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Abstract

Shared autonomous electric vehicles (SAEVs) are expected to serve a significant fraction of

the passenger transportation needs in cities and surrounding urban areas. In this paper, we

consider optimal operation of a cyber-physical system (CPS) comprising a large fleet of SAEVs

and a set of charging hubs located across the transportation network and supported by the

power grid. The hubs are considered to have a number of charging stations, a stand-alone

battery bank for energy storage, and limited rooftop photo-voltaic (PV) generation capacity. We

developed a robust mixed integer linear programming model. It considers a number of practical

features of both the power and transportation systems, including day-ahead load commitment for

electricity via an alternative current power flow model, real time price spikes of electricity, energy

arbitrage, uncertainty in passenger demand, and balking of passengers while waiting for a ride.

We demonstrated our methodology by implementing it on a sample CPS with 500 SAEVs and

five hubs with fifty charging stations in each. Our methodology yields operational decisions for

day ahead commitment of power and real time control of the SAEVs and the hubs. The sample

CPS is used to examine impact of hub capacity and fleet size on various system performance

measures. We discuss the computational challenges of our methodology and propose a simplified

myopic approach that is capable of dealing with much larger fleet sizes and a variety of hub

capacities. Reduction in computation time and the optimality gap for the myopic approach are

examined.

Keywords— Shared autonomous electric vehicles, cyber-physical system, ACOPF, energy arbitrage, robust

optimization, stochastic optimization

1 Introduction

Shared autonomous electric vehicles (SAEVs) are expected to replace a significant portion of the human

driven automobiles on urban roads. The ride sharing companies serving cities and surrounding suburbs are
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Figure 1: A three-tier diagram depicting interactions between population demographics, road
network, and the power network in City of Tampa, Florida, USA

soon likely to adopt a new business model, which will use SAEVs leased from large feet-owning companies

instead of cars owned and driven by individual contractors. However, switching to a fleet of SAEVs for ride

sharing will be feasible only if a proper cyber-physical system (CPS) is available for charging the batteries as

well as optimally coordinating the vehicles and the transportation needs. The CPS will comprise physical

hubs with charging stations, located across the service area, together with a supervisory communication and

control system that will optimally manage the real-time (RT) operation of the SAEVs and the hubs. The

hubs may have limited solar (PV) generation and stand alone battery banks for energy storage. In addition

to charging, the hubs are also capable of discharging both the SAEV batteries and the battery banks to sell

power back to the grid, when appropriate (e.g., when the RT price of electricity is relatively high). The hubs

may allow privately owned electric vehicle (EV) to charge for a fee when some charging stations are not

occupied by the SAEVs. The control actions of the CPS includes making day ahead (DA) power purchase

commitment for each hub and making real time operating decisions. The real time decisions will include 1)

choosing the next action for each SAEV from among: serve a customer, charge or discharge at a hub, and

idle at a parking lot, 2) for battery banks at each hub: either charge using grid/PV power or discharge to

SAEVs and/or back to the grid, and 3) select the number of privately owned EVs to allow charging at each

hub. Figure 1 presents a schematic of the 3-tiers of infrastructure (geographic distribution of the population

centers, the transportation network, and the power network) that interacts with the CPS.

In this paper, we develop a methodology to maximize the gross profit of a CPS for varying transportation

demand and electricity prices. We used daily operational cash flow (OCF) to calculate the gross profit; OCF

includes fare received from the passengers, receipts from selling power back to the grid, charging fees from

private EV owners, payment to the grid for electricity consumed, and parking fees paid for idling SAEVs.

We did not consider the long term capital investment cost for physical facilities including charging hubs,

vehicles, and maintenance facilities. We also did not consider the cost of human resources. We consider that

the operational decisions for the fleet and the hubs are made in two stages by a central operator as follows. In

the first stage, a commitment is made in the day ahead market for a fraction of the estimated hourly charging

load, considering that any shortfall (or excess) can be bought (or sold) in the real time market. In the second
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stage, real time operational decisions are made. The methodology thus has two stages. The first stage has

three steps, which solves for the DA electricity commitment decisions as follows. In step 1, historical data for

transportation demand, electricity prices, EV charging demand, and solar radiation are used to estimate the

optimal demand consumption pattern of the CPS. In step 2, for each of these demand patterns, we solve an

alternative optimal power flow (ACOPF) model and estimate the locational marginal prices (LMPs) and the

corresponding real time (RT) prices. In step 3, the load patterns, the LMPs, and the RT prices are used to

obtain a DA commitment using a stochastic model. The second stage of our methodology is formulated as a

robust mixed integer linear program, solution of which decides the optimal actions for the SAEVs and the

hubs in real time.

The application of the methodology on a sample CPS yields insights for how to design such a system. For

example, determining the number of SAEVs, the number of the hubs and their capacities, selecting charging

technology, sizing PV and battery banks, and decisions to allow charging of privately owned EVs. Our

methodology considers a number of practical features of power markets and the transportation sector including

two-time (DA and RT) power market settlement, prices spikes in the RT market, power network constraints

via ACOPF model, time varying travel demands, and balking of passengers. Our methodology also addresses

uncertainties in the RT electricity prices, PV generation, charging demands of privately owned EVs, and travel

demand for the fleet vehicles. The use of our methodology will require data on historical electricity prices,

transportation demand, solar generation, and EV charging demand. Data availability will depend on the part

of the world our methodology is implemented. Electricity prices are generally publicly available in places

where power market is deregulated, which is the case in some states in the U.S. and Canada, most countries

in Europe, parts of Australia, New Zealand, among others. Similarly, public transportation data is also easily

accessible as it is collected and curated by governmental institutions. Furthermore, private companies like Uber

now share datasets with the public. Solar generation is also not difficult to estimate as solar irradiance data

for areas/countries are generally available (see for U.S. https://www.energy.gov/maps/solar-energy-potential).

Also, it is easy to use simple instruments like pyranometers to measure solar irradiance in an area of interest.

As far as EV charging demand is concerned, it can be estimated from the demand in existing charging

facilities in the area and the projected growth of EVs.

1.1 Contributions of this paper

Our methodology benefits from the original work done by Zhang et al. (2016) on autonomous vehicles

scheduling and routing and the subsequent extension by Iacobucci et al. (2019) to incorporate price of

electricity. However, our paper differs from the previous literature in three significant ways. First, our paper

integrates the role of power networks in real time operational control of a fleet of SAEVs. We consider within

the transportation model a number of power network related constraints, which have not been done in the open

literature; most of the literature on electric vehicle integration focuses either mainly on the transportation

aspects with simplifying assumptions about the electric power issues or vice versa. Our methodology considers

both day-ahead and real time power markets and resulting price variations in making optimal fleet control

decisions. We demonstrate the benefits of considering the power market in the operational decision making.

The second novelty of our methodology is a reformulation of the transportation model presented in Zhang

et al. (2016) and Iacobucci et al. (2019) for SAEV scheduling and routing. The model used in the above

papers requires a significant number of integer variables, which makes the model computationally harder

to solve. We proposed a reformulation of their model that reduces the number of integer variables. This

allows us to solve the problem for relatively larger fleet sizes. The third distinction of our paper is the

inclusion of a heuristic (myopic) model that finds reasonably good quality solutions with a significantly
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reduced computation time.

Our methodology will create a number of other opportunities to benefit the electric power systems. As

vehicle electrification soars, the percentage of electricity consumed for transportation will rise dramatically.

A sizable part of this increase will be due to proliferation of SAEV-supported passenger ride sharing. Hence,

a cyber-connected infrastructure for planned charging/discharging of large fleets of SAEVs will create an

opportunity for network load balancing. Moreover, the temporal arbitrage potential of these fleets of

vehicles would help power systems operators to reduce reserve generation requirement for maintaining system

reliability. This is expected to reduce operational cost of the power networks and consequently reduce cost to

all consumers.

The rest of the paper is organized as follows. Section 2 presents a brief review of the recent literature on

EV and SAEV operations. In Section 3 we give an overview of the step by step approach of our methodology.

Section 4 contains the models used in the two stages of our methodology. Section4.2 presents a planning

model for SAEVs scheduling and charging. Ad hoc load schedule (obtained from the planning model) and

market clearing price estimation are presented in Section 4.3. A two-stage stochastic model for day ahead

commitment for the hubs is presented in Section 4.4. The real time operational model (for the second stage

of our methodology) is given in Section 4.5. Our methodology is implemented on a case study built using

demographic and transportation information from the City of Tampa and its suburbs (in the state of Florida

in the U.S.). Since the city of Tampa is part of a regulated power network, we adopted information concerning

electric power from a deregulated network in the U.S. (PJM). Results from the case study are presented in

Section 5. Due to the computational complexities of some of the steps of our methodology, an alternative

myopic modeling approach is given in section 6 and its performance is examined in Section 7. Section 8

contains the concluding remarks.

2 Related literature

Although there is abundant literature on charging infrastructure design for optimal operation of privately

owned EVs, literature on SAEVs addressing issues like strategies for charge and discharge, locating charging

stations, and algorithms for real-time control are still very limited (Iacobucci et al. 2019). Our study of the

literature reveals that almost all of the relevant models for operation of EV or SAEV focus primarily on either

the transportation or the electricity aspects of the problem. For example, charging-facility (hub) sizing and

location models are typically approached from the transportation perspective. Whereas most of the models

for optimal operation of EVs and charging facilities consider power related constraints and uncertainties.

Hub sizing and location models consider temporal-spatial distribution of the origin-destination of the trips,

charging stations availability across the road network, and charging strategies with implicit assumption that

the power network related constraints are satisfied. On the other hand, the operational models are formed

using electricity network characteristics, such as varying electricity prices, arbitrage contracts, active and

reactive power, voltage capacities, and other network constraints, while considering the transportation related

parameters as exogenous. Since the primary focus of our paper is on optimal operations of SAEVs and

charging hubs, most of our literature review discusses papers addressing operational aspects. We first cover

the literature that deal with privately owned EVs and thereafter we focus on SAEVs.

Optimal operation of EV fleets has received much attention in the recent literature. Operation of

parking/charging lots for EVs at workplaces and commercial buildings is examined in Sedighizadeh et al.

(2019). The paper considers making power purchase commitments in the day ahead market and uncertainties

in the demand for charging, EV arrival and departure times, and electricity prices. However, some of the
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common features like providing load balancing to the grid and use of renewable generation for charging of the

EVs by are not included. A real-time charging scheme for EV parking lots, enabling them to participate in

demand response programs, is studied via a deterministic model in Yao et al. (2017). The model manages

the impact of parking lots on the power grid by setting a maximum limit to the power that can be drawn at

any point in time. It considers the charging priorities of all connected EVs to satisfy energy requirements

while also guarantying fairness. The authors in Subramanian & Das (2019) present a model to study how

increasing demand response capacity of a growing number of EV parking lots will promote dynamic pricing of

electricity. The model considers day-ahead and real-time settlements, power network constraints (including

congestion), real time prices uncertainties, a granular operational model for the parking lot, and EVs with

different battery capacities and charging needs. However, injecting power back to the grid or any other

forms of temporal arbitrage are not considered. A model offered in Turan et al. (2019) minimizes power

consumption of an EV parking lot that is supplied by both the grid as well as rooftop photo-voltaic panels.

The model features include charging from non-dispatchable generation, dynamically varying electricity prices,

and reserve power for grid support. The authors in Melendez et al. (2019) use a coalition of connected EVs

for peer-to-peer trading. It was found that peers participating in the sample network can reduce their total

cost between 14.17% and 22.7%, while maintaining fairness.

Several papers on the operation of SAEV fleets and location of charging hubs have recently appeared in

the open literature. A model proposed in Lam et al. (2018) studies how to coordinate a fleet of autonomous

EVs to park at appropriate parking facilities to support vehicle-to-grid services. The model does not consider

the electricity price and assumes that the location of all vehicles is known in advance. The authors develop

a distributed algorithm based on dual decomposition to solve the model efficiently. A fleet of SAEVs is

simulated in Chen et al. (2016) via a discrete-time agent-based model. It examines the capabilities of

these vehicles to be shared and self-charged while considering passenger travels needs. The results from the

simulation model are used to analyze the impacts of vehicle range and charging infrastructure on the fleet size,

charging station location, ability to meet trip demand, user wait times, and induced vehicle-miles traveled.

The above agent-based simulation model was extended in Farhan & Chen (2018). The extended model

determines the optimal routes to pick up and drop off multiple travelers within a given time interval using

vehicles with fixed seating capacities. The problem is formulated as a capacitated vehicle routing problem

with time windows, which is then decomposed into a number of subproblems. The solution methodology

first assigns travel requests to vehicles and then constructs an itinerary for pick up and drop off. Farhan

& Chen (2018) claims their study to be the first to analyze the dynamic ridesharing operations of SAEVs

from the perspective of a fleet operator. A two-stage multi-objective optimization model for planning of

an autonomous connected electric vehicle (ACEV)-based car-sharing system is given in Miao et al. (2019).

Each stage is a multi-objective optimization model where both users and service providers objectives are

considered. The authors also propose a hybrid parking mechanism to attain a compromise between user

flexibility and system management efficiency. The work presented in Kang et al. (2017) offers a framework to

optimally design a fleet of autonomous electric vehicles. The framework comprises four components, namely,

fleet size and assignment schedule, sizing and location of charging stations, vehicle powertrain requirements,

and service fees.

A methodology to simultaneously optimize SAEV charging, routing, and rebalancing can be found in

Iacobucci et al. (2018a). It considers two different time scales for solving the transportation and charging

problems for a fleet of SAEVs, by using a model-predictive control approach. The charging of the vehicles is

optimized over longer time scales to minimize electricity costs. The results from the charging optimization

problem are used as constraints for the vehicle routing and rebalancing problem, which is optimized at shorter

5



time-scales. The objective function for the methodology is formulated as the weighted sum of the passenger

waiting time, rebalancing time, and the cost of electricity; the cost of electricity is assumed to be known.

The methodology in Iacobucci et al. (2018a) was extended in Iacobucci et al. (2019) to consider injecting

power back to the grid (V2G). According to the authors, optimal rebalancing of SAEVs and their charging

with time-varying electricity prices have not been presented to the literature earlier. The work in Iacobucci

et al. (2018b) presentess a mixed-integer linear program to optimally schedule charge and discharge of an

aggregation of SAEVs to minimize total operational costs of microgrids or virtual power plants.

Our methodology for optimal joint operation of a system of hubs and a large fleet of SAEVs differs from

the literature discussed above in a number of significant ways. Instead of assuming time varying prices of

electricity to be known, we incorporate power network operations in our methodology by embedding an

ACOPF model. The ACOPF model yields the day ahead market clearing prices (MCPs) considering power

consumption by the base load (of the community) as well as the loads generated by the SAEVs. The loads

from SAEVs are determined by the vehicle scheduling and charging strategies. We model the RT prices of

electricity at the network nodes by using the MCPs and estimates of the frequency and amplitude of price

spikes. We use the DA and estimated RT prices to make the DA commitments for the hubs, which are then

used to solve a real time model for making operational decisions for the SAEVs (i.e., to serve a demand, to

charge, to discharge, or to park and idle). The hubs are assumed to have limited solar generation and battery

storage capacities.

3 Overview of the Operational Methodology

In this section, we present a brief outline our methodology. Stage 1 obtains the DA commitment for each hub

and stage 2 obtains real time operational strategies.

• Stage 1: Obtaining DA commitment for each hub

– Step 1. Develop ad hoc load schedule scenarios: For this step, we first gather a large number of

(daily) historical data sets on prices of electricity, transportation demand for SAEVs, amount of

PV generation at the hubs, and charging demand for privately owned EVs. For each daily data

scenario, we solve a planning model (given in subsection 4.2) to obtain an operational strategy

for the SAEVs and the hubs that maximizes the gross profit. The gross profit includes: fare

received from the passengers, receipts from selling power back to the grid, charging fees from the

private EV owners, payment to the grid for electricity consumed, and parking fees paid for idling

SAEVs. The planning model yields, for each daily data scenario, a load consumption schedule

for each hub. A scenario reduction technique, available in Growe-Kuska et al. (2003), is then

used to select a small subset of the load schedules at the hubs. As alluded earlier, the system

operational strategy obtained by the planning model comprises decisions on 1) choosing the next

action for each SAEV, namely, whether to serve a customer, charge or discharge at a hub, or idle

at a parking lot, 2) operating the battery banks at each hub to either charge or discharge, and 3)

selecting the number of privately owned EVs to allow charging at each hub.

– Step 2. Calculate DA MCPs and RT prices: For each of the selected load schedule scenarios

from step 1, together with the existing base loads at the nodes of the power grid to which hubs

are connected, we solve an ACOPF model. The ACOPF yields the DA MCPs at each node.

Using an existing approach from the literature (Das & Wollenberg 2005), we use these MCPs to

generate daily RT prices with spikes.
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Figure 2: Summary of the operational methodology

– Step 3. Obtain DA commitment for each hub: In this step, for each load schedule from Step 1

and corresponding MCP and estimated RT prices from Step 2, we determine the DA commitment

for each time interval for each hub. To obtain the DA commitment, we use a two stage stochastic

model in order to minimize the total expected cost of power purchase by optimally balancing the

purchases from the DA and the RT markets. The two stage model considers the variations in

MCPs and RT prices over all time intervals of a day.

• Stage 2: Develop a real time operational strategy for the CPS: In this stage of our methodology,

we use a robust version the planning model to accommodate the uncertainties associated with parameters

such as transportation demand, RT prices, PV generation at the hubs, and EV charging demand.

Instead of assuming the uncertain parameters to be known for all time period of the day, as in the

planning model, the real time model assumes that parameters values of the current time period only

are known and considers confidence intervals for the remaining time periods of the day.

Schematic of the complete methodology is presented in Figure 2. The main input parameters (electricity

prices, EV demand, solar generation, and travel demand) to the methodology are the sources of uncertainty

for the model (24). In the first step of our methodology, we solve many instances of the model (24) for

different combinations of values of these parameters in order to obtain estimated amounts of load consumed

by the system across the hours of the day (adhoc load schedules). These adhoc schedules will drive the

decision for the rest of the steps. It may be noted that electricity price is the only parameter used explicitly

in equation (24). The other parameters (EV demand, solar generation, and travel demand) are part of the

constrains of the model.

4 Operational Methodology

In this section, we present the models used in our methodology.
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4.1 Notation

For ease of reference, below find the complete notation used in our methodology.

Sets

• B: Set of all SAEVs

• T : Set of all time periods

• N : Set of all nodes on the transportation network

• A: Set of all arcs in the transportation network

• H: Subset of transportation nodes where hubs are located

• P: Subset of transportation nodes with parking/idling facilities

• Dh: Set of minimum cost load schedules at hub h

• Ω: Subset of selected scenarios (load, MCP, and RT price) across all hubs

Parameters

• γijt: Number of passenger arrivals at node i with destination j (i, j) ∈ A at time t ∈ T

• τij : Travel time between nodes i and j (i, j) ∈ A

• β: Balking rate (0 ≤ β ≤ 1) of waiting passengers

• αp: Parking fee per each time period at parking lot p ∈ P

• ψt: Price paid by the customer per each time period for a trip originating at time t ∈ T

• ζh: Facility fee paid by privately owned EVs per each time period when charging at hub h ∈ H

• πht: Historical price of electricity at the node supporting hub h ∈ H at time t ∈ T

• πDA
ht : Published DA price at node h ∈ H at time t ∈ T

• πRT
ht : Actual RT price at node h ∈ H at time t ∈ T

• πωht: Estimated RT price in scenario ω ∈ Ω at hub h ∈ H at time period t ∈ T

• φb: Battery capacity of SAEV b ∈ B

• εb: Energy consumption of SAEV b ∈ B per each time period on the road

• Sb, Sb: Lower and upper bounds of state of charge for SAEV b ∈ B

• P+: Maximum energy that can be added to a vehicle per time period, same for all hubs

• P−: Maximum energy that can be discharged from a vehicle per time period, same for all hubs

• Fht,F
max
h : Solar generation at hub h ∈ H at time t ∈ T and installed solar capacity, respectively

• Eh,Ph,Ph: Capacity, charging rate, and discharging rate, respectively, of the battery bank at hub

h ∈ H

• V : Maximum number of time periods that a privately owned EV can charge in a hub
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• W v
ht: Number of privately owned EVs requesting charging services for v ≤ V time periods at hub

h ∈ H at time t ∈ T

• Ch: Total number of charging stations installed at hub h ∈ H

• Dht: Minimal cost load schedule for each time period t ∈ T at hub h ∈ H (Dht ∈ Dh)

• Dω
ht: Selected load schedule for each time period t ∈ T at hub h ∈ H from scenario ω ∈ Ω

• µω: Probability of scenario w ∈ Ω

• PDA
ht : DA commitment of hub h ∈ H at time period t ∈ T

Decision variables

• xbijt: 1 if vehicle b ∈ B is departing with passengers from node i to node j at time t ∈ T , and 0 otherwise

• ybijt: 1 if vehicle b ∈ B is departing empty from node i to node j at time t ∈ T , and 0 otherwise

• pb+ht : Total charge added to SAEV b ∈ B at hub h ∈ H at time period t ∈ T

• pb−ht ,p−ht: Total energy discharged from SAEV b ∈ B and from the battery bank, respectively, at hub

h ∈ H and time period t ∈ T

• p̂−ht: Fraction of the total discharged energy sold to the main grid by the battery bank at hub h ∈ H
and time period t ∈ T

• ebht,e
EV
ht : Energy added form the battery bank to SAEV b ∈ B and privately owned EVs, respectively,

at hub h ∈ H at time period t ∈ T

• f bht,f
+
ht,f

EV
ht : Solar energy added to SAEV b ∈ B, battery bank, and privately owned EVs, respectively,

at hub h ∈ H and time period t ∈ T

• f−ht: Solar energy dispatched directly to the main grid

• gbht,ght,g
EV
ht : Total energy bought from the grid to charge SAEV b ∈ B, the battery bank, and the

privately owned EVs, respectively, at hub h ∈ H and time period t ∈ T

• wb+ht : 1 if SAEV b ∈ B is charging at hub h ∈ H and time period t ∈ T , 0 otherwise

• wb−ht : 1 if SAEV b ∈ B is discharging at hub h ∈ H and time period t ∈ T , 0 otherwise

• pRT−
ht : Fraction of the DA commitment sold to the RT market by hub h ∈ H at time period t ∈ T

• wvht: Number of charging stations assigned to privately owned EVs at hub h ∈ H at time period t ∈ T ;

the vehicles stay v time periods at the hubs

Other variables

• zbit: 1 if vehicle b ∈ B waited in node i ∈ N from time t− 1 to t, and 0 otherwise

• pbit: 1 if at time period t ∈ T , the vehicle b ∈ B will arrive at node i ∈ N

• dijt: Number of passengers left unserved at node i with destination j (i, j ∈ N ) at time period t ∈ T

• bijt: Dummy variable to avoid infeasibility (0 ≤ bijt ≤ 1)

• sbt ,sht: State of charge of SAEV b ∈ B and the battery bank in hub h ∈ H, respectively, at time period

t ∈ T ; 0 < sbt < 1 , 0 < sht < 1, ∀b, h, t
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• aRT: RT electricity profit, i.e., revenue from selling to the grid in the RT market minus cost of buying

in the RT market

• cht: Number of charging stations occupied by privately owned EVs at hub h ∈ H at time period t ∈ T

4.2 Planning Model for Ad-Hoc Load Schedules

The planning model is formulated as a mixed integer program with the objective of maximizing the gross

profit from the operation of the CPS. The operational elements considered in the model are: serving

the transportation needs, charging and discharging of the SAEVs and the battery banks, utilization of

the PV generation, and acceptance of EV charging requests. In what follows, we first develop all the

necessary constraints related with transportation (1)–(6), energy (7)–(19), and privately owned EVs (20)-(23).

Thereafter, we present the complete of the planning model in (24).

The transportation model formulation that we have considered is inspired by the model proposed in

Zhang et al. (2016) for vehicle scheduling and routing in autonomous mobility-on-demand systems. The

model in Zhang et al. (2016) was expanded to consider charging constraints and V2G in Iacobucci et al.

(2018a) and Iacobucci et al. (2019), respectively. The model formulations in these papers keep track of the

vehicles’ positions while traveling within an arc of the transportation network, which significantly increases

the complexity of the models. We develop a simplified version of the model presented in Zhang et al. (2016),

that uses a significantly less number of binary variables, and extend it to consider balking of the passengers

and power-market-related constraints as follows.

Let T be the set of all time periods, N be the set of all nodes in the transportation network, and A be the

set of all i, j combinations in the network. We define γijt and dijt as the number of new passenger demand

arrivals and the unserved demand, respectively, at node i with destination j, (i, j) ∈ A, at time t ∈ T . Let B
denote the set of all SAEVs. We define, for b ∈ B, xbijt = 1 if vehicle b departs with a passenger from node i

to node j at time period t, and 0 otherwise. The demand left unserved in any given node is equal to the

number of customers already waiting, plus the new arrivals, minus the demand served at the current time:

dij,t+1 = (1− β)dijt + γijt −
∑
b∈B

xbijt − bijt, ∀(i, j) ∈ A, t ∈ T , (1)

where β ∈ (0, 1) denotes the fraction of the already waiting customers that balk. A the dummy variable bijt

(0 ≤ bijt ≤ 1) is introduced to cancel out the fractional part of (1− β)dijt and ensure that dij,t+1 is integer.

Let H and P be the subsets of the nodes in the transportation network in which the smart hubs and parking

facilities are located, respectively. We define zbit = 1, if vehicle b waited in node i from time t− 1 to time t,

and 0 otherwise. Then, the following constraint guarantees that SAEVs park only at nodes with parking lots

or smart hubs.

zbit = 0, ∀t ∈ T , b ∈ B, i 6∈ H ∪ P. (2)

Let ybijt = 1, if vehicle b is departing empty from node i to j at time period t, and 0 otherwise. Also let

pbit = 1, if at time t, the vehicle b arrives at node i. Then, the following constraints determine if vehicle b

stays at, arrive to, or depart from node i at time t.

An SAEV arrives to node i at time t if it departed from node j exactly τji time periods before, where τji
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is the travel time between nodes j and i. Then, we can write that

pbit =
∑

(j,i)∈A:τji≤t

(xbji,t−τji + ybji,t−τji), ∀i ∈ N , t ∈ T , b ∈ B. (3)

Constraint (4) ensures that the vehicle will either stay parked at a node or depart from it with or without

passenger; none of these actions can occur simultaneously.∑
i∈N

(zbi,t+1 +
∑

(i,j)∈A

xbijt +
∑

(i,j)∈A

ybijt) ≤ 1, ∀t ∈ T , b ∈ B. (4)

The next constraint, assures that if a vehicle is at a node, it must have either just arrived or been idling since

the previous time period.

zbit + pbit ≤ 1, ∀i ∈ N , t ∈ T , b ∈ B. (5)

An SAEV stays at a node for the next time period if it was already idling at a node and did not depart in

the current time period. This considered in the following constraint.

zbi,t+1 = zbit + pbit −
∑

(i,j)∈A

(xbijt + ybijt), ∀i ∈ N , t ∈ T , b ∈ B. (6)

In the remaining part of this subsection, we model the vehicle charging aspect of the problem. Charging

schedule of the SAEVs depends on the varying electricity prices at the nodes and the transportation demand.

The smart hubs are considered to offer charging services to privately owned EVs. The fleet operator may

charge SAEVs when the prices are low and sell the excess energy to the grid if the prices are high enough.

The DA commitment of the hubs may also be sold back to the grid if the RT prices rise significantly. Finally,

we consider that each hub also has a bank of stand-alone batteries and rooftop solar generation, which give

additional flexibility to the CPS operator. The fleet of SAEVs is subject to routing constraints (1)–(6) as

well as some charging constraints as follows.

Let φb denote the battery capacity of SAEV b, εb be the energy consumed by SAEV b per unit time

period on the road, pb+ht be the total charge added to SAEV b at hub h at time period t, and pb−ht be total

energy discharged from SAEV b at hub h and time period t. The state of charge of SAEV b, denoted by sbt ,

changes over time depending on whether the vehicle is charging, discharging, idling or traveling. Then, we

can write the energy conservation of SAEV b as

φbs
b
t+1 = φbs

b
t +

∑
h∈H

pb+ht −
∑
h∈H

pb−ht − ε
b

(
1−

∑
i∈N

zbi,t+1

)
, ∀t ∈ T , b ∈ B. (7)

Note from (7) that if SAEV b has been parked at any node i (i.e., zbi,t+1 = 1), then the last term is equal to

zero (no energy consumed for travel). Total energy charged to an SAEV b might come from either the grid

(gbht), the rooftop solar system (f bht), or the bank of stand-alone batteries (ebht). Then, we can write the total

amount charged as

pb+ht = ebht + f bht + gbht, ∀t ∈ T , b ∈ B, h ∈ H, (8)
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where

f bht ≤ Fmax
h zbh,t+1, ∀t ∈ T , b ∈ B, h ∈ H, (9)

ebht ≤ Ehzbh,t+1, ∀t ∈ T , b ∈ B, h ∈ H, (10)

and Fmax
h is the installed capacity of solar power and Eh is the aggregated stand-alone battery capacity. Note

that Fmax
h and Eh are acting as big-Ms in these equations. We assume that both charge and discharge rates

for the vehicles are constant and denoted by P+ and P−, respectively. Hence, we can write that

pb+ht ≤ P
+wb+ht , ∀t ∈ T , b ∈ B, h ∈ H, (11)

pb−ht ≤ P
−wb−ht , ∀t ∈ T , b ∈ B, h ∈ H. (12)

where wb+ht and wb−ht are binary variables equal to 1 if SAEV b is charging or discharging, respectively, at

hub h at time period t, and 0 otherwise. The next constraint guarantees that 1) the SAEVs can charge or

discharge only if they are parked at a hub and, 2) they are not charging and discharging simultaneously

during time period t:

wb+ht + wb−ht ≤ z
b
h,t+1, ∀t ∈ T , b ∈ B, h ∈ H. (13)

We assume that the state of charge of SAEV batteries may not be allowed to be either 0 or 1. We define Sb

and Sb as the minimum and maximum allowable state of charge for SAEV b at any time, respectively. Then

SAEVs state of charge is bounded by

Sb ≤ sbt ≤ Sb, ∀t ∈ T , b ∈ B. (14)

Let P+
h , and P−h be the charging and discharging rates, respectively, of the bank of stand alone batteries

at hub h. Let ght and f+
ht be the fraction of the energy charged to the bank of stand-alone batteries coming

from the grid and the available solar power, respectively. Let p−ht denote the total energy discharged from the

bank of stand-alone batteries at hub h at time period t and sht (between 0 and 1) denote its state of charge.

Then, power conservation of the bank of stand-alone batteries is given by:

Ehsh,t+1 = Ehsht + ght + f+
ht − p

−
ht, ∀t ∈ T , h ∈ H, (15)

where both the charging and discharging rates of the battery bank are bounded as:

ght + f+
ht ≤ P

+
h , ∀t ∈ T , h ∈ H, (16)

p−ht ≤ P
−
h , ∀t ∈ T , h ∈ H. (17)

Energy discharged from the bank of stand-alone batteries is used to 1) charge the SAEVs and the privately

owned EVs at the hubs, and 2) to sell in the RT market (denoted by p̂−ht). Hence, we can write that

p−ht =
∑
b∈B

ebht + eEV
ht + p̂−ht, ∀t ∈ T , h ∈ H, (18)

where, eEV
ht is the total energy added form the bank of stand-alone batteries to the privately owned EVs

at hub h at time period t. Similarly, the available solar power at the hubs (Fht) is used to 1) charge the

parked SAEVs, the bank of stand-alone batteries, and the privately owned EVs (fEV
ht ), and 2) to sell in the
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RT market (f−ht). Then we have that:∑
b∈B

f bht + fEV
ht + f+

ht + f−ht = Fht, ∀t ∈ T , h ∈ H. (19)

When appropriate, the CPS operator discloses availability of charging stations in the hubs to privately

owned EVs. The EV owners pay the RT price of electricity plus a fee ζh for each period they occupy a

charging station at the hubs. Without loss of generality, we consider that EV oweners will request v number

of time periods to the hubs; v ∈ {1, · · · , V }, where V is the maximum number of time periods that a privately

owned EV is allowed to stay (charging) at a hub. Let W v
ht be the number of EVs requesting charging for v

time periods at hub h at time period t, and wvht is the number of requests that are accepted; note that W v
ht is

a parameter whereas wvht is a decision variable. The EV charging requests that are accepted in the current

time period will occupy charging stations at the hubs at the beginning of the next time period. Then, we

have that:

wvh,t+1 ≤W v
ht, ∀h ∈ H, t ∈ T . (20)

The number of charging stations used by privately owned EVs at any time t (cht) is equal to the number

of accepted request for time period t, plus, the number of EVs that were charging in the previous time periods.

Then, we can right that

cht =

V∑
v=1

wvht +

V∑
v=2

wvh,t−(v−1), ∀h ∈ H, t ∈ T . (21)

As the total energy consumed by the privately owned EVs is supplied by the grid (gEV
ht ), the bank of

stand-alone batteries (eEV
ht ), and solar power (fEV

ht ), we have that:

eEV
ht + fEV

ht + gEV
ht = P+cht, ∀h ∈ H, t ∈ T . (22)

The number of available charging stations for SAEVs at any given time period is Ch − cht, hence we have

that: ∑
b∈B

(wb+ht + wb−ht ) ≤ Ch − cht ∀h ∈ H, t ∈ T . (23)

We consider that the SAEVs can park at city parking lots, which has cost αp for each time period it

stays parked. The CPS operator pays the unit cost of electricity consumed (πht) to the SO. The revenue for

the fleet and the hub system comes from three sources, namely, energy sold to the grid (at the rate πht),

payments from privately owned EVs, and payments received from the passengers (ψt per time period on the

road). Then, the hubs operational model can be formulated as:

max
∑
t∈T

∑
b∈B

∑
(i,j)∈A

ψtτijx
b
ijt −

∑
p∈P

∑
t∈T

∑
b∈B

αpz
b
pt

−
∑
h∈H

∑
t∈T

πht

(∑
b∈B

(
gbht − pb−ht

)
+ ght − p̂−ht − f

−
ht + gEV

ht

)

+
∑
h∈H

∑
t∈T

πhtP
+cht +

∑
h∈H

∑
t∈T

ζhcht (24)
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s.t., (1)–(23)

The objective function (24) has five components that accounts for the following:

1. fare received from the passengers,

2. parking fee paid by the idling SAEVs,

3. total payment by the CPS to the system operator for consumption of electricity; negative elements

denote the payment received by the CPS,

4. payment received by the CPS from the privately owned EVs for energy consumed, and

5. payment received by the CPS from the privately owned EVs for occupying the charging stations.

We solve two modified versions at different stages of the methodology. First, we solve a deterministic

version of the model in the “Ad hoc load schedule” step, and then we robustify the model in the second stage

of the methodology. In what follows, we describe each of the steps of the methodology.

4.3 Ad hoc load Schedule and Market Clearing Price Estimation

The ad hoc load schedules developed using the planning model serve as input for the day-ahead commitment

model, which is described later. A few parameters of our model that are required for this step are: price of

electricity paid by the CPS (πht), charging demand of the privately owned EVs (W v
ht), available solar power

(Fht), and the number of passenger arrivals (γijt). All the above parameters are stochastic. We construct

distributions for these parameters based on prior information, and generate random samples of the vector

V = {πht,W v
ht, Fht, γijt}, ∀i ∈ N , j ∈ N , t ∈ T , h ∈ H. Then, we obtain the minimal-cost load schedule for

each hub and for any given realization of V as Dht =
∑
b∈B g

b∗
ht + g∗ht + gEV ∗ht for all h ∈ H, t ∈ T , where

the optimal values of the variables are obtained from the solution of (24), subject to (1)–(23). Let V l be a

realization of the random vector V . Then, we denote the set of minimal cost load schedule scenarios for each

hub h as Dh = {Dht(V l) : t ∈ T , l ∈ {1, · · · , N}}, where N is the number of randomly selected samples of V.

We select a relatively large value for N so that the variations of the components of V are well represented in

the samples.

To reduce the computational burden of the subsequent DA commitment process, we select a representative

subset of the ad hoc load schedules, using a scenario reduction technique adopted form Growe-Kuska et al.

(2003). This technique selects a subset of the load scenarios, denoted by Ω, and assigns to each a probability

of occurrence µω, ∀ω ∈ Ω. We use the load schedule Dω
ht and the generators DA bids to solve the ACOPF

model presented in Appendix A. Solution of the ACOPF model yields an estimate of the day-ahead market

clearing prices (MCPωnt) at each bus n ∈ N , where N is the set of all buses in the power network. The

ACOPF model is solved in practice for each hour of the day, though our operational model has shorter time

periods. Hence, to solve the ACOPF model for each hour, we sum the loads of all time periods within the

hour. Note that, more than one hub may be directly connected to a single bus in the grid. The total real and

reactive power load at each bus is equal to the sum of all the loads connected to the bus (houses, industries,

the hubs, etc.). The real power load of each hub h, in a given scenario w, is equal to Dω
ht, while the reactive

power demand is a fraction of Dω
ht.

4.4 Two-Stage Stochastic Model for Day Ahead Commitment

In this subsection, we present our two-stage stochastic model for obtaining DA commitment for each hub as

discussed in step 3 of the methodology presented in Section 3. The model requires both DA and RT prices,
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where the DA prices are the MCPs obtained in step 2. These DA prices in turn are used to estimate the

RT prices; for this, we use the method proposed in Das & Wollenberg (2005), which is summarized below.

The RT prices at bus n are estimated as πωnt = MCPωnt[1 + ε], where ε = M1ε1 +M2ε2; ε1 and ε2 are random

variables and are drawn from normal and Cauchy distributions, respectively, and (M1,M2) is a bivariate

random variable that takes value of (0, 1) with probability ps and (1,0) with probability (1− ps), where ps

denotes the probability of occurrence of price spikes. The normal random variable ε1 captures the usual

variability in the real time prices, whereas the Cauchy random variable ε2 generates the price spikes. The

load schedules of each hub (Dw
ht), the estimated market clearing prices (MCPwnt), and the corresponding real

time prices (πωnt), are used to formulate the two-stage stochastic model as follows.

The two-stage model assumes that each hub can either sell or buy excess or shortfall quantities in the

RT market. Let pDA
ht denote the quantity committed in the DA market by hub h at time period t. Then,

the hourly DA commitment is equal to the sum of the pDA
ht for all time periods belonging to the hour. Let

pω,RT+
ht and pω,RT−ht be the quantities bought and sold, respectively, in the RT market, by hub h at time

period t in scenario ω ∈ Ω. Then, the DA commitment for the hubs are obtained by solving the following

cost minimization model.

min
∑
ω∈Ω

µω
[∑
t∈T

∑
n∈N

∑
h∈Hn

(
MCPωntp

DA
ht + πωntp

ω,RT+
ht − (πωnt − δRT)pω,RT−ht

)]
s.t., pDA

ht + pω,RT+
ht − pω,RT−ht = Dω

ht, ∀h ∈ H, t ∈ T , ω ∈ Ω,

(25)

where Hn is the set of hubs directly connected to bus n, and δRT is a penalty for not using the DA committed

quantity. The first two terms of the objective function denote the cost of purchasing electricity from the

DA and RT markets. The third term takes into account selling of excess electricity in the RT market. The

constraint accounts for the conservation of power by equating effective quantity of electricity purchased to

the demand.

4.5 Real Time operational model

This final element of our methodology (stage 2) comprises a real-time operational model that guides the

actions of the SAEVs and the hubs. The real-time operational model is a robust version of the planning model

presented in Section 4.2. Note that, unlike stage 1 of our methodology which uses ad hoc load schedules

and estimated prices based on historical data, the real time model uses observed parameters in real time

for each time period of the day. In what follows, we present some additional constraints that are needed to

incorporated the DA commitment. Once the DA commitment for the hubs is made, the SO discloses the DA

prices, πDA
ht , and the CPS operator pays

∑
h∈H

∑
t∈T π

DA
ht p

DA
ht . Since, based on the DA commitment, any

shortfall or excess is procured in the RT market, we can write that

gbht = gb,DA
ht + gb,RT

ht , ∀h ∈ H, t ∈ T , b ∈ B, (26)

ght = gDA
ht + gRT

ht , ∀h ∈ H, t ∈ T , (27)

gEV
ht = gEV,DA

ht + gEV,RT
ht , ∀h ∈ H, t ∈ T . (28)

The DA commitment is used to 1) charge the batteries of the SAEVs, privately owned EVs, and the

battery bank and 2) sell it in the RT market if profitable, i.e., if the RT prices are high, the hubs may use
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their DA commitment to arbitrage in the RT market. Then, we can write the following.∑
b∈B

gb,DA
ht + gDA

ht + gEV,DA
ht + pRT−

ht = pDA
ht , ∀h ∈ H, t ∈ T , (29)

where pRT−
ht is the actual quantities sold to the RT market by hub h ∈ H at time period t ∈ T . Selling back

to the grid not only benefit the system of hubs (economically), but also help the system operator to match

demand and supply; RT prices are rise when the current demand in the network is higher in comparison to

the supply.

To simplify the formulation of the real-time operational model, we define the dummy variables aRT and

aRT
b as:

aRT =
∑
h∈H

∑
t∈T

πRT
ht l

RT
ht , (30)

aRT
b =

∑
h∈H

∑
t∈T

πRT
ht l

b,RT
ht , ∀b ∈ B, (31)

where lRT
ht and lb,RT

ht are dummy variables defined as:

lRT
ht = P+cht + p̂−ht + f−ht − g

RT
ht − g

EV,RT
ht , ∀h ∈ H, t ∈ T , (32)

lb,RT
ht = pb−ht − g

b,RT
ht , ∀b ∈ B, h ∈ H, t ∈ T . (33)

Finally, to account for the fraction of the DA commitment that is sell back to the grid we define

aDA =
∑
h∈H

∑
t∈T

(πRT
ht − δRT)pRT−

ht . (34)

Then, we can re-write the objective function (24) at any time period τ ∈ T as:

max

|T |∑
t=τ

∑
b∈B

∑
(i,j)∈A

ψtτijx
b
ijt + aRT +

∑
b∈B

aRT
b + aDA +

∑
h∈H

∑
t∈T

ζhcht −
|T |∑
t=τ

∑
p∈P

∑
b∈B

αpz
b
pt. (35)

The abode objective function is subjected to constraints (2)–(18), (21)–(23), (26)–(29), (32) and (33), in

which we must now replace ∀t ∈ T by ∀t ∈ {τ, · · · , |T |}. Additionally, the model is also subjected to the

robust versions of those constraints with uncertain parameters, namely, constraints (1), (19), (20), (30), and

(34). In Appendix B, we show the robust counterparts of these constraints. Note that, the cost of electricity

procured through DA commitment (
∑
h∈H

∑
t∈T π

DA
ht p

DA
ht ) is subtracted from the optimal objective value of

(35) to obtain the final gross profit of the CPS.

5 A Case Study

We demonstrate our methodology by implementing it on a sample problem where a CPS operates within

a city’s transportation and power networks. A schematic representation of the CPS is given in Figure 3.

The network on the right represents the transportation network with 12 nodes, 5 hubs, and the connecting

arcs. The case study uses actual transportation demand data for the City of Tampa, and the demands are

aggregated for zones at which nodes are located. The Tampa Bay area is represented by 12 such transportation
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Figure 3: Schematic of a CPS interacting with power and transportation networks

nodes. The building in the middle represents one of the charging/discharging hub with its PV generation and

bank of stand alone batteries. The hub is connected to one a bus of the power network which is abstracted as

a 5 bus network as shown on the left. We used a simplified power network similar to that of PJM’s 5-bus

network to represent the power supply scenario.

The CPS is considered to have the following features. It has a fleet of 500 SAEVs, each with a battery size

of 100 kWh and a range efficiency of 0.293 kWh per mile on city roads (similar to Tesla model S). The SAEV

fleet is supported by a system of five hubs, each with 50 super-chargers with an hourly charge/discharge rate

of 70kW for each charger. Each hub has a stand-alone battery bank with a capacity of 600 kWh and an

hourly charge/discharge rate of 300 kW. Each hub is also considered to have a solar generation facility with a

peak capacity of 200 kW. The PV generation capacities at the charging hubs are assumed based on estimated

roof area of the charging hubs and actual solar irradiance values for the Tampa Bay region. Generation from

these PV units across the day is modeled using the patterns obtained from Tampa Electric Company (TECO)

serving the city of Tampa, Florida, U.S. The CPS serves passenger transportation in the city of Tampa and

its suburbs. For ease of computation, the origins and destinations (ODs) of the transportation network are

clustered into twelve nodes as shown in Figure 4a. A similar clustering approach was used in Iacobucci et al.

(2019). The hubs are considered to be located in five of the twelve node locations (1, 6, 8, 9 and 10). The

locations for the five hubs were chosen somewhat arbitrarily from among 12 transportation nodes based on

demand volume and distance from other nodes with no hubs. The average travel time from each hub to the

rest of the service area are depicted in heat maps in Figure 4b to Figure 4f; the travel time data is adopted

from Uber (2020). Based on the travel time data, we assumed that all travel times are multiples of 15 minutes

apart and the maximum trip duration is 75 minutes; every 15 minutes is considered one time period in our

model. The transportation demands served by the SAEVs for each time period are generated using the actual

daily travel requests in Tampa; we assume that 30% of all passenger travel requests are potential customers

for the SAEVs. The distribution of the total daily demand over the time periods of a day is considered to be

same as in Zhou et al. (2003). For charging demand of privately owned EVs, we use the arrival patterns

and fleet composition as presented in Subramanian & Das (2019). EVs request charging for up to four time

periods, and once accepted to a hub they remain charging till the request is fulfilled. The privately owned

EVs pay to the hub a facility fee ($8/hour) plus the prevailing real time price of electricity. The SAEVs

receive $45/hour for transporting passengers and when idle and park they pay a parking fee of $10/hour.

The power grid to which the CPS is connected is considered to be the modified PJM 5-bus network, as
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Table 1: Generator cost functions used in the case study

Generator Cost function Generator Cost function

1a 0.100P 2
g + 12Pg + 100 4c 0.100P 2

g + 19Pg + 70

1b 0.100P 2
g + 20Pg + 30 5a 0.100P 2

g + 17Pg + 60

1c 0.100P 2
g + 08Pg + 40 5b 0.120P 2

g + 18Pg + 50

4a 0.100P 2
g + 10Pg + 50 5c 0.085P 2

g + 20Pg + 80

4b 0.100P 2
g + 25Pg + 150

shown in Figure 3. The network has the two load buses (2 and 3) and three generating buses (1, 4, and 5)

each with three identical generators of 800 MW capacity. The characteristics of the six transmission lines

(capacity, reactance, and susceptance) are adopted from Li & Bo (2010). The generator cost functions are

assumed to be quadratic with parameters presented in Table 1, which are obtained from Das & Wollenberg

(2005). The base load of the 5-bus network (not considering the load of the CPS) is considered to be same as

the DAY zone of the PJM network (U.S.) for the time period between July 15, 2019 and July 30, 2019; we

consider summer days only to avoid seasonal variability.

For implementing our methodology, we need historical data for transportation demand, electricity price,

PV generation at the hubs, and EV charging demand. For these parameters, we developed probability

distribution for each time period of a day using the available data from the sources described above. We

use normal distribution for the nodal electricity prices and PV generation, and Poisson distribution for the

transportation and EV charging demands. We then draw one hundred samples for all time periods from each

of these distributions and solve (24), as described in Section 4.3, to generate the ad hoc load scenarios. The

scenario reduction technique is then used to obtain ten representative ad hoc load scenarios with respective

probabilities. For each of these ten load scenarios along with the base load of the city, we solve the ACOPF

model (43) to estimate the DA MCPs and then derive the RT prices at each load bus. Hereafter, considering

the selected load and price scenarios with their corresponding probabilities, we solve the two-stage model

(25) to obtain the hourly DA commitment for each hub. Using these DA commitments, we solve the real

time operational model in (35). We implement our methodology on the sample problem using Julia 0.7.1 as

programming language and GUROBI 9.0.0 as optimization solver. The results are organized to address three

key goals of our numerical study: 1) to demonstrate that our methodology is capable of yielding real-time

operational strategies for the CPS, 2) to demonstrate the influence of power network on CPS operation,

and 3) to measure the added financial benefit to CPS that is made possible by the detailed power network

considerations in our methodology (unlike the existing literature).

Our methodology was successful in obtaining real time action choices for the CPS elements (SAEVs, hubs,

battery banks, and PV generators) for all 96 time periods of a day. Some of these action choices are depicted

in the figures that are discussed next. Figure 5a illustrates the distribution of the SAEVs arriving at the

nodes throughout the day (vehicles in between nodes are not included). Although, in our implementation, all

the SAEVs were assigned to be at hub nodes (100 in each) at time period 1, it can be seen that the vehicles

are well distributed across the city during the day. The maximum aggregated number of SAEVs arriving

at the nodes at any time period is observed to be less than 40% of the fleet size, meaning 60% or more of

the SAEVs are traveling between nodes. The SAEVs served a total of 10,288 trips during the day out of

53,441 trips generated. This indicates that the fleet size of 500 is inadequate for the demand considered here.

Figure 5b shows the number of SAEVs charging at the hubs (at nodes 1, 6, 8, 9, and 10) throughout the

day. Average occupancy of the hubs is observed to be around 35 vehicles. Hence, a system of five hubs with
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50 charging stations in each is generally underutilized for a fleet size of 500; only the hub at node 8 can be

observed to be fully occupied for a few time periods of the day. This indicates that there is available capacity

for the CPS to offer charging services to privately owned EVs. Figure 5c shows the number of privately

owned EVs that were allowed to charge at the hubs, as determined by the optimal solution. Note that the

pattern of EV charging demand, adopted from Subramanian & Das (2019), is mostly concentrated during

the morning hours, which explains the result in Figure 5c. Figure 5d shows the number of SAEVs idling

(neither serving trips, traveling empty, nor charging). SAEVs can be seen to idle only at the hub nodes and

at those time periods when higher numbers of EVs are allowed at the hubs. The total idle time of the SAEVs

is less than 1.6%, which aligns well with the fact that the demand for trips in the system is very high for the

given fleet size. We noted that our methodology generated a total gross profit of $229,193 per day, which

includes $3,494 from serving the privately owned EVs and $2498 from arbitrage using the battery banks.

Hence, optimal operation of the CPS with 500 SAEVs and five hubs of 50 charging station could generate

an estimated annual gross profit close to 84 million dollars. However, this estimate is high for the following

reasons: 1) the trip demand for the sample problem is too high for a fleet size of 500 and hence there is little

to no idle time for the vehicles, 2) no time lag is accounted for between drop off and pick up when a passenger

is available at a node, 3) no time loss for connecting/disconnecting vehicles at the hubs is considered, and 4)

outages for vehicle break down and maintenance are not included.

Since our methodology does not address how to select the optimal capacities for the hubs that are needed

for the system, we conducted a sensitivity analysis. For a number of different fleet sizes, between 100 and

500, we determined the approximate number of charging stations in each of the five identical hubs, beyond

which the gross profit of the CPS did not seem to increase significantly. We approximated this point using

the fit3 technique presented in Smith & Corripio (1997). We plotted the optimal number of charging stations

(in all five hubs combined) per SAEV for different values of the fleet size, see Figure 6. It shows that the

average number of charging stations needed per vehicle is 0.41 (with a standard deviation of 0.038).

Recall that, the second goal of our case study was to measure the influence of power network on the

CPS operation. For this, we plotted the total grid consumption by the hubs, the total DA commitment for

the hubs, and the RT prices. Note that, the DA commitment and the RT prices largely guide the charging

strategy. The plots are shown in Figure 7 for only two hubs (1 and 10) that are connected to two different

load buses in the sample power network. In these figures, the bars indicate the total DA commitment by the

hubs for each time period, the red line represents the RT prices, and the bold line shows the energy consumed

by the hubs from the grid. Figure 7a depicts the results for the case in which privately owned EVs are not

allowed to charge at the hubs. We notice that the energy consumption from the grid is closely aligned with

the DA commitment, which means that the CPS operator is able to hedge effectively against the RT price

risk through its two-stage stochastic DA commitment model. The consumption from the grid can be seen to

be generally slightly higher that the DA commitment. However, at some of the time periods, say 24-36 (in

hub 1) and 65-70 (in hub 10) when the RT prices are higher, the DA commitment chosen by the model is

larger than actual consumption. By doing so, the model has created opportunities for arbitrage, where the

excess commitment is sold back to the RT market for profit. We notice however that the energy arbitrage

potential of the sample CPS, with only 500 vehicles serving a transportation network with a significantly high

passenger demand, is very limited as the revenue from passenger fare is much higher than that from energy

arbitrage. Figure 7b presents results for the scenario when privately owned EVs are allowed to charge at the

hubs. We have seen earlier in Figure 5c that more EVs charge at the hubs in the early morning hours of the

day (around time period 30 to 40; 7:30 AM to 10:00 AM), hence for both hubs 1 and 10, the DA commitment

as well as the grid consumption are much higher in the early hours (see Figure 7b); the remainder of the day
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(a) Arrival of SAEVs (b) Number of SAEVs charging

(c) Number of EVs charging (d) Idle SAEVs

Figure 5: Distribution of SAEVs and charging patterns of SAEVs and EVs
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Figure 6: Optimal ratio of hub capacity to number of vehicles in the fleet

they are similar to Figure 7a.

We address the third goal of our numerical study by assessing the additional financial benefits generated

by considering power network aspects. This was accomplish by measuring the cost savings attained by the

hubs by buying power through optimal DA commitments for different levels of RT price variations. Recall that

the DA commitment requires solution of the ACOPF model via steps 1-3 of our methodology. We obtained

the operational strategies for the CPS using two approaches: 1) by using the complete methodology including

optimal DA commitment, and 2) by eliminating DA commitment and paying RT prices for all consumption

from the grid by the hubs. The increase in gross profit of the CPS by using optimal DA commitment (as

opposed to paying RT prices for the whole quantity) was assessed for a number of scenarios with an increasing

level of RT price spikes; these spikes were generated by increasing the location parameter of the Cauchy

distribution. Note that, the location parameter is the median/mode value of the price spike, and as in Das &

Wollenberg (2005), the scale parameter was kept same as the location parameter. We plotted the increase in

gross profit with increasing RT price spikes (see Figure 8). As expected, in the absence of price spikes, i.e.,

when the location and scale parameter values are zero, the increase in gross profit from using DA commitment

is negligible. However, as the intensity of price spikes increases (with increasing location parameter value),

DA commitment yields an increasing level of gross profit. For a typical range of RT price spikes in the U.S.

electricity markets, for which the location parameter tends to lies between $0.2/kWh to $0.4/kWh, the CPS

can achieve an increase in the gross profit between $2000 to $3000 per day.

5.1 Comments on computational challenges

Recall that, the part of our methodology that addresses the transportation aspect uses a variant of an existing

model (Zhang et al. 2016). However, we have reformulated the constraints in Zhang et al. (2016) and our

version of the transportation model uses a significantly less number of binary variables. Though this reduction

makes our methodology easier to solve, the computational times for both the planning and the real time

operational models still increase exponentially with the fleet size. This is due to the fact that even when

the number of integer variables in our methodology grows linearly with the fleet size, computation time for

mixed integer programs (MIPs) increases exponentially with the number of integer variables. Furthermore,

in our methodology we need to solve many iterations of the planning model, which is needed to capture
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Figure 7: Comparison of DA commitment with actual consumption for selected hubs

Figure 8: Financial benefits of DA commitment with increasing RT price spikes
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the variability of the electricity price, transportation demand, solar generation, and charging demand of

the privately owned EVs. Hence, solving the planning model is computationally burdensome, especially for

large fleet sizes. We have also observed that with smaller hub capacities, finding acceptable solutions of the

MIP models in our methodology becomes difficult using commercial optimization solvers (like GUROBI).

We conjecture that this occurs because the number of feasible schedules for the SAEVs decreases with

reduced hub capacities; this is analogous to the findings reported in studies that compared uncapacitated

and capacitated facility location problems, e.g., Verter (2011). As we have discussed earlier, the fleet size of

500 is very small for the level of transportation demand in the CPS of our case study, and also five hubs

of capacity fifty is perhaps more than what is optimal for a fleet of 500 SAEVs. Hence, we have develop

a simpler modified (myopic) approach for the planning and operational models of our methodology. It is

expected that this myopic approach can to obtain near-optimal solutions more efficiently for systems with

larger fleet sizes and limited hub capacities.

6 A myopic approach for planning and operational decisions

The myopic alteration of our methodology applies to both the model for obtaining ad hoc load schedules (in

step 1) and real time operational strategies (in step 4). For step 1, the myopic approach works as follows.

Instead of finding the operational strategies of SAEVs, battery banks, and EVs using a single optimization

model, we obtain those sequentially, as follows. First, we optimize the charge/discharge schedule of the

battery banks at all hubs by considering the electricity prices only, i.e., guided by temporal arbitrage alone.

Then, we use this charge/discharge schedule of the battery banks, expected PV generation, and historical

electricity prices to determine the actions of the SAEVs that are not committed at each time period of the

day. Thereafter, we decide the number of privately-owned EVs that are allowed to enter the hubs at each

time period of the day. The above sequential approach determines the ad hoc load schedule (i.e., how much

power to buy from the grid). Note that, the energy discharged from the battery banks and the generation

by the PV are prioritized for use first by the SAEVs and then EVs; any unused quantity is injected back

to the grid. For step 4 of our methodology, the myopic approach works in a similar manner as for step 1.

The main difference being that instead of using historical electricity prices, we use DA commitment and RT

prices (along with discharge schedule of battery banks and PV generation) to obtain actions for SAEVs not

committed to other tasks in each time period.

6.1 A Myopic model for selecting actions for SAEVs

We solve a sequence of (modified) linear assignment problems to decide the next action of SAEV b. Let x̂bij ,

ẑbi , ŵ
b+
h , and ŵb−h be equal to 1 if SAEV b is assigned to 1) pick a customers from i to j, 2) park at node i, 3)

charge at hub h, and 4) discharge and hub h, respectively, and 0 otherwise. Then, at each time period we
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can solve the following optimization model.

max
∑

(i,j)∈A

∑
b∈B

ψbij x̂
b
ij −

∑
i∈N

∑
b∈B

αbi ẑ
b
i −

∑
h∈H

∑
b∈B

πb+h ŵb+h +
∑
h∈H

∑
b∈B

πb−h ŵb−h

s.t.,
∑

(i,j)∈A

x̂bij +
∑
i∈N

ẑbi +
∑
h∈H

(
ŵb+h + ŵb−h

)
= 1 ∀b ∈ B

∑
b∈B

x̂bij ≤ dij ∀(i, j) ∈ A

∑
b∈B

(
ŵb+h + ŵb−h

)
≤ Ĉh ∀h ∈ H

0 ≤ x̂bij , ẑbi , ŵb+h , ŵb−h ≤ 1

(36)

where, ψbij , α
b
i , π

b+
h , and πb−h denote the unit values for the revenue of vehicle b from transporting a customer

from i to j, cost of parking at node i, cost of charging at hub h, and revenue from discharging and hub h,

respectively. These values depend on the time when each SAEV completes its assigned action; we denote this

completion time as θ. To compute the above parameters, we define the minimum state of charge that an

SAEV must maintain at a completion of a task. For example, the minimum state of charge of any vehicle

completing a task at node k is given by smin
k = Sb + 1

φb
τkhεb, where hub h is the closest to node k. Then, the

revenue from transporting a customer in i to j can be given as:

ψbij =

{
ψijτij , if sbθ ≥ smin

j

−M, otherwise,
(37)

where M is a big positive number. The cost for parking at node i is given as,

αbi =

{
αi + L, if sbθ ≥ smin

i

M, otherwise,
(38)

where L is a positive number chosen to make the perceived cost of parking higher than the average cost of

electricity. This is done to allow SAEVs, without a customers to serve, to choose charging instead of parking

unless the price of electricity is expected to be even higher in the current time period. The cost of discharging

can be written as,

πb−h =

{
πhθ min{P−, φb(sbθ − S

b)}, if sbθ ≥ smin
h

−M, otherwise.
(39)

In a similar manner, the cost of charging can be written as,

πb+h =

{
πhθ min{P+, φb(Sb − sbθ)}, if sbθ ≥ smin

h

M, otherwise.
(40)

Note that the cost of discharging is calculated using the electricity price at the time of arrival to the hub,

πhθ, whereas for the cost of charging we use πhθ, which is given as,

πhθ = max
{Ch −Nhθ

Ch
, 0
}
πhθ, ∀h ∈ H, (41)
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where,

Nhθ =

⌊
Fhθ + P−hθ + PDA

hθ

P+

⌋
(42)

is the maximum number of vehicles that can be charged using the combination of the available solar power,

the discharged power from the bank of strand-alone batteries, and the DA commitment. The logic behind

(41) is as follows. For simplicity, assume that Nhθ ≤ Ch and that all charging stations (Ch) are assigned to

be used at time θ. Then, the assigned SAEVs will pay 0×Nhθ + πhθ × (Ch −Nhθ). Hence, we have that
Ch−Nhθ
Ch

πhθ is the average price paid by the SAEVs if all charging stations are used. Considering that Nhθ

might be greater that Ch leads to Equation (41). Hence, we are assigning SAEVs to charge assuming they

will pay the average price.

7 Results from the case study using the myopic approach

We first assess the performance of the myopic approach by comparing its computation time and gross profit

with those obtained from the original version of our methodology. All computational experiments are carried

out on a Dell Optiplex 9020 with Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz, 4-core processor, 16 GB

RAM, and Microsoft Windows 10 Enterprise operating system. We first assessed the savings in computation

time for a number of fleet sizes ranging from 50 to 500. Recall that the myopic approach is different from the

original methodology only in steps 1 and 4. The savings in computational time from step 1 is much more

significant than that obtained from step 4. In step 1 of the original methodology, we sequentially solve for

100 iterations of the planning model using a single thread, for which the total solution time is approximately

10 days. The myopic approach completes step 1 in a little over 4 hours. As regards step 4, the savings are

more modest, though significant. For each of the fleet sizes, we compute 20 iterations of the step 4, 10 using

the myopic approach and 10 using the original methodology. The box plots in Figure 9a show the reductions

in computation time. It can be seen that for 500 SAEVs, the myopic approach obtains the solution in about

2 minutes, whereas the original methodology takes about 120 minutes. Hereafter, we assessed the quality of

the solution obtained by the myopic approach as shown in Figure 9b. We notice that the myopic approach

yields on average an optimality gap of 21.5%, and it does not appear to be influenced by the fleet size.

Using the myopic approach, we examined the impact of the hub capacity on gross profit, SAEV idle time,

and unsatisfied demands in the CPS for a 24 hour period. Hub capacities between 50 and 250 for each hub

were considered for fleet sizes of 500, 1000, 2000, and 5000. The results are shown in Figure 10. Regarding

gross profit, we notice that for fleet size of 500, the gross profit is almost constant. The hub capacity of 50

for a fleet of 500 is already too high and increasing it further has little to no impact on gross profit. The fleet

of 1000 vehicles benefits from an increase in hub capacity beyond 50, but its gross profit does not grow much

after a hub capacity of 100. For fleet sizes of 2000 and 5000, the gross profit continues to rise as the hub

capacity increases. An interesting observation is that for the fleet of 5000, the gross profits are lower than

those for the fleet of 2000. This is due to the fact that a fleet size of 5000 is too high for the range of hub

capacities (50-250), and hence many of the SAEVs have to park and idle at the hubs and wait for charging

facility to become available. While parked, SAEVs pay a parking fee, thus lowering the gross profit. The

gross profit from the fleet of 5000 should be higher than the fleet of 2000 for hub capacities beyond 250. As

regards idle time of the SAEVs, it becomes smaller as the hub capacity increases, for all fleet sizes. Note that

in the myopic approach, SAEVs idle only when there is either no demand for transportation and/or there is

no available charging/discharging facility. Since 50 charging stations per hub is large enough, the fleet of 500
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Figure 9: Myopic vs. Optimal solution: time and optimality gap comparison

Figure 10: Impact of hub capacity on system performance

has little to no idle time. For a fleet size of 1000, the idle time reaches zero at hub capacity of 150. Fleets of

2000 and 5000 can benefit from hub capacities higher than 250, as the idle time continues to decrease and

gross profit continues to increase. Finally, as expected, the unserved passenger demand also decreases as the

hub capacity increases. Note that the unserved demand can be reduced only to a point, which depends on

the fleet size, by increasing hub capacity. Since the fleet size of 5000 is very large for the given demand, it

appears that by increasing hub capacity beyond 250 the unserved demand may be driven to zero.

8 Concluding remarks

Various alliances of technology and manufacturing companies are earnestly developing and testing autonomous

electric vehicles capable of navigating busy streets in major cities. These developments are likely to bring a

major transformation in which shared autonomous electric vehicles (SAEVs) will replace a significant number

of the human driven automobiles used by the ride sharing companies. However, effective switching to fleets of

SAEVs will be possible if cyber-physical infrastructure needed for this change are made available in cities
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and suburbs. These systems will provide the physical facilities (hubs and the power network infrastructure)

for the vehicles to charge and discharge, and also make the real time decisions for the vehicles and the

hubs. This paper presents a methodology that yields optimal operational strategies for a fleet of SAEVs

and its supporting CPS to maximize gross profit for the system. Recognizing the computational challenges

of our methodology, we have also developed a heuristic (myopic) version of the methodology. The myopic

methodology is capable of obtaining near optimal operating strategies for ride sharing services with large

fleets of SAEVs. Our methodology is novel as it incorporates power network considerations in SAEV fleet

operation planning. Existing papers addressing transportation with autonomous electric vehicles focus

mostly on the transportation aspects, while making simplifying assumptions for power related issues. Power

systems considerations including the use of an alternating current optimal power flow (ACOPF) model, power

purchase by the hubs in the day-ahead market, real time price spikes, arbitrage with battery banks, and

solar generation have not been presented to the SAEV literature before. Our numerical study shows that

ACOPF-guided SAEV fleet planning can yield between $2000–$3000 in savings per day (near a million dollars

per year) for a service provider with a relatively small fleet size of 500 SAEVs under the given conditions of

our study. Our study also unravels an interesting insight about limited potential for energy arbitrage via

vehicle-to-grid (V2G) using the SAEV batteries. This is so because in the presence of sufficient transportation

demand and a moderate level of real time price spikes, the SAEVs can earn more revenue serving passengers

in comparison to engaging in V2G.

Our methodology does not guide on how to select the optimal number of hubs needed for a system as

well as how to locate the hubs appropriately within the transportation service network. Also, it did not

consider the costs of the vehicles, the hubs (land, building, and charging technology), repair and maintenance,

and other statutory needs. Appropriate consideration of the above aspects can yield a more comprehensive

methodology for both design as well as operation of a system of SAEVs and the supporting CPS. However,

computational complexities associated with obtaining the optimal solution using such a methodology might

make its implementation difficult; this is a topic of our future research.
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Appendix A Alternative current optimal power flow (ACOPF)

It has been shown that the conventional non-linear load flow equations for both radial (Jabr 2006) and

meshed networks (Jabr 2008) can be transformed into a second order cone program (SOCP). In this section,

we present a modified version of such formulations.

A.1 ACOPF model notations

Sets

• G: Set of all generators in the network

• N : Set of all buses in the network

• Gi: Subset of generators that are connected to bus i ∈ N

• Ni : Subset of buses that are directly linked to bus i ∈ N

• T : Set of all time periods

• L: Set of all lines in the network

Parameters

• PLit : Active power load at bus i ∈ N at time t ∈ T

• QLit: Reactive power load at bus i ∈ N at time t ∈ T

• Gij : Conductance of line ij ∈ L

• Bij : Susceptance of line ij ∈ L

• F+
ij , F−ij : Real and reactive power capacity of line ij ∈ L, respectively
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• Pg, Pg: Lower and upper bound, respectively, of real power supply by generator g ∈ G

• Qg, Qg: Lower and upper bound, respectively, of reactive power supply by generator g ∈ G

• Vi, Vi: Voltage lower and upper bound, respectively, at node i ∈ N

Decision variables

• pgt: Real power dispatch from generator g ∈ G at time t ∈ T

• qgt: Reactive power dispatch form generator g ∈ G at time t ∈ T

Other variables

• pijt: Real power flow from bus i ∈ N to node j ∈ N at time t ∈ T

• qijt: Reactive power flow from bus i ∈ N to node j ∈ N at time t ∈ T

• uit: Transformed voltage at bus i ∈ N and time t ∈ T ; uit =
V 2
it√
2
, where Vit is the actual voltage at

node i ∈ N and time t ∈ T and it can be calculated after the optimization model is solved

• rijt: Intermediate variable; rijt = VitVjt cos(θi − θj), where θi and θj are the voltage angles at buses

i ∈ N and j ∈ N , respectively

• rijt: Intermediate variable; rijt = VitVjt sin(θi − θj)

A.2 ACOPF model formulation

The SOCP formulation of the traditional non-linear ACOPF problem is presented below.

min
∑
t∈T

∑
g∈G

Cg(pgt) (43)

s.t.,
∑
g∈Gi

pgt −
∑
j∈Ni

pijt = PLit ∀i ∈ N , t ∈ T (44)

∑
g∈Gi

qgt −
∑
i∈Ni

qijt = QLit ∀i ∈ N , t ∈ T (45)

pijt =
√

2Gijuit −Gijrijt +Bijrijt ∀ij ∈ L, t ∈ T (46)

qijt =
√

2Bijuit −Bijrijt −Gijrijt ∀ij ∈ L, t ∈ T (47)

− F+
ij ≤ pijt ≤ F

+
ij ∀ij ∈ L, t ∈ T (48)

− F−ij ≤ qijt ≤ F
−
ij ∀ij ∈ L, t ∈ T (49)

Pg ≤ pgt ≤ Pg ∀g ∈ G, t ∈ T (50)

Qg ≤ qgt ≤ Qg ∀g ∈ G, t ∈ T (51)

1√
2
Vi

2 ≤ uit ≤
1√
2
Vi

2 ∀i ∈ N , t ∈ T (52)

r2
ijt + r2

ijt ≤ 2uitujt ∀ij ∈ L, t ∈ T (53)

rijt = rjit ∀ ij ∈ L (54)

rijt = −rjit ∀ ij ∈ L (55)

In the objective function (43), Cg(·) denotes the cost function of generator g. Hence, the above formulation

minimizes the total electricity cost of the network over all time periods. Real and reactive power balance
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at node i and time period t are considered by equations (44) and (45), respectively. Equations (46) and

(47) are the real and reactive power flows, respectively, from node i to node j at time period t. Real and

reactive line flow capacities of arc ij are given by equations (48) and (49). Equation (50) and (51) bound the

generators real and reactive power outputs, respectively. Equation (52) bounds the voltage of each node of

the network. Equation (53) is a conic constraint to account for the relation between power flow components

and the voltage at each node. Finally, Equations (54) and (55) consider the relation between the power

flowing from node i to j and the power flowing from j to i. Also, the voltage at node 1 (substation node) is

considered to be known. Hence, we can write that u1t =
V 2
1√
2
∀t ∈ T . The above formulation is a SOCP since

any constraint of the form {u, v, w ≥ 0 : u ≤
√
vw} is equivalent to {u, v, w ≥ 0 :

√
u2 + ( v−w2 )2} ≤ v+w

2 }.

Appendix B Robustification of the operational model

B.1 Robust optimization

Robust optimization is an approach to solve linear optimization problems for which one or more coefficients

are random variables. This approach obtains suboptimal solutions considering the mean values of the random

variables but ensures feasibility and near optimality when the coefficients deviate from the mean. In what

follows, before robustifying our model (35), we exemplify the process by developing a robust reformulation of

a generic linear programming model.

Consider the following linear optimization problem.

max cᵀx

s.t., Ax ≤ b,

x ∈ X ,

(56)

where A is an m× n matrix, x is an n× 1 vector (decision variables), cᵀ is a 1× n vector, and b is a m× 1

vector. Without loss of generality, it is considered that the randomness only affects the elements in matrix A,

since we can always re-write the problem as:

max z

s.t., z − cᵀx ≤ 0,

Ax− bY ≤ 0,

x ∈ X ,

Y = 1.

(57)

Consider a particular row i of the matrix A and let Ji represent the set of coefficients in row i that are

subject to uncertainty. Also, it is considered that the probability distribution of each component aij , j ∈ Ji
is unknown, but the values in which aij ranges are known and defined by [aij − âij , aij + âij ], where aij is

the best estimate of aij , and âij is maximum feasible deviation from aij . Bertsimas & Sim (2004) proved

that the robust counterpart of a linear problem with the form of (56) can be also formulated by introducing

a set of non-negative variables (yj , pij , and zi) and a parameter Γi that takes values in the interval [0, |Ji|].
The role of Γi is to adjust the robustness of the proposed method against the level of conservatism of the

solution (Bertsimas & Sim 2004). Then, the robust reformulation of (56) is given by:

32



max cᵀx

s.t.,
∑
j

aijxj + ziΓi +
∑
j∈Ji

pij ≤ bi ∀i,

zi + pij ≥ âijyj ∀i, j ∈ Ji,

− yj ≤ xj ≤ yj ∀j,

xj ∈ X ∀j,

pij ≥ 0 ∀i, j ∈ Ji,

yj ≥ 0 ∀j,

zi ≥ 0 ∀i.

(58)

The solution of (58) is robust against the expected disturbances in the parameters of the model.

B.2 Robust counterpart of the operational model

In this subsection, we present the robust versions of the constraints with uncertain parameters, namely,

constraints (1), (19), (20), (30), (31), and (34). Recall that the state of the system is completely known at

the current time period τ , and hence, the robust constraints are only included for time periods τ + 1 and

onward. Then, we can write the robust re-formulations following Bertsimas & Sim (2004).

• Robust counterpart of constraint (1):

dij,τ+1 = βdijτ + γijτ −
∑
b∈B

xbijτ − bijt ∀(i, j) ∈ N (59)

dij,t+1 = βdijt + γijtY
γ
ijt −

∑
b∈B

xbijt − bijt − z
γ
ijtΓ

γ
ijt − q

γ
ijt ∀(i, j) ∈ N , t ∈ {τ + 1, · · · , |T |} (60)

zγijt + qγijt ≥ γ̂ijty
γ
ijt ∀(i, j) ∈ N , t ∈ {τ + 1, · · · , |T |} (61)

− yγijt ≤ Y
γ
ijt ≤ y

γ
ijt ∀(i, j) ∈ N , t ∈ {τ + 1, · · · , |T |} (62)

Y γijt = 1 ∀(i, j) ∈ N , t ∈ {τ + 1, · · · , |T |} (63)

• Robust counterpart of constraint (19):∑
b∈B

f bhτ + f+
hτ + f−hτ = Fht ∀h ∈ H (64)∑

b∈B

f bht + f+
ht + f−ht = FhtY

F
ht − zF

htΓ
F
ht − qFht ∀h ∈ H, t ∈ {τ + 1, · · · , |T |} (65)

zFht + qFht ≥ F̂htyFht ∀h ∈ H, t ∈ {τ + 1, · · · , |T |} (66)

− yFht ≤ Y Fht ≤ yFht∀h ∈ H, t ∈ {τ + 1, · · · , |T |} (67)

Y Fht = 1, ∀h ∈ H, t ∈ {τ + 1, · · · , |T |} (68)

• Robust counterpart of constraint (20):

wvh,τ+1 ≤W v
hτ ∀h ∈ H, v ∈ {1, · · · , V } (69)

wvh,t+1 ≤W v
htY

v,EV
ht − zv,EV

ht Γv,EV
ht − qv,EV

ht ∀h ∈ H, t ∈ {τ + 1, · · · , |T |}, v ∈ {1, · · · , V } (70)

zv,EV
ht + qv,EV

ht ≥ Ŵ v
hty

v,EV
ht ∀h ∈ H, t ∈ {τ + 1, · · · , |T |}, v ∈ {1, · · · , V } (71)
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− yv,EV
ht ≤ Y v,EV

ht ≤ yv,EV
ht ∀h ∈ H, t ∈ {τ + 1, · · · , |T |}, v ∈ {1, · · · , V } (72)

Y v,EV
ht = 1 ∀h ∈ H, t ∈ {τ + 1, · · · , |T |}, v ∈ {1, · · · , V } (73)

• Robust counterpart of constraint (30):

aRT =
∑
h∈H

πRT
hτ l

RT
hτ +

∑
h∈H

|T |∑
t=τ+1

πRT
ht l

RT
ht − zRTΓRT −

∑
h∈H

|T |∑
t=τ+1

qRT
ht (74)

zRT + qRT
ht ≥ π̂RT

ht y
RT
ht ∀h ∈ H, t ∈ {τ + 1, · · · , |T |} (75)

− yRT
ht ≤ lRT

ht ≤ yRT
ht ∀h ∈ H, t ∈ {τ + 1, · · · , |T |} (76)

• Robust counterpart of constraint (31):

aRT
b =

∑
h∈H

πRT
hτ l

b,RT
hτ +

∑
h∈H

|T |∑
t=τ+1

πRT
ht l

b,RT
ht − zb,RTΓb,RT −

∑
h∈H

|T |∑
t=τ+1

qb,RT
ht ∀b ∈ B (77)

zb,RT + qb,RT
ht ≥ π̂RT

ht y
b,RT
ht ∀b ∈ B, h ∈ H, t ∈ {τ + 1, · · · , |T |} (78)

− yb,RT
ht ≤ lb,RT

ht ≤ yb,RT
ht ∀b ∈ B, h ∈ H, t ∈ {τ + 1, · · · , |T |} (79)

• Robust counterpart of constraint (34):

aRT =
∑
h∈H

(πRT
ht − δRT)pRT−

ht +
∑
h∈H

|T |∑
t=τ+1

(π̂RT
ht − δRT)pRT−

ht − zDAΓDA −
∑
h∈H

|T |∑
t=τ+1

qDA
ht (80)

zDA + qDA
ht ≥ π̂RT

ht y
DA
ht ∀h ∈ H, t ∈ {τ + 1, · · · , |T |} (81)

− yDA
ht ≤ pRT−

ht ≤ yDA
ht ∀h ∈ H, t ∈ {τ + 1, · · · , |T |} (82)

All the new variables introduced in the above robust constraints satisfy the conditions established

in subsection B.1. Also note that, πRT
hτ , Fhτ , W v

ht, and γijτ are known, while πRT
ht , Fht, W

v
ht, and γijt

∀t ∈ {τ + 1, · · · , |T |} are the best estimates of these parameters for the remaining time periods. We estimate

the RT prices (with spikes) as πRT
ht = πDA

ht (1 + ε). There are many techniques available to estimate the

available solar power Fht. In Inman et al. (2013), the authors review the theory behind these forecasting

methodologies, and present a number of successful applications of solar forecasting methods for both the solar

resource and the power output of solar plants. Estimating origin-destination (O-D) matrices is also a widely

studied area. A mayor reference in this area is Bell (1991). More recently, an O-D prediction algorithm for

autonomous mobility-on-demand systems with ride-sharing was proposed in Alonso-Mora et al. (2017). The

authors used historical data to compute a probability distribution of the future demand. Thereafter, they

incorporate samples from the above probability distribution into a decoupled vehicle routing and passenger

assignment method. The values of W v
ht and γijt are chosen equal to the mean value of the fitted probability

distributions. Finally, the values of π̂RT
ht , F̂ht, Ŵ

v
ht, ν̂ht, and γ̂ijt ∀t ∈ {τ +1, · · · , |T |} are chosen such that the

maximum deviation from the best estimate matches the confidence interval of the selected forecast method.
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