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Abstract
We formulate a dynamic facility location model for a �rm locating on a

discrete network. It is assumed that this locating �rm will act as the leader
�rm in an industry characterized by Stackelberg leader-follower competi-
tion. The �rm�s I competitors are assumed to act as Cournot �rms and
are each assumed to operate under the assumption of zero conjectural vari-
ation with respect to their I � 1 Cournot competitors. Using sensitivity
analysis of variational inequalities within a hierachical mathematical pro-
gramming approach, we develop reaction function based dynamic models
to optimize the Stackelberg �rm�s location decision. In the second half of
this paper, we use these models to illustrate through a numerical example
the enhanced insights yielded by a reaction based, dynamic approach

Keywords: Dynamic Stackelberg equilibrium location modeling, re-
action functions

1 Introduction

When a �rm locates a new plant, and begins producing and shipping product to
markets on a network, this usually stimulates certain reactions on the network.
For example, the introduction of a new plant increases the overall capacity of
an industry, and hence can perturb the established economic equilibrium of
supplies, demands and �ows. The introduction of this new capacity, and in the
case of an "entering" �rm, the introduction of an entirely new competitor on
this network, will typically stimulate competitive responses from existing �rms
in the industry. In general, we can characterize that the dynamics and existing
equilibrium of a market or markets will be a¤ected by the location decision of
a �rm. This suggests that to truly make a pro�t maximizing location decision,
a �rm must anticipate the market�s reaction to a potential location decision,
in its (the �rm�s) actual location decision-making process. It is this need to
anticipate the market�s reaction that spawns our interest in developing facility
location models that somehow include projected market reactions endogenously
within the �rm�s pro�t maximizing facility location objective function.
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Plant facility location models provide inputs to a decision (i.e., locating a
plant) which almost by de�nition, implies a signi�cant commitment on the part
of a �rm to a location for a period of years. Thus, the ability to explicitly eval-
uate the impact of a location decision over a multi-period (multi-year) planning
horizon represents an important capability. In particular, the multi-period plan-
ning horizon facilitates the evaluation of the proper timing of location decisions,
in addition to the determination of the best location(s). Further, this allows the
�rm�s location decision to better meet forecast growth and/or shrinkage in mar-
ket demand over time. Dynamic models o¤er this evaluative capability, while
static, single period models do not.
In this paper, we formulate a dynamic, reaction function based competitive

facility location model (or what we term an equilibrium facility location model
- Miller, Friesz and Tobin, 1995) for a �rm locating on a discrete network.
This formulation extends and enhances previous single period modeling e¤orts
(e.g., see Miller, Tobin and Friesz, 1992). We assume that this locating �rm
is an "entering" �rm (i.e., entering an industry) competing with several other
oligopolistic competitors. This does not represent a limiting assumption how-
ever, as the proposed model would apply equally as well to an established �rm
seeking to expand its manufacturing capacity. We further assume that the locat-
ing �rm will act as the leader �rm in an industry characterized by Stackelberg
leader-follower(s) type oligopolistic competition (Friedman, 1977). The other I
competitors in this industry are assumed to act as Cournot �rms who each oper-
ate under the Cournot assumption of zero conjectural variation with respect to
their I � 1 Cournot competitors. (That is to say, in making its own production
and shipping decisions, each Cournot �rm assumes that its "Cournot" competi-
tors will hold their production and shipping activities at existing levels.) We do
assume that the I Cournot �rms will react to the location/production/shipping
activities of the Stackelberg �rm. Thus, the Stackelberg �rm makes its loca-
tion, production, and shipping decisions taking into account the reaction of the I
Cournot �rms to its (the Stackelberg �rm�s) location, production and shipping
decisions. Therefore, the pro�t-maximizing objective function of the Stackel-
berg �rm�s location model includes a Cournot reaction function that projects
the anticipated reaction of the Cournot �rms to its (the Stackelberg �rm�s) inte-
grated location/distribution decisions. The Stackelberg �rm�s pro�t-maximizing
decisions, along with the Cournot-Nash �rms�reactions to these decisions, are
termed a Stackelberg-Nash-Cournot (SNC) equilibrium.
To model all of the reactions of all of the Cournot �rms to the Stackelberg

�rm�s multiple decisions over multiple time periods represents a di¢ cult prob-
lem. An approach to this problem is to utilize sensitivity analysis of Cournot-
Nash equilibria to develop Cournot reaction functions. This facilitates express-
ing all of the reactions of all the Cournot �rms to the Stackelberg �rm as a vector
function of a vector (namely, a vector function of the Stackelberg �rm�s vector
of shipping activities.) A key underpinning of this modeling approach is that
shipments of the Stackelberg �rms to each node of the network are treated as
an extraneous supply that a¤ects the price function contained in each Cournot
�rm�s pro�t-maximizing objective function over all markets. Using sensitivity
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analysis methods, partial derivatives of the Cournot �rms�decisions are gener-
ated with respect to the Stackelberg �rm�s shipments.
The remainder of this paper is organized as follows. To develop a dynamic

SNC competitive facility location model requires that we �rst construct a dy-
namic Cournot-Nash equilibrium model. In section 2, therefore, we brie�y re-
view the formulation of a dynamic Cournot-Nash model. We will observe that
this model can be formulated both as a mathematical programming problem
and as a variational inequality. This facilitates the development of a multi-
period Cournot reaction function in section 3 based upon sensitivity analysis
techniques for variational inequalities. In this section, we employ this reac-
tion function to formulate a dynamic SNC equilibrium facility location model.
Section 4 then o¤ers a simple solution algorithm designed to solve the dynamic
SNC location model for illustrative problems. In section 5, we present results for
a small example dynamic location problem. This example problem illustrates
both the importance of anticipating competitor reactions and of using a multi-
period planning horizon in the location decision-making process. In particular,
we illustrate that in certain cases a �rm can choose a wrong or suboptimal lo-
cation if it makes a decision without the bene�t of a reaction function. Further,
our numerical examples will depict the power of a dynamic model to better ad-
dress the timing and sizing issues of facility location. Section 6 concludes this
paper with some �nal comments on dynamic, reaction based equilibrium facility
location models.

2 A Dynamic Cournot-Nash Network Equilib-
rium Model

The formulation of a dynamic Cournot-Nash network equilibrium model repre-
sents the �rst step in developing our dynamic SNC model. We can construct
a dynamic Cournot-Nash model by building upon previous models reported for
single period (or static) spatial and aspatial Cournot-Nash models. Examples
of previous formulation include those of Lions and Stampacchia (1967), Gabay
and Moulin (1980), Murphy, Sherali and Soyster (1982), Harker (1984, 1986),
Haurie and Marcotte (1985), Dafermos and Nagurney (1987), Marcotte (1987),
Nagurney (1988), Miller, Tobin and Friesz (1991), and Miyagi (1991). The in-
terested reader is also referred to Dockner (1992), Nagurney, Dupuis and Zhang
(1994), and Wie and Tobin (1997) for examples of alternative approaches to
modeling the dynamics and adjustment processes associated with oligopolistic
equilibria.

2.1 De�nition and Formulation

We formulate a Cournot-Nash equilibrium model under the standard assump-
tion that there exist I Cournot �rms on a discrete network all supplying a
homogeneous good in a noncooperative fashion. Each of these competitors is
assumed to operate under the Cournot assumption of zero conjectural variation
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with respect to its I � 1 competitor �rms in the industry. (That is to say, in
making its own production and shipping decisions, each Cournot �rm assumes
that its I � 1 competitors will hold their production and shipping activities at
existing levels.)
To develop the Cournot-Nash model and all subsequent formulations in this

paper, we employ the notation in Table 1.

To facilitate a general formulation and to simplify notation, we allow for the
possibility that each �rm could produce at every node; if a �rm i does not have
production capability at node l during period t, then Qitl = 0. We also assume
that each �rm�s production facilities have a �xed �nite capacity, since we do
not allow for �xed costs associated with capacity expansion. Also note that the
total production cost function vit(qit) and the total transportation cost function
tit(sit; �Sit) for each �rm are general and allow for interactions among production
locations and among transportation routes. Such interactions include volume
discounts in inputs and shipment consolidations. In addition, the transportation
cost functions allow for interactions among the �rms�shipments (as would be the
case when the transportation system has limited capacity and many of the �rms
use the same system). The market inverse demand function �tl(D

t
l ) could also

be made general allowing for interactions among markets (other than those due
to goods shipped among markets). However, since we are considering a single
homogeneous product and interactions due to product movement are modeled
explicitly, any other interactions are not important to the problem at hand.
With this background, we can now de�ne a dynamic Cournot-Nash equilib-

rium as a set of non-negative output vectors qit� (one for each i = 1; :::; I; for
each t = 1; :::; T ), a set of non-negative sales vectors dit� (one for each i = 1; :::; I,
for each t = 1; :::; T ), and a set of non-negative shipping vectors sit� (one for
each i = 1; :::; I, for each t = 1; :::; T ) such that for each i = 1; :::; I; for each
t = 1; :::; T ; qit�; dit� and sit� are the optimal solution to the problem:

max zi =
X
t2T

X
l2K

ditl �
t
l

�
ditl + �Dit�

l

�
�
X
t2T

vit
�
qit
�
�
X
t2T

tit
�
sit; �Sit

�
(1)
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t = [1; :::T ] denotes the set of all time periods in the T period planning horizon

I denotes the number of pro�t maximizing Cournot �rms, i = 1; 2; :::; I

l; j denote nodes of the network

K denotes the set of all nodes of the network, l = 1; :::;K

ptl (D
t
l ) ; D

t
l � 0 represents the inverse demand function at each market (node)

l 2 Kduring period t;where Dt
l is the total shipments sold (i.e. sales) to node

l 2 K during period t

qitl represents the i-th Cournot �rm�s production output at node l during period
t, where qitl � 0 8l 2 K

qit =
�
qit1 ; :::; q

it
K

�
is the vector of production quantities for the i-th Cournot �rm

at all nodes of the network during period t:

sitjl represents the i-th Cournot �rm�s shipments from node j to node l during
period t:

sit =
�
sit11; :::; s

it
KK

�
is the i-th Cournot �rm�s vector of shipment quantities from

all of the K nodes of the network during period t:(Note that the local shipments
sitll ; l = 1; :::;K are included in this vector, i.e., it
is assumed that �rms must ship their output to their markets [customers] even
in the case where production is consumed locally.)

ditl is the amount sold by the i-th Cournot �rm at node l during period t

dtl is the vector of shipments from each Cournot �rm to node l during period t

vit
�
qit
�
represents the i-th Cournot �rm�s total cost of producing qit

tit
�
sit; �Sit

�
represents the i-th Cournot �rm�s total cost to ship sit; where:

�Sit =
P

h2I;h 6=i s
it

Qitl is the capacity of the i-th Cournot �rm�s production facility at node l during
period t:

Table 1: Notation For Cournot-Nash Model
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subject to

qitl �
X
j2K

sitlj = 0 8l 2 K, for each t 2 T (2)

ditl �
X
j2K

sitjl = 0 8l 2 K, for each t 2 T (3)

qitl � Qitl 8l 2 K, for each t 2 T (4)

qitl � 0; ditl � 0 8l 2 K, for each t 2 T (5)

sitlj � 0 8l; j 2 K, for each t 2 T
�Dit�
l =

X
h2I;h 6=i

dit�l , for each l 2 K, for each t 2 T (6)

�Sit� =
X

h2I;h 6=i
sit�, for each t 2 T (7)

The Cournot-Nash equilibrium model is not of great interest as a stand-alone
model for our purposes. In fact, if the parameter values of the coe¢ cients of the
inverse demand, production and transportation functions remain the same from
one time period to the next (e.g., t to t+ 1), the identical equilibrium solution
will obtain for each time period. Nevertheless, there are several important points
to consider.
First, note that the equilibrium solutions for each time period t = 1; :::; T are

independent of each other. Thus, one can essentially think of problem (1)-(7) as
T independent problems. Second, we can formulate the dynamic Cournot-Nash
equilibrium model as a variational inequality, or essentially as T variational
inequalities, given the independence of each period from all other periods. For
purposes of brevity, we simply state this and refer the reader to Miller, Tobin
and Friesz (1991), and Tobin, Miller and Friesz (1995) for detailed discussions
of equivalent variational inequality formulations of Cournot-Nash equilibrium
models. Additionally, these citations will provide the interested reader with
detailed background on both the development of, and key characteristics of
Cournot-Nash static and dynamic models - discussions that we again omit in
this paper for purposes of brevity. Because we can formulate problem (1)-(7) as a
variational inequality, methods for sensitivity analysis of variational inequalities
can be applied for each individual time period t. We will observe that this
facilitates the development of an independent Cournot reaction function for
each time period t 2 T .

3 Dynamic Stackelberg Pro�t Maximizing Lo-
cation Model

The Stackelberg �rm must choose its locations, production levels and shipping
levels for each time period t taking into account the reactions of the I Cournot
�rms to these decisions in each separate time period. Thus, the Stackelberg
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�rm�s total pro�t maximizing facility location objective function must include a
Cournot reaction function for each time period t. To construct a Cournot reac-
tion function and then a Stackelberg location model, we require the additional
notation shown in Table 2.
Brie�y, to develop the Cournot reaction functions, we treat the Stackelberg

�rm�s market supplies as parameters in the Cournot-Nash equilibrium model.
This is accomplished by including the Stackelberg �rm�s supplies to market
l; dxl , in the price function at market l. Thus, we must restate the Cournot-
Nash objective function (1) as follows:X

t2T

X
l2K

ditl �
t
l

�
ditl + �Dit�

l + dxtl
�
�
X
t2T

vit
�
qit
�
�
X
t2T

tit
�
sit; �Sit + sxt

�
(8)

If, for all feasible Stackelberg market supplies, the corresponding Cournot-Nash
equilibrium problem [(1)-(7), with objective function (8) replacing (1)], has a
unique solution; then the Cournot-Nash equilibrium quantities can be consid-
ered as a function of the Stackelberg market supplies. The interested reader
is referred to Miller, Tobin and Friesz (1991, 1992) and Miller, Friesz and
Tobin (1995) for a detailed explanation of this. To conclude this discussion
brie�y, however, we note that the Cournot-Nash equilibrium can then be rep-
resented as a variational inequality that is parametric in (dxt; sxt) and the so-
lution to this variational inequality de�nes the implicit functions dit�l (dxt; sxt)
and sit�jl (d

xt; sxt). An aggregate Cournot reaction function can now be de�ned
for each node l = 1; :::;K. Speci�cally, de�ne

Rtl
�
dxt; sxt

�
=
X
i2I

dit�l
�
dxt; sxt

�
8l 2 K

as the aggregate sales reaction function, at a node l during period t, of the I
Cournot �rms to the total shipments to all nodes (markets) l 2 K during period
t by the Stackelberg �rm, and de�ne

T tjl
�
dxt; sxt

�
=
X
i2I

sit�jl
�
dxt; sxt

�
8j; l 2 K

as the aggregate transportation reaction function on link j; l of the I Cournot
�rms to the total shipments to all nodes by the Stackelberg �rms during period

t, where T t (dxt; sxt) denotes the vector
h
T tjl (d

xt; sxt)
i
:

The reaction functions are implicit functions de�ned by the equivalent para-
metric variational inequality that includes the Stackelberg supplies as parame-
ters. The derivatives of these reaction functions are used to approximate the
reaction function locally to obtain a solution algorithm for solving the Stackel-
berg pro�t maximizing problem. These derivatives are derived using sensitivity
analysis methods for variational inequalities (Dafermos, 1988; Kyparisis, 1987,
1989; Pang, 1988; Qiu and Magnanti, 1989; and Tobin 1986). These methods
yield the derivatives of the solutions to the variational inequality with respect
to problem parameters.
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xtl represents the Stackelberg �rm�s output at node l during period t

xt = [xt1; :::; x
t
K ] is the vector of production quantities for the Stackelberg �rm

at all nodes of the network during period t

sxtjl represents the Stackelberg �rm�s shipments from node j to node l during
period t

sxt = [sxt11; :::; s
xt
KK ] is the Stackelberg �rm�s vector of shipment quantities from

all K nodes of the network during period t

vt (xt) represents the Stackelberg �rm�s total cost of producing x during period
t

tt
�
sxt; �Sxt

�
represents the Stackelberg �rm�s total cost to ship sxt, where:

�Sxt =
P

i2I s
it

dxtl is the amount sold by the Stackelberg �rm at node l during period t

dxt is the Stackelberg �rm�s vector of total amounts shipped (i.e., sold) to each
market during period t

Qxtl is the capacity of the Stackelberg �rm�s production facility at node l during
period t

�Qt is the maximum amount of new production which the Stackelberg �rm may
locate (and/or have) over the entire network during period t

F tl is the portion of the total �xed location cost of establishing a production
facility at node l allocated to period t

ytl is a discrete location decision variable; y
t
l = 1 if the Stackelberg �rm locates

a production facility at node l during period t or has located at node l during
a previous periods, ytl = 0 otherwise.

Table 2: Notation For Stackelberg Location Model

8



We can now de�ne a dynamic Stackelberg pro�t maximizing equilibrium fa-
cility location model. A set of Stackelberg facility location vectors yt� (one for
each t = 1; :::; T ), a set of (T )�(I + 1) non-negative output vectors

�
xt�; q1t�; :::; qIt�

�
(one I +1 set for each t = 1; :::; T ), a set of (T )� (I + 1) non-negative shipping
vectors

�
sxt�; s1t�; :::; sIt�

�
(one I + 1 set for each t = 1; :::; T ), and a set of

(T ) � (I + 1) non-negative sales vectors
�
dxt�; d1t�; :::; dIT

�
(one I + 1 set for

each t = 1; :::; T ), represents a dynamic Stackelberg-Nash-Cournot equilibrium
solution if xt�, sxt�, and yt�, solve the following problem:

max zx =
X
t2T

X
l2K

dxtl �
t
l

�
dxtl +R

t
l

�
dxt; sxt

��
�
X
t2T

vt
�
xt
�

�
X
t2T

X
l2K

F tl y
t
l �

X
t2T

tt
�
sxt; T t

�
dxt; sxt

��
(9)

subject to

xtl �
X
j2K

sxtlj = 0 8l 2 K, for each t 2 T (10)

dxtl �
X
j2K

sxtjl = 0 8l 2 K, for each t 2 T (11)

xtl � Qxtl ytl 8l 2 K, for each t 2 T (12)X
l2K

Qxtl � �Qt for each t 2 T (13)

ytl = (0; 1) 8l 2 K, for each t 2 T (14)

yt+1l � ytl 8l 2 K, for each t 2 T (15)

xtl � 0; dxtl � 0 8l 2 K, for each t 2 T (16)

sxtlj � 0 8l; j 2 K, for each t 2 T

and if, for each i = 1; :::; I; for each t = 1; :::; T ; qit�; sit�; dit� are optimal solu-
tions to (1) through (7) (i.e., the dynamic Cournot-Nash equilibrium problem
for each Cournot �rm i, given a vector of Stackelberg market supplies).
In the dynamic Stackelberg location model, constraints (10) and (11) guar-

antee that in each time periods t, the Stackelberg �rm does not ship more from
a node l than it produces at that node, and that it does not sell more at a node
l than it ships to that node. Constraint (12) assures that the �rm�s production
at a node l does not exceed its capacity Qxtl if a facility is open at l in time
period t (i.e., ytl = 1). Constraint (13) limits the Stackelberg �rm�s total level
of production at all nodes in each time period t, while constraint (14) restricts
the location decision variables y to be zero or one. Constraint (15) plays a key
role in that it links the Stackelberg �rm�s location decisions over the planning
horizon t = 1; :::; T . Speci�cally, (15) assures that once the Stackelberg �rm
opens a facility at node l in time period t, this facility will remain open for all
subsequent time periods in the planning horizon. Equations (16) represent the
standard non-negativity constraints for the model�s decision variables. Finally,
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note that the revenues and costs de�ned in the dynamic model represent ap-
propriately discounted �ows over time which yield a net present value of the
Stackelberg �rm�s pro�t over the planning horizon.
Note also that similar to the Cournot �rms�cost functions, both the Stackel-

berg �rm�s total production cost function vt (xt) and transportation cost func-
tion tt (sxt; T t (dxt; sxt)) for each period t are general. Thus, the functions per-
mit individual interactions among the individual production locations of the
Stackelberg �rm and among the transportation routes of all �rms in a time
period t. Theoretically, one could also allow interactions among these cost func-
tions over time periods t 2 T , if a compelling rationale existed to do so. We,
however, assume no interactions between cost functions in di¤erent time periods
in (9)-(16).
This dynamic facility location model in Stackelberg-Nash-Cournot equilib-

rium o¤ers several attractive features. First, as noted, in contrast to a static
version of this model (Miller, Tobin, and Friesz, 1992), the dynamic model ad-
dresses the timing of location decisions in addition to simply the actual location
choice. Further, one can easily modify the dynamic model to evaluate such al-
ternatives as staged capacity location (as we will illustrate later) and expansion
(see Miller, Friesz, and Tobin, 1995). Such an extension for example, allows a
�rm to determine if it is more pro�table in certain cases to locate and then ex-
pand its capacity at a site over time in response to increasing market demands,
rather than to initially construct a large facility.
The multi-period dimension of the dynamic model also makes it possible to

change any and/or all of the model�s functional forms from one time period t to
the next. This provides considerable modeling �exibility. For example, market
demands vary over time and particularly in fast-changing markets, the ability to
evaluate demand over multiple periods can prove bene�cial. Similarly, a �rm�s
costs also tend to vary over time. A �rm often experiences a learning curve in its
manufacturing operations, particularly when locating new capacity. This can
create a situation in which variable production costs decrease over time while
the �rm moves along this learning curve. Transportation costs also may change
in response to supply and demand relationships, congestion, etc. In summary,
a dynamic Stackelberg location model can explicitly evaluate all these types of
time-related phenomenon. Variation in a �rm�s cost structure naturally can be
modeled for both the Cournot �rms and Stackelberg �rm as appropriate.

4 Illustrative Solution Approach

In general, the dynamic Stackelberg location problem represents a di¢ cult
model to solve. For purpose of this paper, we will limit ourselves to a brief
discussion of the algorithmic aspects of this model.
It is interesting to note that the dynamic Cournot-Nash submodel of the

overall Stackelberg model represents a very tractable problem. As previously
discussed, from an algorithmic point of view, one can consider each time period
t 2 T as independent from the other T � 1 time periods in the planning horizon
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for the Cournot-Nash stand-alone problem. Therefore, a block diagonalization
algorithmic approach for solving single period variational inequalities (see e.g.,
Harker, 1984 and 1986; Miller, Tobin and Friesz, 1991 and 1992; and Miller,
Friesz and Tobin, 1995) can be extended directly to solve a dynamic Cournot-
Nash equilibrium model. This results because the equilibrium Cournot-Nash
solution for any period t 2 T is not a¤ected by the equilibrium solutions of any
of the other T � 1 periods in the planning horizon. A review of the constraints
for problem (9)-(16) illustrates the independence of each period. The individual
time periods t 2 T of the Stackelberg location submodel (9)-(16) of the overall
bilevel, Stackelberg model are also relatively independent of each other. Con-
straint (15) which forces any facility opened in a period t to remain open for all
remaining periods of the planning horizon, represents the only link between time
periods. This suggests the possibility of developing a decomposition algorithm
to solve the model (9)-(16). This remains a topic for future research.

4.1 ENUMERATION APPROACH

To state illustrative dynamic Stackelberg location model solutions, we will em-
ploy an enumeration algorithm. This enumeration algorithm includes the fol-
lowing three core components:

I. Solve the dynamic Cournot-Nash model [Problem (1)] to obtain the equi-
librium solution (i.e., the production levels and shipping patterns) for the
I Cournot-Nash �rms competing on the network, given a set of Stackelberg
supplies.

II. Perform sensitivity analysis on the equilibrium solution(obtained in Step I)
and create a linear approximation to the Cournot-Nash reaction function
(based on sensitivity analysis).

III. Solve the nonlinear mathematical optimization programming submodel
[Problem (9), with a linear reaction function] to obtain a new approxima-
tion of the Stackelberg �rm�s pro�t maximizing location solution. Note
that the Stackelberg �rm�s objective function contains the Cournot re-
action function created in Step II. (Repeat these steps until the de�ned
convergence criteria is satis�ed.)

The individual steps required to solve the dynamic Stackelberg location prob-
lem by explicit enumeration are as follows:

Step 0. Determine all combinations of locations (and the timing) to be enumer-
ated.

Step 1. Pick a Stackelberg locational pattern to be evaluated, and set ytl = 1 for
each node l included in this pattern, for each period t 2 T when a node l
will have a producing facility.

Step 2. Choose an initial value for sitjl 8j; l 2 K; 8t 2 T; 8i 2 I, and choose an
initial value for sxtjl 8j; l 2 K; 8t 2 T . Set counters z = 0 and w = 0.
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Step 3. Set z = z + 1, and solve the mathematical programming problem (1) for
each �rm i 2 I, thereby obtaining the distribution pattern represented by
sitzjl 8j; l 2 K; 8t 2 T; 8i 2 I.

Step 4. If z � 1, return to Step 3, else if
���sitzjl � sitz�1jl

��� � " 8j; l 2 K; 8t 2 T;
8i 2 I, where " is a predetermined tolerance; then the current solution is
a Cournot-Nash equilibrium solution �Go to Step 5. If this is not true,
return Step 3.

Step 5. Calculate the derivatives of the Cournot-Nash solution with respect to the
Stackelberg decision quantities to determine how each of the I Cournot-
Nash �rms would react to an increase in the Stackelberg �rm�s shipments.
(See Miller, Tobin and Friesz, 1991 for a discussion of how to determine
these derivatives.)

Step 6. Estimate the Cournot-Nash reactions by forming linear approximations
utilizing the derivatives developed in Step 5. These linear approximations
express the change in a Cournot-Nash �rm�s shipments resulting from
extraneous changes in the Stackelberg shipments.

Step 7. Set w = w + 1. Solve the nonlinear mathematical programming program

(9). If w � 1, return to Step 3. Else if,
���sitwjl � sitw�1jl

��� � " 8j; l 2 K;
8t 2 T , (where " is a predetermined tolerance); then the current solution
is a Stackelberg-Nash-Cournot equilibrium solution for the locations y
chosen in Step 1 and it provides the pro�t maximizing solution to the
Stackelberg �rm�s problem (for this particular location vector y). Stop.

Step 8. Record the pro�t (and other appropriate data) associated with this enu-
merated locational pattern. If all locational alternatives have been enu-
merated, stop. Else, return to Step 1.

For a detailed discussion of the solution issues and characteristics of this
enumeration algorithm, the reader is referred to Miller, Tobin and Friesz (1991
and 1992) and Miller, Friesz, Tobin (1995).

5 ILLUSTRATIVE NUMERICAL EXAMPLE

In this section we present a numerical example of the model discussed in Section
3. By means of several alternative location decision models, we illustrate the
potential bene�ts which a reaction function based equilibrium facility location
modeling approach can provide. Speci�cally, we compare the results of �ve
di¤erent formulations of a location problem, all based on the same basic data
set, to depict how the inclusion or exclusion of reaction functions can a¤ect the
quality of the solutions obtained. Similarly, we use these examples to demon-
strate the potential impact on solutions created by using a dynamic rather than
a static modeling approach.
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The location problems are three period problems based on a network consist-
ing of four nodes, with a market at each node; and 16 separate transportation
links, one in each direction between each pair of nodes. Two existing �rms cur-
rently compete on this network (Firms 1 and 2), and each �rm has production
facilities at all four nodes. A third �rm (Firm 3) is locating a plant on this
network and entering the industry. The respective inverse demand, production
and transportation cost functions of the �rms have the following forms:

�tl
�
Dt
l

�
= �tl � �tlDt

l (17)

vit
�
qitl
�
=
X
l

0:5citl
�
qitl
�2

(18)

tit
�
sit
�
=
X
j

X
i

0:5ttjl
�
sitjl
�2

(19)

Where �tl ; �
t
l ; c

it
l and t

it
jl are constants. In what follows, we will compare the

optimal production levels and predicted pro�ts determined by a location model
to those actually resulting after Firm 3 locates the plant and is competing on
the network. The location decision models for Firm 3 that we consider are:

Model 1: Firm 3 employs a standard location model in which the pro�t function for
the locating �rm in this model assumes �xed prices and does not include
any market reaction. The market demand functions in model 1 are the
same in all three periods of the planning horizon.

Model 2: Firm 3 models the market using a Cournot-Nash game theoretic oligopolis-
tic equilibrium model for each location possibility, and chooses the most
pro�table location in equilibrium. The market demand functions remain
the same in all three periods.

Model 3: Firm 3 employs a dynamic Stackelberg �equilibrium facility location model�
in which the pro�t function in the model includes the reactions of the ex-
isting market to Firm 3�s location and production decisions. Again the
market demand functions remain constant over the planning horizon.

Model 4: Firm 3 employs the same model as in model 3, however, the market de-
mand function increases in each time period.

Model 5: As in models 3 and 4, Firm 3 employs a dynamic Stackelberg equilibrium
facility location model. However, Firm 3�s model in this case allows the
�rm to consider a �staged�capacity location approach. Additionally, the
market demand functions increase from period to period in this model.

In these alternative models, Firm 3 is deciding whether to locate production
facilities at node 1 or node 2. (We limit Firm 3�s location decision to two nodes
for illustrative purposes.) Appendix A displays the coe¢ cients for the demand,
production and transportation cost functions, as well as for Firm 3�s location
cost data.
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Pro�ts $(millions) Production $(thousands)

Firm 1 Firm 2 Total Industry Firm 1 Firm 2 Total Industry
53.8 56.4 110.2 3,006 3,194 6,200

Table 3: Cournot-Nash Equilibrium For Existing Duopoly (Prior to Firm 3�s
Entry)

Locate At Node 1 Locate at Node 2

Pro�ts $(millions) 41.5 40.4
Production (thousands) 2,277 2,217

Table 4: Firm 3�s Predicted Pro�ts and Production Levels Using Model 1

We begin the location modeling illustration by �rst evaluating the existing
market conditions prior to the entry of Firm 3. Table 3 displays the equilibrium
pro�ts and production levels of Firms 1 and 2 competing in a duopoly. Note
that industry pro�ts prior to Firm 3�s entry are $110.2 million over 3 periods.
(Our illustrative dynamic problems are 3 period problems, and therefore, all
results are stated in terms of 3 period pro�t and production levels.) To simplify
the presentation, in this case and all subsequent cases, we show each �rm�s
total production, but do not present optimal shipment levels to each of the four
markets. It should be noted, however, that for any production level, a �rm can
have multiple shipment patterns with di¤erent pro�t levels resulting from each
pattern.
Table 4 shows the �predicted� pro�ts and production levels which Firm 3

expects to generate when it bases its location decision on model 1. This model
indicates that Firm 3 should locate at node 1. Recall that in model 1 Firm 3
does not anticipate any market changes in response to its entry - i.e., it does
not account for either competitor reactions or changes in equilibrium prices.
However, Firm 3�s entry will perturb the market, and Table 5 indicates how
the market will settle after Firm 3 begins producing at its initially planned
production levels based on model 1. Brie�y, it turns out that Firm 3 cannot
make a pro�t at its planned production levels, while Firms 2 and 3 throttle
back production and see their pro�ts diminish. Again, Firm 3�s negative pro�ts
result because it has not accounted for either the price elasticity of demand or
the reaction of the other �rms.
Once Firm 3 begins actual production and distribution, it realizes that its

Firm 3 Locates Pro�ts $(millions) Production $(thousands)
At Node Firm 1 Firm 2 Firm 3 Firm 1 Firm 2 Firm 3
1 33.2 35.4 negative 2,747 2,918 2,277
2 33.5 35.8 negative 2,753 2,926 2,217

Table 5: Actual Market After Firm 3 Enters Using Model 1
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Firm 3 Locates Pro�ts $(millions) Production $(thousands)
At Node Firm 1 Firm 2 Firm 3 Firm 1 Firm 2 Firm 3
1 43.5 45.9 22.7 2,867 3,045 1,230
2 43.4 45.8 23.3 2,854 3,032 1,350

Table 6: Three Firm Counot-Nash Equilibrium Results When Firm 3 Locates
Using Model 2

initial production and shipment levels are not pro�table, let alone optimal with
respect to the new production and shipment levels of its competitors. Firm
3, therefore, begins to continually optimize its production and shipment levels
in response to its competitors, and thus, acts like a Cournot oligopolistic com-
petitor. For illustrative purposes, we now also assume that Firm 3 begins to
account for the price elasticity of demand in its planning process. Table 6 dis-
plays the equilibrium which results when all three �rms compete as Counot-Nash
oligopolists. The pro�ts and production levels generated when Firm 3 locates
at node 1 represent the equilibrium which would actually develop because Firm
3 chose node 1 using model 1.
Table 6 also indicates the equilibrium which results when Firm 3 plans it

market entry using model 2; namely, when it acts as a Cournot �rm right
from the start. In this model, Firm 3 will react to changes in the market
triggered by its entry, just as any Cournot �rm would (i.e., it will continue to
re-optimize its production and distribution levels in response to its competitors�
adjustments). The Cournot-Nash model indicates that Firm 3 can optimize its
pro�ts by locating at node 2. Thus Firm 3 will make a di¤erent location decision
using model 2 rather than model 1. Note that because location model 2 (and
all subsequent models we will review) take into account the adjustments of the
�rms after Firm 3�s entry, the prediction of the location model matches that
actual market after Firm 3�s entry.
In illustrations 1 and 2, we �rst examined a method which did not include

the reactions of competitors in the location model, and then a method which
did not consider competitor reactions as e¤ectively as possible. Speci�cally, in
model 1, Firm 3 does not account for the reaction of competitors to the new
production; and therefore, the actual outcome after entry di¤ers signi�cantly
from that predicted by the model. In model 2, Firm 3 evaluates the reactions of
its competitors to its new production and distribution, however, the �rm does
not use this information as e¤ectively as possible to optimize its location and
production. Because the actions of all �rms are consistent with the assump-
tions of model 2, however, the actual resulting market equilibrium matches that
predicted by the model. In the following model, Firm 3 does incorporate the
market reaction into the pro�t function in its optimization model.
In model 3, Firm 3 makes its location decision by modeling itself as the

leader �rm in Stackelberg-Nash-Cournot competition. Thus, Firm 3 predicts
and evaluates the reactions of Firms 1 and 2 to its potential location decision as
part of its location selection methodology. This allows Firm 3 to fully exercise
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Firm 3 Locates Pro�ts $(millions) Production $(thousands)
At Node Firm 1 Firm 2 Firm 3 Firm 1 Firm 2 Firm 3
1 37.6 39.9 24.2 2,823 2,999 1,608
2 38.1 40.4 24.0 2,830 3,007 1,545

Table 7: Three Firm Stackelberg-Nash-Cournot Equilibrium Results When Firm
3 Locates Using Model 3

Before Entry Model
Firms (i.e. Duopoly) 1 2 3

Firms 1 and 2 110.2 89.4 89.2 77.5
Firm 3 0 22.7 23.3 24.2

Total Industry 110.2 112.1 112.5 101.7

Table 8: Comparison of Actual Pro�ts in Models 1, 2 and 3 ($ millions)

its pro�t-making potential. Table 7 illustrates the equilibrium solution gener-
ated using this methodology. Because Firm 3 anticipated the reactions of its
competitors in its optimization model, the actual outcome in the market after
Firm 3 enters the industry mirrors model 3�s solution. Note that model 3�s solu-
tion indicates that Firm 3 should locate at node 1 to maximize its pro�ts. This
contrasts with the selection of node 2 recommended by model 2 when Firm 3
acts as a Cournot competitors (i.e., when it reacts to its competitors�reactions
rather than anticipates their reactions).
The contrast between the results generated when Firm 3 uses models 1 and 2

compared to those generated when it uses model 2 illustrates the potential power
of including reaction functions in location decisions. Figure 1 and Tables 8 and
9 summarize the impact of the entry of Firm 3 on Firms 1 and 2 under these
alternative location models. Observe that Firm 3�s entry substantially reduces
the combined pro�tability of Firms 1 and 2 from a high of $110.2 million (for
three periods) in a duopoly, to a low of $77.5 million when Firm 3 locates as
the Stackelberg leader �rm. Further, the greater the anticipatory powers of
Firm 3, the more the pro�ts of Firms 1 and 2 decline. In model 2, when Firm 3
locates as a Cournot �rm and accounts for the other �rms�reactions by modeling
the equilibrium for each location choice, the combined pro�ts of Firms 1 and
2 decrease signi�cantly to $89.2 million. However, in model 3, when Firm 3
anticipates the reaction of Firms 1 and 2 in advance and explicitly accounts for
their reactions in its pro�t maximization calculations, the collective pro�ts of
the �rst two �rms drop the most (to $77.5 million), while Firm 3 maximizes its
pro�ts.
Models 1, 2 and 3 have provided a set of numerical examples designed to

demonstrate the potential power of including reaction functions and analysis of
economic equilibria in facility location models. These simplistic problems have
illustrated an example where a locating �rm (Firm 3) could only determine
its truly optimal location strategy by integrating models of market equilibria,
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Before Entry Model
Firms (i.e. Duopoly) 1 2 3

Firms 1 and 2 6,200 5,912 5,886 5,822
Firm 3 0 1,230 1,350 1,608

Total Industry 6,200 7,142 7,236 7,430

Table 9: Comparison of Actual Producttion in Models 1, 2 and 3 ($ thousands)
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Figure 1: Comparison of Each Firm�s Pro�ts Under Alternative Modeling Sce-
narios
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Firm 3 Locates Pro�ts $(millions) Production $(thousands)
At Node Firm 1 Firm 2 Firm 3 Firm 1 Firm 2 Firm 3
1 78.1 83.3 37.9 4,083 4,296 1,999
2 80.2 85.2 40.4 4,045 4,302 1,969

Table 10: Three Firm Stackelberg-Nash-Cournot Equilibrium Results When
Firm 3 Locates Using Model 4 (Demand Increases Each Period)

sensitivity analysis-based reaction functions and models of facility location.
We conclude this numerical section by extending our illustrations to con-

sider Firm 3 facing essentially the same facility location problem, but with the
additional caveat that market demand will increase in both periods 2 and 3.
Appendix A shows the demand functions for each period. In model 4, Firm
3 is simply determining where to locate a plant which will begin producing in
period 1. In model 5, however, the �rm will consider both location and timing
issues in a staged capacity location problem.
Table 10 indicates that in model 4, Firm 3 can optimize its pro�ts by locating

at node 2. This contrasts with the results obtained in model 3 when the demand
functions at each node remained constant over the three period planning horizon,
and node 1 represented the pro�t-maximizing alternative for Firm 3. In this
case, both the increase and the relative shift in the distribution of demand
over time leads to an alternative location decision. These contrasting solutions
illustrate the enhanced perspective yielded by a dynamic model relative to a
static model. (Model 3 is essentially equivalent to a single period model in
that the parameters and variables in each of the three periods are identical in
all respects.) In model 4, where Firm 3 can recognize the forecast change in
demand over time, it can make a better long run location decision. While the
decision in model 3 to locate at node 1 will maximize pro�t in the short run,
in the long run, this represents a suboptimal decision - should demand change
over time as suggested in model 4.
To formulate a dynamic Stackelberg facility location and expansion problem

(i.e., model 5), we must modify model (9)-(16), and introduce additional nota-
tion. Speci�cally, by replacing constraint (15) with alternative constraints, we
will allow the model to consider locating alternative sized facilities either in a
single period, or over multiple periods. For example, in model 5, Firm 3 can
decide to locate a small facility at a node l during a time period t, and then
expand the capacity of the facility at l to that of a large facility later in the
planning horizon. Alternatively, Firm 3 can just initially build a large facility
at node l. Table 11 provides additional notation to facilitate this example.
In model 5, we assume that Firm 3 incurs greater total �xed location costs

if it locates a large facility at a node l in two stages over time rather than if it
constructs a large facility initially. This represents a fairly typical example in
that it is frequently less expensive to build a facility in one continuous project
than to build a smaller facility as one project, and then expand that facility as
a second separate project. To formulate a dynamic capacity expansion model
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S

ytl is a discrete location decision variable;
S

ytl = 1 if Firm 3 locates, or has
previously located and operates, a small production facility at node l during

period t;
S

ytl = 0 otherwise

L

ytl is a discrete location decision variable;
L

ytl = 1 if Firm 3 locates, or has
previously located and operates, a large production facility at node l during

period t;
L

ytl = 0 otherwise

E

ytl is a discrete location decision variable;
E

ytl = 1 if Firm 3 expands, or has
previously expanded and operates, an originally small production facility at

node l during period t;
E

ytl = 0 otherwise

S

F tl is the portion of the total �xed location costs of establishing a small produc-
tion facility at node l allocated to period t (i.e., an amortized cost)

L

F tl is the portion of the total �xed location costs of establishing a large pro-

duction facility at node l allocated to period t. Note that
L

F tl >
S

F tl for any
particular node l at period t:

E

F tl is the portion of the total �xed location costs of establishing a small pro-
duction facility and later expanding it to a large production facility at node l,
allocated to period t. That is, the allocated total �xed costs represent the sum
of the �xed costs of locating both the initial small production facility and the

expansion portion of the facility. Note that
E

F tl >
L

F tl >
S

F tl for any particular
node l and period t:

Table 11: Notation for Stackelberg Expansion Problem
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which incorporates this cost assumption, we modify problem (9)-(16) by de�ning

three plant or facility types (Table 11). Facility type
S

ytl represents a �small�

plant, facility type
L

ytl represents a �large�plant, and facility type
E

ytl represents
a �large� plant which was initially a �small� plant and then was expanded
sometime after its initial construction. Note again that the allocated period

�xed location costs,
E

F tl , of facility type
E

ytl exceed those of facility type
L

ytl
re�ecting the greater total cost associated with constructing a facility in two
dependent stages. We can now replace constraint (15) in our original dynamic
Stackelberg model (9)-(16) with the following three constraints: 

S

F t+1l

S

yt+1l +
L

F t+1l

L

yt+1l +
E

F t+1l

E

yt+1l

!
�
 

S

F tl

S

ytl +
L

F tl

L

ytl +
E

F tl

E

ytl

!
8l 2 K, for each t 2 T

(20)

where for t = T + 1 (i.e., past the planning horizon), set
E

ytl = 1 8l 2 K.

S

ytl +
L

ytl +
E

ytl � 1 8l 2 K, for each t 2 T (21)
S

ytl +
L

ytl � 1 8l 2 K, for each t 2 T (22)

Constraint (20) assures that the model cannot locate a large facility at a node
l in time period t, and then in some later period after t, locate a small facility
at that same node1 : Similarly, this constraint also prevents solutions which
would attempt to locate a large facility at a node l in some time period t after
having previously located a more costly expanded facility at this same node in a
previous time period. Constraint (21) again limits the number of facility types
that the �rm can locate at a node l in time period t to a maximum of one.
Finally, constraint (22) precludes the model from selecting a small facility at
a node l in time period t, and then selecting a large facility at this same node
in period t + 1. In combination with (20) and (21), this assures that if Firm 3
locates a small facility at a node l, and then later plans to expand its capacity

at node l, it must select a facility type
E

ytl . As noted, the allocated period �xed
location costs of this facility type re�ect the total �xed costs associated with
building a plant in two stages rather than in one continuous project. Note
further that the notation of the original dynamic Stackelberg location model
(9)-(16) requires minor modi�cations to substitute (20)-(22) for (15).
Table 12 displays the location costs and capacities for Firm 3 in model 5.

In this example, Firm 3 can build either a small plant or a large plant for $20
million and $26 million, respectively. Alternatively, the �rm can �rst build a
small plant, and then for an additional $7 million, expand its small plant into a

1Note that if the value of the F�s are stated in their �present value� rather than their
�nominal value�, one technically should multiply the left hand side of equation (20) by the
quantity (1 + r)
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Small Plant Large Plant Expanded Large Plant
Qxtl Qxtl Qxtl

Node (000) TFLCa PLCb (000) TFLC PLC (000) TFLC PLC
1 700 20 2.0 1,000 26 2.6 1,000 27 2.7
2 700 20 2.0 1,000 26 2.6 1,000 27 2.7
3 0 - - 0 - - 0 - -
4 0 - - 0 - - 0 - -

�Qt = 1; 000; 000 units

a TFLC = Total Fixed Location Cost $ (millions)
b PLC = Period Location Cost $ (millions)

Table 12: Location Costs and Capacity for Model 5

Build Large Facility Build Small Facility,
Immediately Expand in Period 3

Period Production Capacity PLCa Capacity PLC
(000) (000) (F tl ) (000) (F tl )

$ (millions) $ (millions)
1 515 1000 2.6 700 2.0
2 635 1000 2.6 700 2.0
3 819 1000 2.6 1000 2.7

Total Pro�ts $ (millions) 40.4 41.6

a PLC = Period Location Cost

Table 13: SNC Equilibrium Pro�ts for Firm 3 When It Locates at Node 2 Using
Model 5 (Staged Capacity Expansion with Increasing Demand Each Period)

large plant. The construction cost of this expanded, large plant thus totals $27
million.
Table 13 show the three period total pro�ts for Firm 3 when it (1) locates a

small plant at node 2 in period 1, and then expands the plant in period 3; or (2)
locates a large plant in period 1. In this example, it turns out that a small plant
can accommodate Firm 3�s optimal production levels in periods 1 and 2, and
that only in period 3 does Firm 3 require a larger plant to maximize its pro�ts.
This allows Firm 3 to maximize it pro�ts over the planning horizon by using
a �staged�capacity expansion approach rather than immediately constructing
a large facility which will have signi�cant unused capacity for several periods.
The ability to evaluate a staged construction approach represents an additional
advantage o¤ered by a dynamic location model.
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Model 1 Model 2 Model 3 Model 4 Model 5
Node 1 X X X
Node 2 X X

X : Node selected

Table 14: Firm 3�s Location Decision Under Alternative Models

6 Conclusions

In this paper, we have developed a series of related static and dynamic models
and numerical examples which illustrate the potential decision support capa-
bilities of reaction function based facility location models. We observed in the
small numerical examples the intuitive result that as Firm 3�s information and
ability to predict the market increased, so did its capability to maximize the
pro�tability of its location decision. In particular, in model 3 where it could
predict the reactions of Firm 1 and 2, Firm 3 generated more pro�table solu-
tions than in models 1 and 2. Models 4 and 5 illustrated the enhanced decision
support created by employing a reaction function based approach in dynamic
models. We observed that Firm 3�s optimal location decision in model 4 di¤ered
from that in model 3, once the �rm incorporated information about changing
market demand over time. Finally, in model 5 when the �rm could consider
a staged construction approach, it generated an even more pro�table solution
than in model 4. In conclusion thus, we believe that a dynamic reaction function
based modeling approach o¤ers the potential to enhance the decision support
capabilities yielded by plant and warehouse facility location models. We close
this paper with Table 14 which depicts how Firm 3�s location decision changed
from model to model.

References

[1] Dafermos, S. C. (1988). �Sensitivity Analysis in Variatoinal Inequalities�.
Mathematics of Operations Research, 13:421-434.

[2] Dafermos, S. C., and Nagurney, A. (1987). �Oligopolistic and Competi-
tive Behavior of Spatially Separated Markets�. Regional Science and Urban
Economics, 17:245-254.

[3] Dockner, E. (1992). �A Dynamic Theory of Conjectural Variations�. Jour-
nal of Industrial Economics XL, no. 4:377-395

[4] Friedman, J. W. (1977). Oligopoly and the Theory of Games. Amsterdam:
North-Holland.

[5] Gabay, D. and Moulin, H. (1980). �On the Uniqueness and Stability of
Nash-Equilibria in Noncooperative Games.� in Applied Stochastic Control

22



in Econometrics and Management Sciences, eds. A. Bensoussan, P. Klein-
dorfer and C.S. Tapeiro. Amsterdam: North-Holland.

[6] Harker, P. T. (1984). �A Variational Inequality Approach for the Determi-
nation of Oligopolistic Market Equilibrium�. Mathematical Programming,
30:105-111.

[7] Harker, P. T. (1986). �Alternative Models of Spatial Competition�. Oper-
ations Research, 34:410-425.

[8] Haurie, A. and Marcotte, P. (1985). �On the Relationship between Cournot-
Nash and Wardrop Equilibria�. Networks, 15:295-308.

[9] Kyparisis, J. (1987). �Sensitivity Analysis Framework for Variational In-
equalities�, Mathematical Programming, 38:203-213

[10] Kyparisis, J. (1989). �Solution Di¤erentiability for Variational Inequalities
and Nonlinear Programming Problems�. Miami, FL: Floridal International
University, Department of Decision Sciences and Information Systems, Col-
lege of Business Administration, Working Paper.

[11] Lions, J. L. and Stampacchia, G. (1967). �Variational Inequalities�. Com-
munications on Pure and Applied Mathematics. 20:493-519.

[12] Marcotte, P. (1987). �Algorithms for the Network Oligopoly Problem�.
Journal of Operational Research Society 38, no. 11:1051-1065.

[13] Miller, T. C., Friesz, T. L. and Tobin, R. L. (1995). Equilibrium Facility
Location on Networks. Springer-Verlag (Heidelberg).

[14] Miller, T. C., Tobin, R. L. and Friesz, T. L. (1991). �Stackelberg Games
on a Network with Cournot-Nash Oligopolistic Competitors�. Journal of
Regional Sciences 31:435-454.

[15] Miller, T. C., Tobin, R. L. and Friesz, T. L. (1992). �Network Facility Lo-
cation Models in Stackelberg-Nash-Cournot Spatial Competition�. Papers
in Regional Sciences: The Journal of the RSAI 71, no.3: 277-291.

[16] Miyagi, T. (1991). �A Computational Procedure for Determination of
Oligopolistic Spatial Price Equilibrium�, Papers in Regional Sciences 70,
no.2:185-200.

[17] Murphy, F. H., Sherali, H. D., and Soyster, A. L. (1982). �A Mathemati-
cal Programming Approach for Determining Oligopolistic Market Equilib-
rium�, Mathematical Programming 24:92-106.

[18] Nagurney, A. (1988). �Algorithms for Oligopolistic Market Equilibrium
Problems�. Regional Science and Urban Economics. 18:425-445.

23



[19] Nagurney, A., Dupuis, P., and Zhang, D. (1994). �A Dynamical Systems
Approach for Network Oligopolies and Variational Inequalities�. Annals of
Regional Science 28:263-283.

[20] Pang, J.-S. (1988). �Solution Di¤erentiability and Continuation of New-
ton�s Method for Variational Inequalities Problems over Polyhedral Sets.
Baltimore, MD: The Johns Hopkins University, Department of Mathemat-
ical Sciences. Working Paper.

[21] Qui, Y. and Magnanti, T. L. (1989). �Sensitivity Analysis for Variational
Inequalities De�ned on Polyhedral Sets�. Mathematics of Operations Re-
search 14(3):410-432.

[22] Tobin, R. L. (1986). �Sensitivity Analysis for Variational Inequalities�.
Journal of Optimization Theory and Applications. 48:191-204.

[23] Tobin, R. L., Miller, T. C. and Friesz, T. L. (1995). �Incorporating Com-
petitors�Reactions in Facility Location Decisions: A Market Equilibrium
Approach�. Location Science 3(4):239-253.

[24] Wie, B. and Tobin, R. L. (1997). �A Dynamical Spatial Cournot-Nash
Equilibrium Model and an Algorithm�. Computational Economics 10:15-
45.

Appendix A Coe¢ cient For Demand, Produc-
tion and Transportation Cost Func-
tions, and Firm 3�s Location Cost
Data
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All Firms : All Firms : Firm 1 Firm 2 Firm 3
Models 1 to 3 Models 4 to 5

Node
Period l 2 K �tl Btl �tl Btl c1 c2 c3
1 1 72,000 43 72,000 43 58 53 47

2 28,000 16 28,000 16 80 75 44
3 25,000 7 25,000 7 84 80 -
4 22,000 11 22,000 11 78 72 -

2 1 72,000 43 82,000 43 58 53 47
2 28,000 16 48,000 16 80 75 44
3 25,000 7 35,000 7 84 80 -
4 22,000 11 32,000 11 78 72 -

3 1 72,000 43 94,000 43 58 53 47
2 28,000 16 60,000 8 80 75 44
3 25,000 7 40,000 7 84 80 -
4 22,000 11 34,000 8 78 72 -

Table A-1: Demand and Production Coe¢ cients

Arc ttjl Firm 1 Firm 2 Firm 3
t11 1.2 1.5 1.0
t12 5.3 5.3 5.3
t13 5.9 5.8 5.7
t14 5.5 5.6 5.7
t21 5.4 5.3 5.2
t22 1.4 1.3 1.3
t23 6.0 5.9 5.8
t24 6.3 6.2 6.0
t31 4.5 4.4 4.5
t32 4.3 4.2 4.3
t33 1.1 1.3 1.2
t34 4.0 4.2 4.1
t41 4.4 4.3 4.1
t42 4.0 4.1 4.2
t43 3.9 4.0 3.8
t44 1.3 1.5 1.2

Table A-2: Transportation Coe¢ cients (For All Periods)
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Total Fixed Period
Qxtl Loc. Cost Loc. Cost

Node (000) $ (millions) $ (millions)
1 1,000 26 2.6
2 1,000 26 2.6
3 0 - -
4 0 - -

�Qt = 1; 000; 000 units

Table A-3: Location Costs and Capacity for Models 1 through 4
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