-level optimization problem that simul-

taneously optimizes facility locations and network design in hazardous materials transportation.

In the upper level, the leader intends to reduce the facility setup cost and the hazmat exposure

risk, by choosing facility locations and road segments to close for hazmat transportation. When

making such decisions, the leader anticipates the response of the followers who want to minimize

the transportation costs. Considering uncertainty in the hazmat exposure and the hazmat

transport demand, we consider a robust optimization approach with multiplicative uncertain

parameters and polyhedral uncertainty sets. The resulting problem has a min-max problem in

the upper level and a shortest-path problem in the lower level. We devise an exact algorithm

that combines a cutting plane algorithm with Benders decomposition.

Keywords: bi-level optimization; facility location; network design; cutting plane; Benders

decomposition; hazardous materials

1 Introduction

Hazardous materials (hazmat) are “solids, liquids, or gases that are harmful to people, property,

and the environment” (United Nations, 2009). A large amount of hazmat are generated in industrial

production and transported over various transportation modes. Trucks are the most popular mode

of transporting hazmat (Erkut et al., 2007). For example, in the U.S., more than 2.4 billion tons of

hazmat were transported by trucks in 2012 (U.S. Department of Transportation, 2015). Accidents
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involving hazmat can create catastrophic consequences; hence the road system is facing pressure on

the constantly increasing amount of hazmat shipments. Managing risk in hazmat transportation is

important in any industrial society.

In most cases, the hazmat producers are responsible to carry hazmat to an appropriate processing

facility. The hazmat carriers make their choices about the transportation route, usually, aiming

to minimize the shipment cost. The local route decision of hazmat carriers is beyond the control

of the government, who considers the impact of hazmat transportation from a global perspective

of managing the entire road network and other infrastructure systems. The government wants to

minimize the total shipment exposure risk and total facility construction costs. To achieve this

goal, the government may consider road-ban policies to specify the available and unavailable roads

for hazmat shipments. Such policies prohibit hazmat carriers from choosing a route with small

transportation costs but with great hazmat exposure risk. The problem to determine such road-ban

policies is called a hazmat network design problem in the literature.

In this paper, we consider a combined hazmat facility locations and network design problem.

We assume that origin points where hazardous materials are produced are known, but destination

points (disposal facility location) are not. Instead, hazmat carriers are assumed to choose the nearest

facility if multiple facilities are available within the network; therefore, the route decision of hazmat

carriers is dependent on the location decision of the government. When the government determines

the locations of hazmat processing facilities, we assume that the government also considers a

road-ban policy to design the hazmat network, upon which the route decision of hazmat carriers

also depends. This structure of hierarchical decision-making has been considered in a bi-level

optimization framework in the literature (Kara and Verter, 2004; Erkut and Alp, 2007; Gzara, 2013;

Berglund and Kwon, 2014; Marcotte et al., 2009; Sun et al., 2015). We will present our problem as

a bi-level optimization problem as well.

We consider uncertain hazmat transportation demands and uncertain hazmat accident risks.

By assuming data for the demands and risks are available as intervals, we consider the worst-case

scenario using a robust optimization approach. We will consider polyhedral uncertainty sets as

considered in Bertsimas and Sim (2003). In our problem, the two uncertain parameters form a

product in the objective function, for which we adopt the approach of Kwon et al. (2013).

Our work is closely related to Berglund and Kwon (2014) and Gzara (2013). Berglund and

Kwon (2014) have considered a robust hazmat facility location problem. Our modeling approach for

the robust combined facility location and network design problem extends the work of Berglund

and Kwon (2014). The computational method proposed by Berglund and Kwon (2014), however, is

a genetic algorithm, which does not produce an exact optimal solution in general. In this paper, for

the combined problem, we devise an exact algorithm by adopting the cutting plane algorithm of

Gzara (2013) and combining with Benders decomposition.

Gzara (2013) has devised a cutting plane algorithm for solving the bi-level hazmat network

design problem. The model of Gzara (2013), however, only considered a network design decision

without considering data uncertainty. Our problem is a robust optimization problem that considers
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the facility location decision and the network design decision jointly. As we adopt the cutting plane

algorithm of Gzara (2013) to the robust combined problem, we have revised the cut generation

method for the joint decision. We also simplify the inequalities in the cuts and eliminate the need

for additional binary variables. In our problem, the master problem is significantly harder to solve,

mainly due to the robustness consideration; we devise a Benders decomposition (Benders, 1962)

approach for solving the master problem. While a Benders decomposition approach has been used

to solve a single-level reformulation of the deterministic hazmat network design problem (Fontaine

and Minner, 2018), we use Benders decomposition to solve the robust master problem involving

uncertainty within the cutting plane algorithm framework for the joint decision of facility location

and network design.

The contributions of this paper are summarized as follows. We consider a combined facility

location and network design problem for hazmat transportation. By assuming data uncertainty, we

formulate a robust optimization problem as a bi-level mixed-integer optimization problem, where the

upper-level problem has a min-max structure. We propose a cutting plane algorithm incorporated

with Benders decomposition to solve the robust combined problem.

The remainder of this paper is as follows. In Section 2, more related works are summarized and

the relevance to our work is discussed. In Section 3, a bi-level location-network design mathematical

optimization model is formulated. In Section 4, we present a cutting plane algorithm, combined with

Benders decomposition, to solve the optimization problem. In Section 5, we provide a single-level

reformulation of the bi-level robust problem. Results from numerical experiments are discussed in

Section 6. Finally, conclusions and future researches are provided in Section 7.

2 Literature Review

In this section, we review the literature in the four categories: hazmat facility location, hazmat

network design, combined facility and network design in non-hazmat context, and robust optimization

approaches in hazmat transportation.

2.1 Hazmat Facility Location Problems

There are a variety of methods for facility location problem in hazmat transportation. The

related studies assume that facility locations are not given and need to solve a routing problem.

Carotenuto et al. (2007) propose two greedy algorithms to select the path which minimizes the total

risk. Xie et al. (2012) study multi-objective hazmat model that optimizes facility locations and

routes in the long-distance transportation and solve the mixed integer linear program by CPLEX.

Jarboui et al. (2013) propose various neighborhood search (VNS) heuristics for solving location-

routing problem. Samanlioglu (2013) studies a location-routing problem and propose a lexicographic

weighted Tchebycheff formulation to minimize multi-objectives of total cost, transportation risk,

and site risk. Ardjmand et al. (2015) apply a novel genetic algorithm for location-routing problem in

facilities and disposal sites. Romero et al. (2016) analyze location-routing decisions considering equity
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based on Gini coefficient and propose a method that combines Lagrangian relaxation with column

generation. Rabbani et al. (2018) emphasize on hazmat formulation restriction, i.e., incompatibility

between different kinds of waste with multi-objectives of minimizing total cost, transportation risk,

and site risk. They use Nondominated Sorting Genetic Algorithm (NSGA-II) and Multi-Objective

Particle Swarm Optimization (MOPSO) to solve the problem. For earlier works, see Berglund and

Kwon (2014) and references therein.

2.2 Hazmat Network Design Problems

There are also some research papers related to network-design problem. The routing is also

considered when the locations of origin-destination pairs are given. Verter and Kara (2008) provide

a path-based formulation for network design hazmat shipment problem and compromise between

exposure risk and economic viability. Garrido (2008) and Marcotte et al. (2009) study a network-

design problem where origin-destination pairs are given and aim to minimize exposure risk. They

design the network by road pricing method, and Wang et al. (2012) improve the method and propose

a dual-toll pricing policy. Bianco et al. (2009) provide a linear bi-level programming formulation

for the hazmat transportation network design that considers minimizing total risk and risk equity.

They propose a heuristic algorithm to find a stable solution. Gzara (2013) proposes a family of

valid cuts and incorporates with an exact cutting plane algorithm for solving a bi-level network

flow model. Bianco et al. (2015) study a novel toll setting policy and formulate a mathematical

programming with equilibrium constraints where the government aims to minimize total risk and

carriers intend to minimize travel cost. Taslimi et al. (2017) propose a bi-level network design model

with the aim to minimize the maximum zone total risk and propose a greedy heuristic approach for

large-size problems. Esfandeh et al. (2017) formulate the time-dependent network design problem

based on altering carriers’ departure times and route choices and extend the model that can consider

consecutive time-based road closure policies and allow carriers to stop at the intermediate nodes.

2.3 Combined Facility Location and Network Design Problem in Non-hazmat

Context

To the best of our knowledge, there are few papers related to combined facility location and

network design problem in hazmat transportation; we review some relevant papers in non-hazmat

context. The main difference between hazmat and non-hazmat problems is that hazmat problems

usually need to be in the bi-level form with hierarchical decision-making.

Melkote and Daskin (2001b) investigate a generalized model that optimizes facility location and

transportation network. Then they extend the model when facilities have capacity constraint and

present several classes of valid inequalities to strengthen its LP relaxation (Melkote and Daskin,

2001a). Ravi and Sinha (2006) propose an approximation algorithm for combined facility location

and network design problem with minimizing facilities opening costs and transportation costs.

Gelareh and Pisinger (2011) formulate a mixed integer linear programming for deep-sea liner service

providers’ locations and network design and propose a primal decomposition method. Contreras
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et al. (2012) present two mixed integer programming formulations which generalize the classical

p-center problem in order to minimize the maximum customer-facility travel time. Ghaderi and

Jabalameli (2013) present a model for the budget-constrained facility location–network design

healthcare problem with minimizing multi-objectives of total travel costs and operating costs for

facilities and network arcs. And a greedy heuristic is proposed based on simulated annealing and

cutting plane method. Rahmaniani and Ghaderi (2013) propose a fix-and-optimize heuristic to

solve bi-objective combined facility location and network design problem with capacitated arcs.

Ghaderi (2015) studies a facility location-network design problem over several different time periods

in order to minimize the maximum travel time between each pair of origin-destination and proposes

an improved Variable Neighborhood Search.

2.4 Robust Optimization Approaches in Hazmat Transportation

In hazmat transportation problems, considering data uncertainty is necessary (Kwon et al.,

2013). Stochastic programming methods are, however, less effective, because historical data are

often insufficient to construct probability distributions for the risk exposure. When probability

distributions of uncertain parameters are unknown, robust optimization is a useful technique

(Bertsimas and Sim, 2003). Killmer et al. (2001) study a noxious facility location problem involving

uncertainty by a robust optimization method. Sharma et al. (2009) formulate and solve the multi-

objective robust network design problem with uncertain demand. Berglund and Kwon (2014)

consider a robust facility location and routing problem for hazardous materials management with

the objective of minimizing the total cost and also analyze the impact of uncertainty in the demand

and exposure risk. Xin et al. (2015) use robust optimization method to formulate a bi-level model

under risk values uncertainty for designing hazmat transportation network. Sun et al. (2015) study

a robust hazmat network design problem considering risk uncertainty and devise a heuristic method

with Largrangian relaxation. Sun et al. (2017) consider behavioral uncertainty from hazmat carriers

and formulate a robust optimization problem, for which a cutting plane algorithm is devised.

3 The Robust Combined Facility Location-Network Design Prob-

lem

We consider a graph G(N ,A) where N is the set of nodes and A is the set of directed arcs.

We assume that the sources of hazmat are at the known subset of nodes in the network, but the

destinations (disposal facility) are not. We let S denote the set of hazmat shipments and o(s)

denote the origin node of shipment s ∈ S. We want to determine the proper number and locations

for constructing facilities from a set of the candidate facility sites. Note that we assume disposal

facilities do not generate hazmat; i.e.,
⋃
s∈S o(s) ∩M = ∅, where M denotes the set of candidate

facility locations. At the same time, we will consider a road-ban policy by network designer. The

upper level objective function is to minimize a linear combination of fixed facility cost and the

worst-case exposure risk. The lower level objective function is to minimize the transportation cost
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for hazmat carriers. We assume that the hazmat carriers choose the least cost route to the nearest

hazmat facility.

For shipment s, the expected number of trucks required is N s. We let the anticipated risk

induced by each truck for shipment s on arc (i, j) is Rsij . While the population exposure is a popular

choice for the risk measure Rsij , one may use other metrics such as the accident probability and the

environmental impact. We require the risk measure Rsij to hold linearity and additivity properties

that ensures risk being measurable as the linear combination of metrics.

While one can estimate N s and Rsij based on a survey and the national averages, the values of

these two critical parameters are hardly known exactly (Berglund and Kwon, 2014). To address such

data uncertainty, we employ a robust optimization approach. Following Berglund and Kwon (2014),

we assume that the demand is given as an interval [N s, N s +Ks] and the risk as [Rsij , R
s
ij +Qsij ].

We denote the routing variable of hazmat carriers by x, where xsij = 1 if arc (i, j) is chosen for

shipment s and xsij = 0 otherwise. The worst-case total risk can be modeled as follows:

max
u∈U,v∈V

∑
(i,j)∈A

∑
s∈S

(N s +Ksus)(Rsij +Qsijvij)x
s
ij

where the uncertainty sets U and V are bounded. The uncertain variables u and v are constrained

to stay within a specific range, and the total deviation from nominal values is limited by a budget

of uncertainty. In particular, we define the uncertainty sets with the budget of uncertainty, Γu and

Γv, as follows:

U =

{
u :
∑
s∈S

us ≤ Γu, 0 ≤ us ≤ 1

}
V =

{
v :

∑
(i,j)∈A

vij ≤ Γv, 0 ≤ vij ≤ 1

}
.

Using the notation introduced in Table 1, we formulate the robust combined location-network

design problem as the following bi-level optimization problem:

minimize
y,z

[
w1

∑
i∈M

Fiyi + w2 max
u∈U,v∈V

∑
(i,j)∈A

∑
s∈S

(N s +Ksus)(Rsij +Qsijvij)x
s
ij

]
(1)

subject to yi ∈ {0, 1} ∀i ∈M (2)

zij ∈ {0, 1} ∀(i, j) ∈ A (3)

where x solves

minimize
x

∑
(i,j)∈A

∑
s∈S

cijx
s
ij (4)

subject to
∑

j:(i,j)∈A

xsij −
∑

j:(j,i)∈A

xsji


= 1 if i = o(s)

≥ −yi if i ∈M

= 0 otherwise

∀i ∈ N , s ∈ S (5)
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Table 1: Mathematical Notation

Sets
N the set of nodes
A the set of arcs
S the set of hazmat shipments
M the set of candidate facility locations
K the set of chosen facility locations

Parameters
cij the cost of transportation though arc (i, j) ∈ A
Rsij the measure of exposure risk of shipment s ∈ S through arc (i, j) ∈ A
o(s) the node where hazmat are generated for shipment s ∈ S, o(s) ∩M = ∅
Fi the cost of constructing a hazmat processing facility at node i ∈M
N s the number of trucks required for shipment s ∈ S
Γu the budget of uncertainty in the number of trucks
Γv the budget of uncertainty in exposure risk
Ks the width of the uncertainty in the number of trucks required by shipment s ∈ S
Qsij the width of the uncertainty in the exposure risk through arc (i, j) ∈ A

Variables
xsij 1, if arc (i, j) ∈ A is chosen for shipment s ∈ S; 0, otherwise.

yi 1, if a facility is located at node i ∈ N ; 0, otherwise.
zij 1, if arc (i, j) ∈ A is available for shipments; 0, otherwise.
us the uncertainty variable for the number of trucks required for shipment s ∈ S.
vij the uncertainty variable for the exposure risk through arc (i, j) ∈ A.
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xsij ≤ zij ∀(i, j) ∈ A, s ∈ S (6)

xsij ∈ {0, 1} ∀(i, j) ∈ A, s ∈ S. (7)

Note that since facilities construction cost and exposure risk are not directly comparable, we will

make a trade-off between these two parts of the objective function, i.e., set a dollar amount equal to

a unit of exposure risk. If the decision maker is prone to avoid risk, he/she can set a higher dollar

cost equal to a unit of risk, and vice versa. In the upper level objective function (1), w1 and w2

represent the weight for cost and risk. The first part is the total facility construction cost and the

second part represents the worst-case risk. Without loss of generality, we assume (w1, w2) = (1, 1)

for the rest of this paper.

The lower level objective function (4) is to minimize the carriers’ own shipment cost. Constraint

(5) ensures that origin nodes must have net outflow of 1; when node i is selected as a facility (yi = 1),

node i can have net outflow of either −1 if node i is chosen as a destination or 0 otherwise; when

node i is not selected as a facility (yi = 0), node i is same as an intermediate node with zero net

outflow; and all other intermediate nodes must have a zero balance. Constraint (6) means that

selecting arc (i, j) is constrained by whether it is available (zij = 1) or not (zij = 0). Constraints

(2), (3), and (7) represent that routing variable x, location variable y, and network design variable

z are binary variables.

The bi-level optimization problem, where the upper-level problem is a min-max problem, can be

formulated as a single-level optimization problem, shown in Section 5. The resulting single-level

problem may be solved by off-the-shelf optimization solvers such as Gurobi and CPLEX, when the

problem instance is small. For large problems, optimization solvers struggle with computational

difficulty as shown in Section 6. There is also an issue with big-M in the single-level problem.

4 An Exact Solution Method

To solve the bi-level mixed integer program problem, we propose a cutting plane algorithm based

on the cuts in Gzara (2013) and the idea of transforming location-network design problem into a

pure network design problem from Melkote and Daskin (2001b). The nature of the cutting plane

algorithm is to compare upper level objective (the Government’s global goal) path and lower level

objective (carrier’s goal) path. When these two paths are same, an optimal solution is obtained.

While the cutting plane algorithm can separate the lower-level problem as a subproblem from the

upper-level master problem, the master problem is a computationally challenging problem, mainly

due to the worst-case consideration in the upper-level objective. To tackle such difficulty, we use

a Benders decomposition approach for solving the master problem. To distinguish master and

subproblem from the cutting plane algorithm and Benders decomposition, we use C-Master/C-Sub

and B-Master/B-Sub, respectively. We illustrate the entire computational framework in Figure 1.

The dotted line represents the original flow in the cutting plane algorithm of Gzara (2013), which is

replaced by Benders decomposition in this paper. Note that generated cuts in C-Master are carried
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Figure 1: Flow Chart for the Cutting Plane Algorithm combined with Benders decomposition.

over to B-Master, while Benders cuts are not carried over to C-Master.

4.1 Cutting Plane Algorithm

The master problem obtains the minimization of facility construction cost and the total shipment

risk. The valid cuts (Section 4.2) will be added to C-Master iteratively. By adding cuts, network

design variables zij can be changed to ensure carriers not to choose a certain arc. C-Master is firstly

formulated as follows:

minimize
x,y,z

[ ∑
i∈M

Fiyi + max
u,v

∑
(i,j)∈A

∑
s∈S

(N s +Ksus)(Rsij +Qsijvij)x
s
ij

]

subject to
∑

j:(i,j)∈A

xsij −
∑

j:(j,i)∈A

xsji


= 1 if i = o(s)

≥ −yi if i ∈M

= 0 otherwise

∀i ∈ N , s ∈ S

xsij ≤ zij ∀(i, j) ∈ A, s ∈ S

xsij ∈ {0, 1} ∀(i, j) ∈ A, s ∈ S

yi ∈ {0, 1} ∀i ∈M

zij ∈ {0, 1} ∀(i, j) ∈ A∑
s∈S

us ≤ Γu
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∑
(i,j)∈A

vij ≤ Γv

0 ≤ us ≤ 1 ∀s ∈ S

0 ≤ vij ≤ 1 ∀(i, j) ∈ A

additional cuts (23) (Section 4.2) added

Note that the above problem is a robust optimization problem for combined facility location-

network design decisions, with additional cuts generated from the lower-level sub problem. To

reformulate this problem as a single-level problem, we use dualization and linearization techniques

introduced in Kwon et al. (2013). The inner maximization part can be expanded as follows:

max
u∈U,v∈V

∑
(i,j)∈A

∑
s∈S

(N s +Ksus)(Rsij +Qsijvij)x
s
ij

=
∑

(i,j)∈A

∑
s∈S

N sRsijx
s
ij + max

u∈U,v∈V

∑
(i,j)∈A

∑
s∈S

(N sQsijvij +KsRsiju
s +KsQsiju

svij)x
s
ij

For any give x, the inner maximization problem is equivalent as follows:

maximize
u,v

∑
(i,j)∈A

∑
s∈S

(N sQsijvij +KsRsiju
s +KsQsiju

svij)x
s
ij

subject to
∑
s∈S

us ≤ Γu, 0 ≤ us ≤ 1∑
(i,j)∈A

vij ≤ Γv, 0 ≤ vij ≤ 1

By letting wsij represent the quadratic term usvij for each (i, j) ∈ A, s ∈ S, the above model can be

linearized as follows:

maximize
u,v

∑
(i,j)∈A

∑
s∈S

(N sQsijvij +KsRsiju
s +KsQsijw

s
ij)x

s
ij

subject to us ≤ 1 ∀s ∈ S (ρs)

vij ≤ 1 ∀(i, j) ∈ A (ξij)

− us + wsij ≤ 0 ∀(i, j) ∈ A, s ∈ S (ηsij)

− vij + wsij ≤ 0 ∀(i, j) ∈ A, s ∈ S (πsij)∑
s∈S

us ≤ Γu (θu)∑
(i,j)∈A

vij ≤ Γv (θv)

us ≥ 0 ∀s ∈ S

vij ≥ 0 ∀(i, j) ∈ A

10



The dual variables ρs, ξij , η
s
ij , π

s
ij , θu and θv are introduced. The dual problem of the above problem

becomes:

minimize
ρ,ξ,η,π,θu,θv

∑
s∈S

ρs +
∑

(i,j)∈A

ξij + Γuθu + Γvθv

subject to ρs −
∑

(i,j)∈A

ηsij + θu ≥
∑

(i,j)∈A

KsRsijx
s
ij ∀s ∈ S

ξij −
∑
s∈S

πsij + θv ≥
∑
s∈S

N sQsijx
s
ij ∀(i, j) ∈ A

ηsij + πsij ≥ KsQsijx
s
ij ∀(i, j) ∈ A, s ∈ S

ρs, ξij , η
s
ij , π

s
ij , θu, θv ≥ 0 ∀(i, j) ∈ A, s ∈ S

We present the single-level linear optimization problem for C-Master:

[C-Master]

minimize
x,y,z,ρ,ξ,η,π,θu,θv

∑
i∈M

Fiyi +
∑

(i,j)∈A

∑
s∈S

N sRsijx
s
ij +

∑
s∈S

ρs +
∑

(i,j)∈A

ξij + Γuθu + Γvθv

subject to
∑

j:(i,j)∈A

xsij −
∑

j:(j,i)∈A

xsji


= 1 if i = o(s)

≥ −yi if i ∈M

= 0 otherwise

∀i ∈ N , s ∈ S (8)

xsij ≤ zij ∀(i, j) ∈ A, s ∈ S (9)

xsij ∈ {0, 1} ∀(i, j) ∈ A, s ∈ S (10)

yi ∈ {0, 1} ∀i ∈M (11)

zij ∈ {0, 1} ∀(i, j) ∈ A (12)

ρs −
∑

(i,j)∈A

ηsij + θu ≥
∑

(i,j)∈A

KsRijx
s
ij ∀s ∈ S (13)

ξij −
∑
s∈S

πsij + θv ≥
∑
s∈S

N sQsijx
s
ij ∀(i, j) ∈ A (14)

ηsij + πsij ≥ KsQsijx
s
ij ∀(i, j) ∈ A, s ∈ S (15)

ρs, ξij , η
s
ij , π

s
ij , θu, θv ≥ 0 ∀(i, j) ∈ A, s ∈ S (16)

additional cuts (23) (Section 4.2) added

Let x,y, z be the solution of the C-master problem. The C-master problem is still difficult to

solve; we use Benders decomposition to solve it. C-Master is divided into an integer Benders Master

problem (B-Master) and a continuous Benders Sub problem (B-Sub). The decision variables are

divided into two parts: binary variables xsij , yi, zij and continuous variables ρs, ξij , η
s
ij , π

s
ij , θu, θv.

The B-Sub problem generates a cut that is added to B-Master problem in every iteration. When

the objectives of B-Master and B-Sub are same, the solutions x, y, and z are obtained.
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Figure 2: Conversion to a pure network design problem

Fixing y = y and z = z, we write the C-Sub problem as follows:

[C-Sub]

minimize
x

∑
(i,j)∈A

∑
s∈S

cijx
s
ij

subject to
∑

j:(i,j)∈A

xsij −
∑

j:(j,i)∈A

xsji


= 1 if i = o(s)

≥ −yi if i ∈M

= 0 otherwise

∀i ∈ N , s ∈ S

xsij ≤ zij ∀(i, j) ∈ A, s ∈ S

xsij ∈ {0, 1} ∀(i, j) ∈ A, s ∈ S

Let x̂ be the solution of the C-Sub problem, which represents the path which minimizes the

transportation costs with the given facility location and network design.

4.2 Cut Generation

While Gzara (2013) has provided effective cut generation methods for the hazmat network

design problem, our problem involves both network design and facility location variables. To apply

the method of Gzara (2013) to our problem, we first transform the combined facility location and

network design problem to a pure network design problem (Melkote and Daskin, 2001b). As shown

in Figure 2, all facility candidate locations are first connected to a dummy node via dummy arcs.

Since the risk and transportation cost are zero in all dummy arcs, constructing a facility in a

candidate location is equivalent to opening the corresponding dummy arc for traveling. By adding

the dummy node, labeled as ‘0’, and dummy arcs, labeled as (k, 0) for each candidate location

k ∈M, we obtain new sets of nodes and arcs as follows:

N0 = N ∪ {0}

A0 = A ∪ {(k, 0) : k ∈M}

12



As a result, we obtain an augmented graph G0(N0,A0), in which new “network design” variable zk0

for each k ∈M corresponds to location variable yk.

For each shipment s, two solutions x and x̂ utilize different paths. Among such two different

paths, we obtain two distinct subpaths p and p̂ from x and x̂, respectively. Adding the dummy

node to p and p̂, we obtain subpaths p0 and p̂0 defined in G0(N0,A0), respectively. When the cuts

suggested by Gzara (2013) are applied in G0(N0,A0), we obtain:∑
(i,j)∈p0

xsij ≤ |p0| − 1 + unew (17)

unew ≤ xsij ∀(i, j) ∈ p0 (18)∑
(i,j)∈p̂0

zij ≤ |p̂0| − unew (19)

unew ∈ {0, 1} (20)

where |p| means the number of arcs in path p. We first show that the above cuts can be simplified.

Proposition 1. Inequalities in (17)–(20) hold if and only if∑
(i,j)∈p̂0

zij ≤ |p̂0|+ |p0| − 1−
∑

(i,j)∈p0

xsij (21)

holds.

Proof. We consider each direction separately.

[ =⇒ ] Summing inequalities (17) and (19), we obtain∑
(i,j)∈p0

xsij +
∑

(i,j)∈p̂0

zij ≤ |p0| − 1 + |p̂0|,

which is (21).

[⇐= ] We now show that (21) implies (17)–(20). We consider two cases:

(i) When
∑

(i,j)∈p0 x
s
ij = |p0|. Then xsij = 1 for all (i, j) ∈ p0. Also (21) implies that

∑
(i,j)∈p̂0

zij ≤ |p̂0| − 1.

For such x and z, we can set unew = 1 so that (17)–(20) hold.

(ii) When
∑

(i,j)∈p0 x
s
ij ≤ |p0| − 1. Then xsij = 0 for some (i, j) ∈ p0. Observe that the

right-hand-side of (21) is greater than or equals to |p̂0|. Since zij is binary, we have∑
(i,j)∈p̂0 zij ≤ |p̂0| by definition. Therefore by setting unew = 0, we find that (17)–(20)

hold.

13



Note that (21) can be written as∑
(i,j)∈p̂0

(1− zij) ≥ 1− |p0|+
∑

(i,j)∈p0

xsij , (22)

which has the following simple interpretation. If we want to flow x through subpath p0, i.e.∑
(i,j)∈p0 x

s
ij = |p0|, then at least one arc (i, j) ∈ p̂0 must be closed or

∑
(i,j)∈p̂0(1− zij) ≥ 1.

Then we write the cut (22) in the original network G(N ,A).

Proposition 2. Let

δ̂k =

1 if p̂ includes node k

0 otherwise

for each k ∈M. Then the cut in (22) is equivalently written as∑
(i,j)∈p̂

(1− zij) +
∑
k∈M

δ̂k(1− yk) ≥ 1− |p|+
∑

(i,j)∈p

xsij (23)

for the original network G(N ,A).

Proof. If subpath p includes any facility location, we observe that

|p0| = |p|+ 1∑
(i,j)∈p0

xsij =
∑

(i,j)∈p

xsij + 1

since every shipment must flow to the dummy node. If subpath p does not involve a facility location,

then

|p0| = |p|∑
(i,j)∈p0

xsij =
∑

(i,j)∈p

xsij .

Therefore, in both cases, we have

|p0| −
∑

(i,j)∈p0

xsij = |p| −
∑

(i,j)∈p

xsij .

With similar consideration, we also observe that∑
(i,j)∈p̂0

(1− zij) =
∑

(i,j)∈p̂

(1− zij) +
∑
k∈M

δ̂k(1− yk).
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Hence, we obtain a proof.

4.3 Benders Decomposition for Solving C-Master

To solve the C-Master problem, we consider Benders Decomposition. The Benders Master

(B-Master) problem contains binary variables xsij , yi, and zij and constraints that restrict the binary

variables; namely, (8)–(12) and the cuts added in C-Master. We define the B-Master problem as

follows:

[B-Master]

minimize
x,y,z,d

∑
i∈M

Fiyi +
∑

(i,j)∈A

∑
s∈S

N sRsijx
s
ij + d

subject to
∑

j:(i,j)∈A

xsij −
∑

j:(j,i)∈A

xsji


= 1 if i = o(s)

≥ −yi if i ∈M

= 0 otherwise

∀i ∈ N , s ∈ S

xsij ≤ zij ∀(i, j) ∈ A, s ∈ S

xsij ∈ {0, 1} ∀(i, j) ∈ A, s ∈ S

yi ∈ {0, 1} ∀i ∈M

zij ∈ {0, 1} ∀(i, j) ∈ A

cuts (23) (Section 4.2) carried over from C-Master

additional Benders cuts (24) added

where d represents the remainder of the objective function that will be computed by sub-problems

and constrained by Benders cuts. Let x̃, ỹ, z̃, and d̃ denote the optimal solutions of B-Master.

Then B-Master gives a lower bound for C-Master. We let

LB =
∑
i∈M

Fiỹi +
∑

(i,j)∈A

∑
s∈S

N sRsij x̃
s
ij + d̃.

The Benders Sub (B-Sub) problem contains continuous variables ρ, ξ,η,π, θu, θv and constraints

(13)–(16). The B-Sub problem is given by fixing x, y, and z with a solution of x̃, ỹ, and z̃ by

solving the B-Master problem. The B-Sub problem is defined as follows:

[B-Sub]

minimize
ρ,ξ,η,π,θu,θv

[∑
s∈S

ρs +
∑

(i,j)∈A

ξij + Γuθu + Γvθv

]
subject to ρs −

∑
(i,j)∈A

ηsij + θu ≥
∑

(i,j)∈A

KsRij x̃
s
ij ∀s ∈ S (αs)
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ξij −
∑
s∈S

πsij + θv ≥
∑
s∈S

N sQsij x̃
s
ij ∀(i, j) ∈ A (βij)

ηsij + πsij ≥ KsQsij x̃
s
ij ∀(i, j) ∈ A, s ∈ S (γsij)

ρs, ξij , η
s
ij , π

s
ij , θu, θv ≥ 0 ∀(i, j) ∈ A, s ∈ S

Because the optimality and valid cuts of B-Master problem can be defined by the dual variables of

B-Sub problem, we formulate the dual for B-Sub. The dual variables αs, βij , and γsij are introduced.

The dual problem for B-Sub is presented as follows:

[The Dual of B-Sub]

maximize
α,β,γ

∑
(i,j)∈A

∑
s∈S

(KsRsij x̃
s
ijα

s +N sQsij x̃
s
ijβij +KsQsij x̃

s
ijγ

s
ij)

subject to αs ≤ 1 ∀s ∈ S

βij ≤ 1 ∀(i, j) ∈ A

− αs + γsij ≤ 0 ∀(i, j) ∈ A, s ∈ S

− βij + γsij ≤ 0 ∀(i, j) ∈ A, s ∈ S∑
s∈S

αs ≤ Γu∑
(i,j)∈A

βij ≤ Γv

αs, βij , γ
s
ij ≥ 0 ∀(i, j) ∈ A, s ∈ S

Let α̃s, β̃ij , and γ̃sij be the optimal solution of the Dual of the B-Sub problem. The following

valid cut is added to the B-Master problem:∑
(i,j)∈A

∑
s∈S

(KsRsijα̃
s +N sQsij β̃ij +KsQsij γ̃

s
ij)x

s
ij ≤ d. (24)

We also obtain an upper bound for C-Master as follows:

UB =
∑
i∈M

Fiỹi +
∑

(i,j)∈A

∑
s∈S

N sRsij x̃
s
ij +

∑
(i,j)∈A

∑
s∈S

(KsRsij x̃
s
ijα̃

s +N sQsij x̃
s
ij β̃ij +KsQsij x̃

s
ij γ̃

s
ij).

If UB = LB, then an optimal solution for C-Master is obtained.

5 A Single-Level Reformulation

We provide a single-level reformulation of the robust combined location-network design problem

given in (1)–(7). We first replace the lower-level problem by its optimality conditions using

techniques similar to the methods used by Arslan et al. (2018). Then we dualize and linearize the

inner maximization problem for the worst-case consideration as done in Berglund and Kwon (2014).
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The resulting single-level reformulation involves a big-M like constant bounded by
∑

(i,j)∈A cij . We

will use this single-level reformulation as a benchmark for the cutting-plane method developed in

Section 4.

5.1 Replacing the Lower-Level Problem by Optimality Conditions

Since the lower-level shortest path problem has the property of totally unimodular matrices

(Kara and Verter, 2004), the binary variable xsij can be relaxed to a nonnegative real number. We

also introduce a dummy node 0 to transform the problem into a pure network design problem as

done in Section 4.2. The lower-level problem can be written equivalently as follows:

minimize
x

∑
(i,j)∈A

∑
s∈S

cijx
s
ij

subject to
∑

j:(i,j)∈A

xsij −
∑

j:(j,i)∈A

xsji



= 1 if i = o(s)

+xi0 = 0 if i ∈M

= −1 if i = 0

= 0 otherwise

∀i ∈ N , s ∈ S (−λsi )

(1− zij)xsij ≤ 0 ∀(i, j) ∈ A, s ∈ S (−µsij)

(1− yi)xsi0 ≤ 0 ∀i ∈M, s ∈ S (−µsi0)

xsij ≥ 0 ∀(i, j) ∈ A, s ∈ S

xsi0 ≥ 0 ∀i ∈M, s ∈ S

The dual variables −λsi and −µsij are introduced. The dual problem is:

maximize
λ,µ

∑
s∈S

(
λs0 − λso(s)

)
(25)

subject to − λsi + λsj − (1− zij)µsij ≤ cij ∀(i, j) ∈ A, s ∈ S (26)

− λsi + λs0 − (1− yi)µsi0 ≤ 0 ∀i ∈M,∀s ∈ S (27)

µsij ≥ 0 ∀(i, j) ∈ A, s ∈ S (28)

µsi0 ≥ 0 ∀i ∈M, s ∈ S (29)

Using an approach similar to Arslan et al. (2018), we obtain the following result:

Proposition 3. Let µ =
∑

(i,j)A cij . There exists an optimal solution for (25)–(29) with µsij =

µsi0 = µ for all s ∈ S, (i, j) ∈ A and i ∈M.

Proof. By letting λso(s) = 0 without loss of generality, we obtain:

maximize
λ,µ

∑
s∈S

λs0
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subject to λsj ≤ λsi + cij + (1− zij)µsij ∀(i, j) ∈ A, s ∈ S

λs0 ≤ λsi + (1− yi)µsi0 ∀i ∈M,∀s ∈ S

µsij ≥ 0 ∀(i, j) ∈ A, s ∈ S

µsi0 ≥ 0 ∀i ∈M, s ∈ S

Note that µ does not contribute to the objective function; therefore we can make (1− zij)µsij and

(1− yi)µsi0 arbitrarily large to maximize λs0. Since λs0 represents a label for node d, we can bound

µsij and µsi0 by µ.

Therefore, the dual feasibility becomes:

λsj ≤ λsi + cij + (1− zij)µ ∀(i, j) ∈ A, s ∈ S

λs0 ≤ λsi + (1− yi)µ ∀i ∈M,∀s ∈ S.

Note that µ behaves like big-M constants. For the optimality condition, instead of the strong duality,

we can use the reverse weak duality (Amaldi et al., 2011; Arslan et al., 2018) in the following form:∑
s∈S

(
λs0 − λso(s)

)
≥

∑
(i,j)∈A

∑
s∈S

cijx
s
ij

Therefore, the robust combined location-network design problem becomes:

minimize
x,y,z,λ

[ ∑
i∈M

Fiyi + max
u∈U,v∈V

∑
(i,j)∈A

∑
s∈S

(N s +Ksus)(Rsij +Qsijvij)x
s
ij

]

subject to
∑

j:(i,j)∈A

xsij −
∑

j:(j,i)∈A

xsji


= 1 if i = o(s)

≥ −yi if i ∈M

= 0 otherwise

∀i ∈ N , s ∈ S

xsij ≤ zij ∀(i, j) ∈ A, s ∈ S∑
s∈S

(
λs0 − λso(s)

)
≥

∑
(i,j)∈A

∑
s∈S

cijx
s
ij

λsj ≤ λsi + cij + (1− zij)µ ∀(i, j) ∈ A, s ∈ S

λs0 ≤ λsi + (1− yi)µ ∀i ∈M,∀s ∈ S

xsij ∈ {0, 1} ∀(i, j) ∈ A, s ∈ S

yi ∈ {0, 1} ∀i ∈M

zij ∈ {0, 1} ∀(i, j) ∈ A

λsi ≥ 0 ∀i ∈ N ∪ {0}.
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5.2 Dualizing and Linearizing the Inner Maximization Problem

The inner maximization problem can be dualized and linearized as done in Section 4.1. Finally,

we obtain the single-level reformulation of the robust combined location-network design problem as

follows:

minimize
x,y,z,λ,ρ,ξ,η,π,θu,θv

[ ∑
i∈M

Fiyi +
∑

(i,j)∈A

∑
s∈S

N sRsijx
s
ij +

∑
s∈S

ρs +
∑

(i,j)∈A

ξij + Γuθu + Γvθv

]

subject to
∑

j:(i,j)∈A

xsij −
∑

j:(j,i)∈A

xsji


= 1 if i = o(s)

≥ −yi if i ∈M

= 0 otherwise

∀i ∈ N , s ∈ S

xsij ≤ zij ∀(i, j) ∈ A, s ∈ S∑
s∈S

(
λs0 − λso(s)

)
≥

∑
(i,j)∈A

∑
s∈S

cijx
s
ij

λsj ≤ λsi + cij + (1− zij)µ ∀(i, j) ∈ A, s ∈ S

λs0 ≤ λsi + (1− yi)µ ∀i ∈M, ∀s ∈ S

ρs −
∑

(i,j)∈A

ηsij + θu ≥
∑

(i,j)∈A

KsRsijx
s
ij ∀s ∈ S

ξij −
∑
s∈S

πsij + θv ≥
∑
s∈S

N sQsijx
s
ij ∀(i, j) ∈ A

ηsij + πsij ≥ KsQsijx
s
ij ∀(i, j) ∈ A, s ∈ S

xsij ∈ {0, 1} ∀(i, j) ∈ A, s ∈ S

yi ∈ {0, 1} ∀i ∈M

zij ∈ {0, 1} ∀(i, j) ∈ A

λsi ≥ 0 ∀i ∈ N ∪ {d}

ρs, ξij , η
s
ij , π

s
ij , θu, θv ≥ 0 ∀(i, j) ∈ A, s ∈ S

The above problem is a mixed integer linear program (MILP) where all integer variables are

binary. Off-the-shelf optimization solvers such as Gurobi and CPLEX can be used to solve small-size

problem. As the size increases, however, the amount of time required by solvers grows rapidly.

6 Numerical Experiments

The experiments are done on the computer which runs 64-bit Windows 10 with 2.60GHz Intel

Core (TM i5-7300U) CPU and 8 GB RAM. The cutting plane algorithm is coded in Julia 0.6.4

(Bezanson et al., 2012) and JuMP.jl optimization modeling package (Dunning et al., 2017) is used.

The single-level reformulation in Section 5 is solved by calling Gurobi 7.5.2 solver with default

setting.
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Numerical analysis is performed on a set of data from Ravenna city in Italy (Erkut and Alp,

2007). The road network in Ravenna is consists of 111 nodes and 143 arcs. The risk Rsij on arc (i, j)

is calculated as the summation of exposure risk from all four types of hazmat (methanol, chlorine,

gasoline, and LPG). The transportation cost cij for arc (i, j) is measured as the actual distance in

meters. The demand for each shipment s is measured as truckloads, i.e., the number of trucks N s.

The experiments are done on two sets of instances, small size and large size. In the small-size

problems, there are 9 origins and the set size of candidate facility locations M is 5 and 10. In the

large-size problems, there are 20 origins of hazmat shipment. We randomly choose 5, 10 and 15 as

the set of candidate facility locations M.

The comparison between objectives and running time of the cutting plane algorithm and Gurobi

for the single-level reformulation are calculated as follows:

%Obj =
Objective of Gurobi−Objective of cutting plane

Objective of cutting plane
× 100 (30)

%Time =
Running time of Gurobi− Running time of cutting plane

Running time of cutting plane
× 100 (31)

6.1 Analysis on the Small-Size Instances

The objectives and running time on the small-size instances are shown in Table 2. For instances

3, 4, and 9, Gurobi fails to obtain a proven optimal solution in 3600s. The gaps between the

incumbent solution and the best bound are 1.27%, 2.13%, and 0.71%, respectively. The cutting

plane algorithm can take less running time to get the proven optimal solutions except instances

5, 10, 15, and 20. Γu and Γv are much larger than those in other instances. As a result, the

worst-case in the inner maximization problem happens when almost all u and v variables are set to

1. This makes the problem easier to solve for larger Γu and Γv values. So, for these instances, the

optimal solution can be obtained in less running time by Gurobi than the cutting plane algorithm.

The cutting plane algorithm performs better than Gurobi on 80% small-size instances in terms of

running time. The average %Obj is 0.00% and the average %Time is 476.37%. The cutting plane

algorithm and Gurobi can get optimal solution values for all small-size instances.

The results for Instance 1 and 11 are illustrated in Figure 3. The circles denote origins where

hazmat is generated. The triangles represent chosen facilities sites. The green lines denote the

routes which truck drivers choose. The red lines denote the roads which are not available for hazmat

transportation.

6.2 Analysis on the Large-Size Instances

The objectives and running time on the large-size instances are shown in Table 3. The cutting

plane algorithm and Gurobi can obtain optimal solutions for 100% and 58.33% large-size instances

in 10800s, respectively. For instances 2 and 11, Gurobi obtains the incumbent solution that is equal

to the value of the optimal solution. But the optimality of the incumbent solution can’t be proven.

The gaps between the incumbent solution and the best bound are 0.16% and 0.66%, respectively.
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Table 2: Comparison Between the Solutions by the Cutting Plane Algorithm and Gurobi for the
Single-Level Reformulation on Small-Size Ravenna Instances

Instance Cutting-Plane Single-Level Comparison

No. |M| (Ks, Qs
ij) (Γu,Γv) Objective Time(s) Objective Time(s) %Obj %Time

1 5 (Ns, Rs
ij) (1, 1) 19390 1.2 19390 2.9 0.00 141.7

2 (3, 5) 28966 43.0 28966 495.8 0.00 1053.0
3 (5, 5) 31222 66.5 31222a 3600.0 0.00 5313.5
4 (5, 10) 36221 1764.5 36221a 3600.0 0.00 104.0
5 (10, 20) 41814 1559.8 41814 655.4 0.00 -58.0

6 (0.5Ns, 0.5Rs
ij) (1, 1) 15628 1.1 15628 1.7 0.00 54.5

7 (3, 5) 19783 7.5 19783 36.8 0.00 390.7
8 (5, 5) 20779 11.3 20779 94.1 0.00 732.7
9 (5, 10) 22754 221.1 22754a 3600.0 0.00 1528.2

10 (10, 20) 24893 242.5 24893 96.3 0.00 -60.3

11 10 (Ns, Rs
ij) (1, 1) 11783 1.4 11783 1.9 0.00 35.7

12 (3, 5) 19491 2.6 19491 4.7 0.00 80.8
13 (5, 5) 20377 3.4 20377 5.3 0.00 55.9
14 (5, 10) 22678 5.0 22678 5.3 0.00 6.0
15 (10, 20) 25470 29.4 25470 6.0 0.00 -79.6

16 (0.5Ns, 0.5Rs
ij) (1, 1) 9424 1.3 9424 1.4 0.00 7.7

17 (3, 5) 12770 1.3 12770 1.6 0.00 23.1
18 (5, 5) 13158 1.4 13158 5.4 0.00 285.7
19 (5, 10) 13953 1.4 13953 1.4 0.00 0.0
20 (10, 20) 15251 20.1 15251 2.4 0.00 -88.1

Average 0.00 476.37

a The algorithm stopped in 3600s and the solution is not proven optimal.
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Figure 3: Results on Small-Size Ravenna Instances
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Figure 4: Results on Large-Size Ravenna Instances

For all instances, the cutting plane algorithm can take much less running time to get the proven

optimal solutions. The average %Obj is 5.00% and the average %Time is 820.32%. The cutting

plane algorithm outperforms the single-level reformulation solved by Gurobi in solution quality and

running time. The results for Instance 1, 13, and 25 are illustrated in Figure 4.

The performance profile (Dolan and Moré, 2002) is used to compare different algorithms on the

running times. The running time performance file for different algorithms is created by calculating

the ratios of the running time of each algorithm and the minimum running time of all algorithms.

The horizontal axis shows the ratios. The vertical axis shows the percentage of instances with

a ratio that is less than or equal to the ratio on the horizontal axis. This indicates that the

method has better performance when its profile is drawn in the upper left-hand graph. The running

time performance profiles of the proposed cutting plane algorithm and Gurobi for the single-level

reformation on small-size and large-size Ravenna instances are shown in Figure 5.

Figure 5 indicates that the cutting plane algorithm has better running time performance than

the single-level reformulation solved by Gurobi on small-size and large-size Ravenna Instances. In

Figure 5(b), the profile of large-size instances is a straight line, that means the running times of
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Table 3: Comparison Between the Solutions by the Cutting Plane Algorithm and Gurobi for the
Single-Level Reformulation on Large-Size Ravenna Instances

Instance Cutting-Plane Single-Level Comparison

No. |M| (Ks, Qs
ij) (Γu,Γv) Objective Time(s) Objective Time(s) %Obj %Time

1 5 (Ns, Rs
ij) (1, 1) 90089 8.4 90089 155.4 0.00 1750.00

2 (3, 5) 137010 279.8 137010a 10800.0 0.00 3759.90
3 (5, 5) 143015 41.9 143015 389.0 0.00 828.40
4 (5, 10) 168512 148.4 168512 717.3 0.00 383.36
5 (10, 20) 200155 4832.4 200296a 10800.0 0.10 123.49
6 (20, 20) 266569 652.0 266569 893.6 0.00 37.06

7 (0.5Ns, 0.5Rs
ij) (1, 1) 74187 12.5 74187 38.0 0.00 204.00

8 (3, 5) 93607 22.6 93607 2695.3 0.00 11826.11
9 (5, 5) 96609 13.8 96609 194.8 0.00 1311.59

10 (5, 10) 106437 46.3 106437 122.1 0.00 163.71
11 (10, 20) 119942 1233.6 119942a 10800.0 0.00 775.49
12 (20, 20) 124410 994.2 124660a 10800.0 0.20 986.30

13 10 (Ns, Rs
ij) (1, 1) 50908 993.0 59432a 10800.0 16.74 987.61

14 (3, 5) 67665 1723.9 85216a 10800.0 25.94 526.49
15 (5, 5) 71346 1878.0 89698a 10800.0 25.72 475.08
16 (5, 10) 80241 1111.5 97450a 10800.0 21.45 871.66
17 (10, 20) 95987 3621.7 98472a 10800.0 2.59 198.20
18 (20, 20) 104626 1804.6 104626 2485.5 0.00 37.73

19 (0.5Ns, 0.5Rs
ij) (1, 1) 39968 1203.2 46563a 10800.0 16.50 797.61

20 (3, 5) 46879 1704.6 56822a 10800.0 21.21 533.58
21 (5, 5) 48655 2464.6 58829a 10800.0 20.91 338.20
22 (5, 10) 52257 998.5 62170a 10800.0 18.97 981.62
23 (10, 20) 58732 3709.4 63444a 10800.0 8.02 191.15
24 (20, 20) 72117 1406.2 73233a 10800.0 1.55 348.84

25 15 (Ns, Rs
ij) (1, 1) 48717 3.4 48717 16.8 0.00 394.12

26 (3, 5) 65921 66.2 65921 100.8 0.00 52.27
27 (5, 5) 70251 128.2 70251 223.7 0.00 74.49
28 (5, 10) 77221 14.1 77221 19.8 0.00 40.43
29 (10, 20) 92991 136.9 92991 175.2 0.00 27.98
30 (20, 20) 100673 129.1 100673 225.4 0.00 74.59

31 (0.5Ns, 0.5Rs
ij) (1, 1) 38090 45.1 38090 66.7 0.00 47.89

32 (3, 5) 45218 225.6 45218 713.0 0.00 216.05
33 (5, 5) 47211 166.5 47211 204.5 0.00 22.82
34 (5, 10) 50117 78.1 50117 134.7 0.00 72.47
35 (10, 20) 56673 31.6 56673 42.4 0.00 34.18
36 (20, 20) 59772 26.4 59772 36.2 0.00 37.12

Average 5.00 820.32

a The algorithm stopped in 10800s and the solution is not proven optimal.
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Figure 5: The Running Time Performance Profile of the Cutting Plane Algorithm and Gurobi for
the Single-Level Reformulation

the cutting plane algorithm are less than those by Gurobi for all instances. Compared large-size

instances 5, 11, 17, and 23 with small-size instances 5, 10, 15, and 20, the difficulty caused by

increasing problem size is more than the simplicity caused by large Γu and Γv values. Besides,

the cutting plane algorithm takes less time in large-size instances 6, 12, 18, 24, 30, and 36, which

have larger parameters values (Γu,Γv) = (20, 20). Therefore, the advantage of the cutting plane

algorithm becomes obvious as the problem size increases, especially in the running time.

6.3 Combined Model versus Sequential Model

We consider the combined robust model that optimizes facility locations and network design

problem simultaneously. If we use techniques proposed in the previous papers in the literature

review, the problem has to be solved in two phases. In Phase 1, robust facility locations problem is

solved, and facility setup locations are determined. In Phase 2, robust network design problem is

solved. We call this two-phase model the sequential model.

In this paper, we use the single-level reformulation of bi-level robust facility location problem

proposed by Kwon et al. (2013), shown in Appendix A. We obtain the optimal solution of facility

location variables y∗. When y∗i = 1 for i ∈ M, facility i is chosen to open. We let K be the set

of chosen facility locations. Sun et al. (2015) considered a robust network design problem only

with the uncertainty in exposure risk. Based on their model, we revise a single-level form of robust

network design model that considers uncertainty both in exposure risk and the number of shipment

demand, shown in Appendix B. We obtain the optimal solution of routing variables x∗ and network

design variable z∗.

To prove the benefits of the combined model, we compare it with the sequential model in the

terms of objective function value
∑

i∈M Fiy
∗
i +

∑
(i,j)∈A

∑
s∈S N

sRsijx
s∗
ij +

∑
s∈S ρ

s∗ +
∑

(i,j)∈A ξ
∗
ij +

Γuθ
∗
u + Γvθ

∗
v. The comparison between objectives for combined model and sequential model is
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calculated as follows:

%Deviation =
Objective of Sequential Model−Objective of Combined Model

Objective of Combined Model
× 100 (32)

The single-level reformulation models in Appendices A and B are solved by calling Gurobi 7.5.2

solver with default setting. Big-M is set as a constant bounded by
∑

(i,j)∈A cij .

The objectives of sequential model and %Deviation are shown in Tables 4 and 5. For small-size

and large-size Ravenna city instances, the average %Deviation is 2.91 and 3.87, respectively. The

objectives of the combined model are less than those of sequential model and the difference can

be as large as 10.39%. In Table 5, we can observe that the difference is more obvious when |M| is

smaller. When |M| is 5, 10, and 15, the average %Deviation is 6.52, 2.36, and 2.73, respectively.

This result indicates that when there are fewer choices of potential facility candidates, the value

of combined decision-making becomes more significant. When there are more choices available

for locations, there may exist a location that leads to safe network even without network design

policy. On the other hand, with fewer choices available for locations, such a favorable option may

be unavailable; hence one needs to consider both location and network design decisions at the same

time. When considering facility location and network design problem jointly, the leader can make a

better decision with the aim of reducing the facility setup costs and hazmat exposure risk.

7 Concluding Remarks

In this paper, a leader-follower decision problem is considered in the form of bi-level optimization.

In the upper level, the leader aims to minimize the total facility construction costs and hazmat

exposure risks by determining facilities locations and available roads for hazmat transportation.

The leader effects the followers who intend to minimize their transportation costs when designing

the road network. We apply a robust optimization approach to deal with the uncertainty in the

exposure risk and the demand. A bi-level integer programming model is formulated where the

upper level is a min-max problem and the lower level is a shortest-path problem. We devise an

exact algorithm that combines a cutting plane algorithm with Benders decomposition and derive

a single-level reformulation. Comparisons between two approaches are made on the Ravenna city

data, in terms of objectives and the running time. The analysis on small and large size instances

demonstrates that the proposed cutting plane algorithm performs much better than Gurobi as

the problem size increases. The proposed cutting plane algorithm is an effective exact method for

solving the robust combined facility location-network design problem.

A couple of directions for future research are suggested. First, uncertainty on origin locations can

be considered. In this paper, we assumed that all origin nodes are exactly known. Since the hazmat

facility location problem is for long-term decision, considering new hazmat origins in the future will

lead to an important problem. Second, hazmat trips to locations other than the hazmat facilities can

be incorporated. Although we considered hazmat trips to hazmat facilities only in this paper, there

are also hazmat trips to other destinations. Hazmat network design policies will certainly impact
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Table 4: Comparison Between the Objectives for Combined and Sequential Model on
Small-Size Ravenna Instances

Instance Objective

No. |M| (Ks, Qs
ij) (Γu,Γv) Combined Model Sequential Model %Deviation

1 5 (Ns, Rs
ij) (1, 1) 19390 20417 5.30

2 (3, 5) 28966 30720 6.06
3 (5, 5) 31222 33193 6.31
4 (5, 10) 36221 36764 1.50
5 (10, 20) 41814 42591 1.86

6 (0.5Ns, 0.5Rs
ij) (1, 1) 15628 15959 2.12

7 (3, 5) 19783 20391 3.07
8 (5, 5) 20779 21451 3.23
9 (5, 10) 22754 22791 0.16

10 (10, 20) 24893 25072 0.72

11 10 (Ns, Rs
ij) (1, 1) 11783 12171 3.29

12 (3, 5) 19491 20709 6.25
13 (5, 5) 20377 21594 5.97
14 (5, 10) 22678 23818 5.03
15 (10, 20) 25470 25817 1.36

16 (0.5Ns, 0.5Rs
ij) (1, 1) 9424 9549 1.33

17 (3, 5) 12855 12770 0.67
18 (5, 5) 13158 13243 0.65
19 (5, 10) 13953 13964 0.08
20 (10, 20) 15251 15758 3.32

Average 2.91
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Table 5: Comparison Between the Objectives for Combined and Sequential Model on
Large-Size Ravenna Instances

Instance Objective

No. |M| (Ks, Qs
ij) (Γu,Γv) Combined Model Sequential Model %Deviation

1 5 (Ns, Rs
ij) (1, 1) 90089 99445 10.39

2 (3, 5) 137010 148392 8.31
3 (5, 5) 143015 157416 10.07
4 (5, 10) 168512 176718 4.87
5 (10, 20) 200155 211719 5.80
6 (20, 20) 266569 273800 2.71

7 (0.5Ns, 0.5Rs
ij) (1, 1) 74187 79259 6.84

8 (3, 5) 93607 100067 6.90
9 (5, 5) 96609 103821 7.47

10 (5, 10) 106437 111429 4.69
11 (10, 20) 119942 125868 4.94
12 (20, 20) 124410 130981 5.28

13 10 (Ns, Rs
ij) (1, 1) 50908 51377 0.92

14 (3, 5) 67665 68255 0.87
15 (5, 5) 71346 72974 2.28
16 (5, 10) 80241 80628 0.48
17 (10, 20) 95987 100021 4.20
18 (20, 20) 104626 109641 4.79

19 (0.5Ns, 0.5Rs
ij) (1, 1) 39968 40750 1.96

20 (3, 5) 46879 47554 1.44
21 (5, 5) 48655 49624 1.99
22 (5, 10) 52257 52940 1.31
23 (10, 20) 58732 61058 3.96
24 (20, 20) 72117 75046 4.06

25 15 (Ns, Rs
ij) (1, 1) 48717 50474 3.61

26 (3, 5) 65921 66827 1.37
27 (5, 5) 70251 71624 1.95
28 (5, 10) 77221 78262 1.35
29 (10, 20) 92991 95298 2.48
30 (20, 20) 100673 103216 2.53

31 (0.5Ns, 0.5Rs
ij) (1, 1) 38090 39847 4.61

32 (3, 5) 45218 46124 2.00
33 (5, 5) 47211 48098 1.88
34 (5, 10) 50117 51048 1.86
35 (10, 20) 56673 58208 2.71
36 (20, 20) 59772 63602 6.41

Average 3.87
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not only trips to hazmat facilities, but also all other general hazmat trips. Therefore, incorporating

both types of hazmat trips within a single modeling framework is a valuable research direction.
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Appendix

A Single-Level Robust Facility Location Problem

minimize
y

[
w1

∑
i∈M

Fiyi + w2

( ∑
(i,j)∈A

∑
s∈S

N sRsijx
s
ij +

∑
s∈S

ρs +
∑

(i,j)∈A

ξij + Γuθu + Γvθv
)]

subject to
∑

(i,j)∈A

xsij −
∑

(j,i)∈A

xsji


= 1 if i = o(s)

≥ −yi if i ∈M

= 0 otherwise

∀i ∈ N , s ∈ S

cij − ζsi + ζsj − φsij = 0 ∀(i, j) ∈ A, s ∈ S

φsij ≤M(1− xsij) ∀(i, j) ∈ A, s ∈ S

ζsi ≤M [1− (
∑

(i,j)∈A

xsij −
∑

(j,i)∈A

xsji + yi)] ∀i ∈M, s ∈ S

ρs −
∑

(i,j)∈A

ηsij + θu ≥
∑

(i,j)∈A

KsRsijx
s
ij ∀s ∈ S

ξij −
∑
s∈S

πsij + θv ≥
∑
s∈S

N sQsijx
s
ij ∀(i, j) ∈ A

ηsij + πsij ≥ KsQsijx
s
ij ∀(i, j) ∈ A, s ∈ S

xsij ∈ {0, 1} ∀(i, j) ∈ A, s ∈ S

yi ∈ {0, 1} ∀i ∈M

ζsi ≥ 0 ∀i ∈M, s ∈ S

ζsi free ∀i /∈M, s ∈ S

φsij , ρ
s, ξij , η

s
ij , π

s
ij , θu, θv ≥ 0 ∀(i, j) ∈ A, s ∈ S
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B Single-Level Robust Network Design Problem

minimize
x,z

[ ∑
(i,j)∈A

∑
s∈S

N sRsijx
s
ij +

∑
s∈S

ρs +
∑

(i,j)∈A

ξij + Γuθu + Γvθv

]

subject to
∑

(i,j)∈A

xsij −
∑

(j,i)∈A

xsji


= 1 if i = o(s)

≥ −1 if i ∈ K

= 0 otherwise

∀i ∈ N , s ∈ S

xsij ≤ zij ∀(i, j) ∈ A, s ∈ S

cij − ζsi + ζsj + µsij − φsij = 0 ∀(i, j) ∈ A, s ∈ S

φsij ≤M(1− xsij) ∀(i, j) ∈ A, s ∈ S

ζsi ≤M [1− (
∑

(i,j)∈A

xsij −
∑

(j,i)∈A

xsji + 1)] ∀i ∈ K, s ∈ S

µsij ≤M [1− (−xsij + zij)] ∀(i, j) ∈ A, s ∈ S

ρs −
∑

(i,j)∈A

ηsij + θu ≥
∑

(i,j)∈A

KsRsijx
s
ij ∀s ∈ S

ξij −
∑
s∈S

πsij + θv ≥
∑
s∈S

N sQsijx
s
ij ∀(i, j) ∈ A

ηsij + πsij ≥ KsQsijx
s
ij ∀(i, j) ∈ A, s ∈ S

xsij ∈ {0, 1} ∀(i, j) ∈ A, s ∈ S

zij ∈ {0, 1} ∀(i, j) ∈ A

ζsi ≥ 0 ∀i ∈ K, s ∈ S

ζsi free ∀i /∈ K, s ∈ S

µsij , φ
s
ij , ρ

s, ξij , η
s
ij , π

s
ij , θu, θv ≥ 0 ∀(i, j) ∈ A, s ∈ S
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