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Abstract

We present a linear programming based branch-and-bound algorithm for a class of mixed integer
optimization problems with a bi-linear objective function and linear constraints. This class of
optimization problems can be viewed as a special case of the problem of optimization over the set
of efficient solutions in multi-objective optimization. It is known that when there exists no integer
decision variable, such a problem can be solved in polynomial time. In fact, in such a case, the
problem can be transformed into a Second-Order Cone Program (SOCP) and so it can be solved
efficiently by a commercial solver such as CPLEX SOCP solver. However, in a recent study, it
is shown that such a problem can be solved even faster in practice by using a bi-objective linear
programming based algorithm. So, in this study, we embed that algorithm in an effective branch-
and-bound framework to solve mixed integer instances. We also develop several enhancement
techniques including preprocessing and cuts. An extensive computational study demonstrate that
the proposed branch-and-bound algorithm outperforms a commercial mixed integer SOCP solver.
Moreover, the effect of different branching and node selecting strategies is explored.

Keywords: multiplicative programming, multi-objective optimization, optimization over the
efficient set, linear programming, branch-and-bound algorithm

1. Introduction

Many real-world optimization problems involve multiple objectives. Such an optimization prob-
lem (with p objectives) can be stated as follows:

max
x∈X

{z1(x), . . . , zp(x)}, (1)

where X ⊆ Rn represents the set of feasible solutions of the problem. The objectives of such a
problem are often conflicting, i.e., it is impossible to find a feasible solution that simultaneously
optimizes all objectives. Consequently, it is not surprising that the focus of multi-objective op-
timization community has been primarily on developing effective techniques for generating some,
if not all, efficient solutions, i.e., solutions in which it is impossible to improve the value of one
objective without a deterioration in the value of at least one other objective of multi-objective
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optimization problems. In fact, in recent years, significant advances have been made on developing
exact solution approaches for multi-objective optimization problems, see for instance Boland et al.
(2017b); Dächert and Klamroth (2014); Kirlik and Sayın (2014); Lokman and Köksalan (2013);
Özlen et al. (2013); Özpeynirci and Köksalan (2010); Przybylski and Gandibleux (2017); Soylu and
Yıldız (2016); Ehrgott and Gandibleux (2007); and Eusébio et al. (2014). This is mainly because
understanding the trade-offs between objectives can help decision makers select their preferred
solutions.

Although understanding the trade-offs between objectives can be valuable, some researchers
argue (see for instance Jorge (2009); and Boland et al. (2017a)) that presenting too many efficient
solutions can confuse a decision maker, and so may make selecting a preferred solution almost
impossible. An approach that alleviates this issue is finding a preferred solution among the set of
efficient solutions directly. This approach is known as optimizing over the efficient set, which is a
global optimization problem (Benson, 1984). Let XE be the set of efficient solutions of Problem (1).
Also, let f(x) be a function representing how decision makers will choose their preferred solutions
from XE . The problem of optimizing over the efficient set can be stated as follows:

max
x∈XE

f(x).

A specific subclass of such optimization problems is maximum multiplicative programs, i.e.,
problems of the form:

max
x∈X

p∏
i=1

zi(x).

where zi(x) ≥ 0 for all x ∈ X and i = 1, . . . , p. It is known (see for example Nash, 1950) that a
maximum multiplicative program is equivalent to the following problem:

max
x∈XE

p∏
i=1

zi(x).

Therefore, a maximum multiplicative program is a special case of the problem of optimization
over the efficient set since we can set f(x) =

∏p
i=1 zi(x). Overall, there are several studies in

the literature about applications of linear maximum multiplicative programs, i.e., all variables are
continuous, X is defined by a set of linear constraints, and zi(x) is linear for all i = 1, . . . , p. This is
mainly because such optimization problems often arise in game theory settings where the x variables
represent players’ actions and z(x) :=

(
z1(x), . . . , zp(x)

)
represents players’ utilities. Examples

include computing the Nash solution to a bargaining problem (Nash, 1950, 1953), computing an
equilibrium of a linear Fisher or a Kelly capacity allocation market (Eisenberg and Gale, 1959;
Chakrabarty et al., 2006; Jain and Vazirani, 2007; Vazirani, 2012a,b). Moreover, this class of
optimization problems has applications in system reliability as well (Ardakan et al., 2016; Feizabadi
and Jahromi, 2017; Zhang and Chen, 2016).

A convex programming solver, for example one that uses an interior point method, can find
an optimal solution to a linear maximum multiplicative program in polynomial time (Grötschel
et al., 1988). Note that since we assume that the optimal objective value of a linear maximum
multiplicative program is strictly positive, it is possible to use

∑p
i=1 log yi as the objective function.

This transformation can help us to solve a linear maximum multiplicative program faster in practice.
In fact, Charkhgard et al. (2018) have computationally shown that even a faster way of solving
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linear maximum multiplicative program is to reformulate such a problem as a Second-Order Cone
Program (SOCP) using the technique developed by Ben-Tal and Nemirovski (2001). This is mainly
because such a reformulation enables us to use the power of commercial SOCP solvers, e.g., CPLEX
SOCP, for solving linear maximum multiplicative programs.

Some authors (see for instance Vazirani, 2012b) argue that because convex programming solvers
are significantly slower than linear programming solvers, it may be possible to develop even faster
solvers for linear maximum multiplicative programs. In order to do so, one should develop an
exact algorithm that can solve a linear maximum multiplicative program by solving a number
of (single-objective) linear programs. Using this observation and the fact that linear maximum
multiplicative programs are special cases of the problem of optimization over the efficient set of
multi-objective linear programs, Charkhgard et al. (2018) were able to develop a linear programming
based algorithm to solve a maximum multiplicative programs when p = 2 in polynomial time. It
is numerically shown that this algorithm outperforms CPLEX SOCP solver significantly, i.e., by a
factor of up to three, for large-sized instances.

As an aside, we note that linear maximum multiplicative programs appear to be closely related
to linear minimum multiplicative programs (see for instance Gao et al., 2006; Ryoo and Sahinidis,
2003; Shao and Ehrgott, 2014; and Shao and Ehrgott, 2016). Specifically, by changing the objective
function of a linear maximum multiplicative programs from max to min a linear minimum multi-
plicative program is obtained. However, it is known that a linear minimum multiplicative program
is NP-hard (Shao and Ehrgott, 2016). Therefore, because of this significant difference, we do not
consider this class of optimization problems in this study.

In light of the above, the main contribution of our research is extending the algorithm proposed
by Charkhgard et al. (2018) to solve any mixed integer linear maximum multiplicative program
with p = 2, i.e., those that some of their decision variables have to take integer values. We propose
an effective branch-and-bound algorithm which employs the power the algorithm developed by
Charkhgard et al. (2018) for solving mixed integer instances. We also develop several preprocessing
and cut generating techniques to improve the solution time of the proposed algorithm. Moreover,
the effects of several branching and node selecting strategies are explored. An extensive computa-
tional study show that, for large-sized mixed binary instances, our proposed approach outperforms
a commercial solver, i.e., CPLEX Mixed Integer SOCP solver, by a factor of around two on aver-
age. Also, for general mixed integer instances, our proposed algorithm outperforms CPLEX Mixed
Integer SOCP solver not only on large-sized instances but also on small-sized instances by a factor
of two on average.

The remainder of the paper is organized as follows. In Section 2, we provide some preliminaries
and explain a high-level description of the algorithm proposed by Charkhgard et al. (2018). In
Section 3, we explain our proposed branch-and-bound algorithm in detail. In Section 4, some
branching strategies are introduced. In Section 5, some node selecting strategies are presented.
In Section 6, we explain some potential enhancement techniques. In Section 7, we conduct an
extensive computational study. Finally, in Section 8, we give some concluding remarks.
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2. Preliminaries

A Mixed Integer Linear Maximum Multiplicative Program with p = 2 can be stated as follows:

max
2
Π
i=1
yi

s.t. y = Dx + d

Ax ≤ b

x,y ≥ 0, x ∈ Rnc × Bnb × Zni , y ∈ R2,

(2)

where nc, nb, and ni represent the number of continuous, binary, and integer decision variables,
respectively. Also, D is a 2 × n matrix where n := nc + nb + ni, d is a 2-vector, A is an m × n
matrix, and b is an m-vector.

The focus of this study is on solving Problem (2). We refer to the set X := {x ∈ Rn : Ax ≤
b, x ≥ 0} as the feasible set in the decision space and to the set Y := {y ∈ R2 : x ∈ X , y =
Dx + d, y ≥ 0} as the feasible set in the criterion space. We assume that X is bounded (which
implies that Y is compact) and the optimal objective value of the problem is strictly positive, i.e.,
there exists a y ∈ Y such that y > 0. We usually refer to x ∈ X as a feasible solution and to y ∈ Y
as a feasible point (y is the image of x in the criterion space).

Definition 1. A feasible solution x ∈ X is called efficient, if there is no other x′ ∈ X such that
y1 ≤ y′1 and y2 < y′2 or y1 < y′1 and y2 ≤ y′2 where y := Dx+d and y′ := Dx′+d. If x is efficient,
then y is called a nondominated point. The set of all efficient solutions is denoted by XE. The set
of all nondominated points is denoted by YN and referred to as the nondominated frontier.

Proposition 1. An optimal solution of Problem (2), denoted by x∗, is an efficient solution and
therefore its corresponding image in the criterion space, denoted by y∗ where y∗ := Dx∗ + d, is a
nondominated point.

Proof. Suppose that x∗ is an optimal solution of Problem (2) but it is not an efficient solution. By
definition, this implies that there must exist a feasible solution denoted by x ∈ X that dominates
x∗. In other words, we must have that either y∗1 ≤ y1 and y∗2 < y2 or y∗1 < y1 and y∗2 ≤ y2 (where
y := Dx + d). Also, by assumptions of Problem (2) we know that y∗ > 0. Therefore, we must
have that 0 < y∗1y

∗
2 < y1y2. Consequently, x∗ cannot be an optimal solution (a contradiction). �

Proposition 1 implies that Problem (2) is equivalent to maxy∈YN y1y2 and this is precisely
optimization over the efficient set. Charkhgard et al. (2018) used this observation and developed
an algorithm, which we refer to as CST (which comes from the names of its authors Charkhgard,
Savelsbergh, and Talebian) in this study, to solve a relaxation of Problem (2). The relaxation
can be obtained by dropping the integrality condition of binary and integer decision variables of
Problem (2).

By definition, the optimal objective value of such a relaxation should provide a dual bound, i.e,
an upper bound, for the optimal objective value of Problem (2). Therefore, by this observation, in
this paper, we frequently use CST to compute dual bounds. However, whenever we use CST, we
provide a lower bound vector, denoted by l ∈ Rn, and an upper bound vector, denoted by u ∈ Rn,
for x. As an aside, we note that l and u will be provided/updated automatically during the course
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of the branch-and-bound algorithm that we will introduce in the next section. So, we introduce
the operation CST(l,u) which is equivalent to solving the following problem:

max
2
Π
i=1
yi

s.t. y = Dx + d

Ax ≤ b

l ≤ x ≤ u

x,y ≥ 0, x ∈ Rn, y ∈ R2,

(3)

by calling CST algorithm. This operation simply returns an optimal solution and an optimal point
of Problem (3) denoted by (x̃, ỹ). Note that if x̃ =null (or equivalently ỹ=null) then Problem (3)
is infeasible. Next, we provide a high-level description of the CST algorithm. Interested readers
can refer to Charkhgard et al. (2018) for further details.

y1

y2

(a) The feasible set in the criterion
space

zu

y1

y2

(b) The first upper bound point

zu

zI

y1

y2

(c) The first intersection point

zI

y1

y2

(d) The first cut

zu

y1

y2

(e) The second upper bound point

Figure 1: An illustration of the workings of CST(l,u)

Suppose that CST(l,u) is called. An illustration of the feasible set of Problem (3) in the
criterion space can be found in Figure 1a. In each iteration, CST computes a global upper bound
point, denoted by yu, and a global lower bound point, denoted by yl, in the criterion space.
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This implies that yu
1y

u
2 and yl

1y
l
2 provide a global upper bound and a global lower bound for

the optimal objective value of Problem (3), respectively. The algorithm terminates whenever the
(relative and/or absolute) optimality gap falls below a given threshold. In the first iteration, the
algorithm computes an upper bound point by solving two single-objective linear programs. The
first maximizes y1 and the second maximizes y2 over the feasible set in the criterion space. An
illustration of the upper bound point in the criterion space can be found in Figure 1b. Next,
the algorithm searches over the imaginary line the passes through the upper bound point and the
origin to compute the so-called intersection point which is denoted by yI . The intersection point
is the closest feasible point in the criterion space to the upper bound point and can be computed
by solving a single-objective linear program. Therefore, yI1y

I
2 provides by definition a global lower

bound for the optimal objective value of Problem (3). An illustration of the intersection point
found in the first iteration can be found in Figure 1c. Note that the algorithm keeps the best global
lower bound found during the course of the algorithm in yl. In other words, after computing an
intersection point, yl should be updated. Next, the algorithm adds a cut to the criterion space
based on the position of the intersection point to remove the parts of the criterion space that cannot
contain a better lower bound point. An illustration of the cut added in the first iteration can be
found in Figure 1d. After adding the cut, the next iteration starts and the same process repeats
but this time over the reduced feasible set in the criterion space. For example, an illustration of
the upper bound point produced in the second iteration can be found in Figure 1e.

3. A branch-and-bound algorithm

Our proposed algorithm is similar to the traditional branch-and-bound algorithm for single-
objective mixed integer linear programs. The main difference is that instead of using a linear
programming solver to compute dual bounds, we employ the CST algorithm. Next, we provide a
detailed explanation of our proposed branch-and-bound algorithm.

The algorithm maintains a queue of nodes, denoted by Tree. The algorithm also maintains a
global upper bound, denoted by GUB, and global lower bound, denoted by GLB. At the beginning,
the algorithm sets GUB = +∞ and GLB = −∞. Moreover, the algorithm initializes (l,u) with
(0,+∞). To initialize the queue, the algorithm first calls CST(l,u) to compute (x̃, ỹ). If the
integrality conditions hold, i.e., x̃ ∈ Rnc ×Bnb ×Zni , then an optimal solution is found. So, in that
case, the algorithm terminates after setting (x∗,y∗) = (x̃, ỹ). Otherwise, by definition, CST(l,u)
has computed a dual bound, and so the algorithm sets GUB = ỹ1ỹ2 and initializes the queue by
(x̃, ỹ, l,u). The algorithm then explores the queue as long as it is nonempty and GUB−GLB ≥ ε1
and GUB−GLB

GUB
≥ ε2, where ε1, ε2 ∈ (0, 1) are the user-defined absolute and relative optimality gap

tolerances, respectively. Next, we explain how each element of the queue is explored.
In each iteration, the algorithm pops out an element of the queue and denote it by (x,y, l,u).

Note that when an element is popped out from the queue then that element does not exist in
the queue anymore. We will explain in detail in which order the elements of the queue should
be popped out in Section 5. The algorithm next selects an index of a decision variable that was
supposed to take an integer (or binary) value but it currently has fractional value in solution x.
This operation is denoted by Branching-Index(x) and its output is denoted by j. In Section 4,
we will introduce several rules for this operation.

Next, the algorithm generates two new lower bound and upper bound vectors, denoted by
(l1,u1) and (l2,u2). The algorithm sets l1i = li for all i ∈ {1, . . . , n}\{j}, l1j = dxje, and u1 = u.

Similarly, the algorithm sets u2i = ui for all i ∈ {1, . . . , n}\{j}, u2j = bxjc, and l2 = l. The
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Algorithm 1: A Branch-and-Bound Algorithm

1 Input: A feasible instance of Problem (2)
2 Queue.create(Tree)
3 (l,u)← (0,+∞)
4 GLB ← −∞; GUB ← +∞
5 (x̃, ỹ)← CST(l,u)
6 if x̃ ∈ Rnc × Bnb × Zni then
7 (x∗,y∗)← (x̃, ỹ)
8 GLB ← ỹ1ỹ2

9 else
10 Tree.add

(
(x̃, ỹ, l,u)

)
11 GUB ← ỹ1ỹ2

12 while not Queue.empty(Tree) & GUB −GLB ≥ ε1 & GUB−GLB
GUB

≥ ε2 do

13 Tree.PopOut
(
(x,y, l,u)

)
14 j ← Branching-Index(x)

15 (l1,u1)← (l,u); l1j ← dxje
16 (l2,u2)← (l,u); u2j ← bxjc
17 (x1,y1)← CST(l1,u1)
18 if (x1,y1) 6=(null,null) then
19 if x1 ∈ Rnc × Bnb × Zni & y11y

1
2 > GLB then

20 (x∗,y∗)← (x1,y1)
21 GLB ← y11y

1
2

22 else if y11y
1
2 −GLB ≥ ε1 &

y11y
1
2−GLB

y11y
1
2
≥ ε2 then

23 Tree.add
(
(x1,y1, l1,u1)

)
24 (x2,y2)← CST(l2,u2)
25 if (x2,y2) 6=(null,null) then
26 if x2 ∈ Rnc × Bnb × Zni & y21y

2
2 > GLB then

27 (x∗,y∗)← (x2,y2)
28 GLB ← y21y

2
2

29 else if y22y
2
2 −GLB ≥ ε1 &

y21y
2
2−GLB

y21y
2
2
≥ ε2 then

30 Tree.add
(
(x2,y2, l2,u2)

)
31 Update GUB

32 return x∗,y∗
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algorithm first explores (l1,u1). This implies that the algorithm calls CST(l1,u1) to compute
(x1,y1). Again we note that if CST fails to find a feasible solution then we have that x1 =null
and y1 =null. Therefore, in that case, the algorithm will skip the following steps and proceed to
explore (l2,u2). Otherwise, the algorithm first checks whether the integrality conditions hold, i.e.,
x1 ∈ Rnc × Bnb × Zni , and GLB < y11y

1
2. If that is the case then a new and better global lower

bound is found and so the algorithm will set (x∗,y∗) = (x̃1, ỹ1) and GLB = y11y
1
2. Otherwise,

the algorithm checks whether y11y
1
2 − GLB ≥ ε1 and

y11y
1
2−GLB

y11y
1
2
≥ ε2. If that is the case then the

algorithm will add (x1,y1, l1,u1) to be explored further in the future because it is possible to find
better feasible solutions by exploring that element.

After exploring (l1,u1), (l2,u2) should be explored similarly. Therefore, the algorithm will
explore it and then before starting the next iteration it will update GUB. The maximum value of
y1y2 among all nodes in the queue defines the new global upper bound. A detailed description of
the proposed branch-and-bound algorithm can be found in Algorithm 1.

4. Branching strategies

Selecting a branching variable is a crucial task in any branch-and-bound algorithm since it can
impact the solution time of the algorithm significantly. Ideally, we would like to select a variable
for branching that helps us to explore the minimum number of nodes in total. In light of this
observation, in this study, we explore some variants of several well-known branching strategies that
will define the operation Branching-Index(x) in Algorithm 1. Let I be the index sets of all
binary and integer decision variables in Problem (2). For a given node of the queue (x,y, l,u),
let V (x) ⊆ I be the index set of all variables in solution x that were supposed to take integer (or
binary) values but they have taken fractional values. We have explored the following five branching
strategies in this study (interested readers can refer to Bonami et al., 2011 for further details):

• Random branching: This is the easiest and the least-memory consuming branching rule.
In this rule, for a given node of the queue (x,y, l,u), all the elements of V (x) have an equal
chance of being selected, and so the algorithm selects one of them randomly.

• Most infeasible branching: For a given node of the queue (x,y, l,u), another simple
branching strategy is to randomly select an element of V (x) with the largest integer violation
for branching. For each i ∈ V (x), the integer violation is defined as min(xi−bxic, dxie− xi).
In the traditional branch-and-bound algorithm for single-objective mixed integer linear pro-
gramming, it is known that this branching rule does not outperform random branching
(Achterberg et al., 2005). In fact, this rule normally has a poor performance. However,
surprisingly, we will computationally show (in Section 7) that this rule performs the best for
our proposed branch-and-bound algorithm for solving Problem (2).

• Pseudo-costs branching: This strategy was initially introduced by Bénichou et al. (1971)
and then explored further by Martin (1999). This strategy maintains a history of the results
of past branchings for each i ∈ I. For a given node of the queue (x,y, l,u), the algorithm
selects an index i ∈ V (x) with the largest expected change in the dual bound, i.e., upper
bound. Next, we explain how pseudo-costs can be computed for each iteration.

Let ρ1i and ρ2i be the pseudo-costs for i ∈ I at any time during the course of the algorithm.
For each i ∈ I, at the beginning, the algorithm sets ρ1i = 0 and ρ2i = 0. An any iteration
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of the algorithm, if the algorithm branches on i ∈ I and calls CST(l1,u1), the algorithm
updates ρ1i as follows:

ρ1i ← ρ1i +
y1y2 − y11y12
dxie − xi

,

where y1y2 is the optimal objective value associated with the node that the algorithm is
exploring at that iteration, i.e., (x,y, l,u). We denote the number of times that ρ1i has been
updated by n1i at any time during the course of the algorithm. Note that if after calling
CST(l1,u1) it turns out that (x1,y1) =(null,null), i.e., meaning the problem is infeasible,
then ρ1i and n1i should not be updated. Similarly, whenever the algorithm branches on i ∈ I
and calls CST(l2,u2), the algorithm updates ρ2i as follows:

ρ2i ← ρ2i +
y1y2 − y21y22
xi − bxic

.

We denote the number of times that ρ2i has been updated by n2i at any time during the course
of the algorithm. Note that if after calling CST(l2,u2) it turns out that (x2,y2) =(null,null),
i.e., meaning the problem is infeasible, then ρ2i and n2i should not be updated.

In light of the above, suppose that at a particular iteration of the algorithm, we are exploring
the node (x,y, l,u) and we want to decide on which variable we should branch. Based on
the pseudo-costs, one can estimate the change that can occur in the dual bound by calling
CST(l1,u1) after branching on i ∈ V (x) as follows:

δ1i := (dxie − xi)
p1i
n1i
.

In other words, we estimate that y1y2 − y11y12 ≈ δ1i . Similarly, one can estimate the change
that can occur in the dual bound by calling CST(l2,u2) after branching on i ∈ V (x) as
follows:

δ2i := (xi − bxic)
p2i
n2i

In other words, we estimate that y1y2 − y21y22 ≈ δ2i . Therefore, the algorithm can compute a
score for each i ∈ V (x) as follows:

si := µmin(δ1i , δ
2
i ) + (1− µ) max(δ1i , δ

2
i )

where µ ∈ [0, 1] is a user-defined parameter which is typically close to 1. In this paper, we
set µ = 0.9 since it computationally performs the best. The index with the highest score is
the one that the algorithm selects for branching. In order to employ this sophisticated rule,
an initial estimation is required. In this paper, we use the following strategies to obtain an
initial estimation:

1. Initialization using the random branching: In this strategy, we employ random
branching for a number of iterations (which is 10 in this paper) and then the algorithm
switches to pseudo-costs branching. It is worth mentioning that if at a particular itera-
tion the pseudo-costs branching fails to select an index, i.e., si = 0 for all i ∈ V (x), then
we employ the random branching for that particular iteration.
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2. Initialization using the most infeasible branching: This is similar to the previous
case, we only employ the most infeasible branching instead of the random branching.

• Reliability branching: This branching is mostly based on the strong branching (ILOG,
2003). Suppose that at a particular iteration of the algorithm, we are exploring the node
(x,y, l,u) and we want to decide on which variable we should branch using the strong branch-
ing. In strong branching, the algorithm will actually call both CST(l1,u1) and CST(l2,u2)
to compute the exact change in the dual bound, i.e., ∆1

i := y1y2−y11y12 and ∆2
i := y1y2−y21y22.

So, for each i ∈ V (x), the algorithm computes si but using ∆1
i and ∆2

i instead of δ1i and
δ2i . Similar to the pseudo-costs branching, the index with the highest score is the one that
the algorithm selects for branching. Since strong branching imposes a high computational
burden, Achterberg et al. (2005) suggest that we should combine the strong branching with
the pseudocosts branching. This is known as the reliability branching. If n1i ≤ τ then we use
∆1

i in computing si, and otherwise we use δ1i . Also, if n2i ≤ τ then we use ∆2
i in computing

si, and otherwise we use δ2i . In this paper, it is assumed that τ = 2 since computationally it
performs the best.

5. Node selecting strategies

Selecting which node should be popped out in each iteration is another crucial task in any
branch-and-bound algorithm since it can impact the solution time of the algorithm significantly.
The aim of node selecting strategies is pruning open nodes and ending the queue as quickly as
possible. This can be done by either finding a good feasible solution, in order to increase the
global lower bound (or primal bound), or decreasing the global upper bound (or dual bound). We
implemented five different node selecting strategies, two of which are solely based on pseudocosts
branching (Goux and Leyffer, 2002; Belotti et al., 2013):

• Depth-first search: In this strategy, the most recent added node to the tree is chosen
for branching (Little et al., 1963). The two advantages of this strategy are that, if there
is no primary feasible solution on hand, this strategy finds one quickly, and by doing so, it
increases GLB quickly. The other advantage is that it keeps the list of open nodes minimal,
and therefore, the memory-usage is little. However, on the negative side, this strategy is slow
in improving the global dual bound and so it takes a lot of time to prove the optimality of a
solution.

• Best-bound search: This strategy selects the node with the best upper/dual bound (Land
and Doig, 1960). Although this strategy needs more memory in comparison to other strategies,
if an optimal solution is available, this strategy is the fastest to prove its optimality. Another
important characteristic of this strategy is that, in practice, the first feasible solution that
the algorithm finds under this strategy is usually an optimal solution of the problem.

• Two-phase method: The idea of this strategy is to combine depth-first search and best-
bound search strategies to use the benefits of both. In this paper, our proposed algorithm
employs the depth-first search strategy for at most min(1000, 3n) number of iterations. As
soon as a feasible solution is found which is better than the current GLB or the algorithm
reaches to the maximum number of iterations then it switches to the best-bound search. The
algorithm operates on the best-bound search for min(1000, 3n) number of iterations. As soon
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as the algorithm reaches to its maximum number of iterations then the algorithm checks
how much the global upper bound has improved during operating on the best-bound search
strategy. If the improvement is greater than or equal to 5% then the algorithm starts to
operate on the best-bound search for min(1000, 3n) number of iterations again. Otherwise, it
will return to the depth-first search strategy and similar procedures discussed above will be
repeated.

• Best expected bound: This strategy is based on the pseudo-costs and selects the node
with the best expected dual bound after branching. For any given node N := (x,y, l,u) of
the queue, let δ1(N) and δ2(N) be the change estimate in the dual bound computed by the
pseudo-costs branching if we branch on the variable that pseudo-costs branching suggests for
that particular node. So, in that case, the estimated dual bounds will be for node N ∈ Tree:

ē1N := y1y2 − δ1(N),

and
ē2N := y1y2 − δ2(N).

In light of the above, in this strategy, the algorithm selects a node N ∈ Tree that has the
largest value of max{ē1N , ē2N}.

• Best estimate: This strategy is also based on the pseudo-costs. This strategy selects a
node that is expected to result in the best integer solution (or best primal bound). The best
expected primal bound for a given node N := (x,y, l,u) of the queue can be computed as
follows:

eN := y1y2 −
∑

i∈V (x)

min{δ1i , δ2i }

In light of the above, in this strategy, the algorithm selects a node N ∈ Tree that has the
largest value of eN .

6. Enhancements

In this section, we explain a preprocessing technique which is developed for the aim of producing
good global lower bounds and cuts for Problem (2). The preprocessing technique can be called
before running Algorithm 1 to possibility improve the performance of this algorithm. Obviously,
generating a good global lower/primal bound can be helpful since the nodes of the branch-and-
bound tree can be pruned faster. Also, by generating cuts and adding them to the formulation,
better global upper/dual bounds can be computed during the course of Algorithm 1.

The proposed preprocessing technique is developed based on Proposition 1. By this proposition,
any efficient solution is expected to be a high-quality feasible solution and hence it can be considered
as a (good) global lower bound for the problem. Therefore, in the proposed preprocessing technique,
we attempt to enumerate some of the efficient solutions of the problem. In order to do so, we use
the weighted sum operation, denoted by WSO(λ1, λ2):

(x̄, ȳ) ∈ arg max {λ1y1 + λ2y2 :

y = Dx + d, Ax ≤ b, x ≥ 0, y ≥ 0, x ∈ Rnc × Bnb × Zni , y ∈ R2},

11
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Figure 2: An illustration of the nondominated frontier corresponding to Problem (2)
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Figure 3: An illustration of the workings of the weighted sum method

where λ1, λ2 > 0 are user-defined weights. In multi-objective optimization, it is known that this
operation always returns an efficient solution (if exists any) for a multi-objective optimization
problem. However, for non-convex optimization problems such as Problem (2), not all efficient
solutions can be computed using this operation by considering even all possible weights (Ehrgott,
2005). In addition to the fact that ȳ1ȳ2 provides a global lower bound, the weighted sum operation
can naturally produce the following cut for Problem (1), due to optimality:

λ1y1 + λ2y2 ≤ λ1ȳ1 + λ2ȳ2.

In light of the above, in the proposed preprocessing technique, we employ the weighted sum op-
eration to generate a feasible solution (i.e., global primal bound) and a cut for the problem. In order
to use the wighted sum operation effectively, we employ the Weighted Sum Method (WSM) (Aneja
and Nair, 1979). This is because the WSM can compute all nondominated points that are extreme
points of the convex hull of Y. Next, we explain a high-level description of the WSM.

12



In the WSM, we first compute the endpoints of the nondominated frontier. The top endpoint,
denoted by yT , can be computed by first solving,

(x̃, ỹ) ∈ arg max {y2 :

y = Dx + d, Ax ≤ b, x ≥ 0, y ≥ 0, x ∈ Rnc × Bnb × Zni , y ∈ R2},

and if it is feasible, it needs to be followed by solving

(xT ,yT ) ∈ arg max {y1 : y2 ≥ ỹ2
y = Dx + d, Ax ≤ b, x ≥ 0, y ≥ 0, x ∈ Rnc × Bnb × Zni , y ∈ R2},

We denote the operation of computing (xT ,yT ) by arg lex max(y2, y1). Similarly, the bottom end-
point, can be computed by using arg lex max(y1, y2) in which its outcome is denoted by (xB,yB).
An illustration of the nondominated frontier corresponding to Problem (1) can be found in Fig-
ure 2. It is evident that if (xT ,yT ) =(null,null), i.e., Problem (2) is infeasible, then we must have
that (xB,yB) =(null,null). Therefore, there is no need to compute (xB,yB) in that case. Also, if
yT = yB then the Problem (2) has an ideal point, i.e., |YN | = 1. In the remaining, we assume that
yT 6= yB.

At the beginning of the WSM, we set GLB = −∞. After computing the endpoints of the
nondominated frontier, both yT1 y

T
2 and yB1 y

B
2 are global lower bounds for Problem (1). So, we set

GLB to the best/highest lower bound found and update (x∗,y∗) accordingly. Moreover, we know
that y1 ≤ yB1 and y2 ≤ yT2 are two valid cuts that can be added to the formulation and so we add
them to the list of cuts which is denoted by Cuts. Note that after computing the endpoints, all
other nondominated points must be in the imaginary rectangle defined by yT and yB, denoted by
R(yT ,yB) (See Figure 3a). Hence, the WSM explores this rectangle and may change it into smaller
rectangles, and repeat this process in each one until it finds all extreme nondominated points.

More precisely, to explore a given rectangle R(y1,y2) with y11 < y21 and y12 > y22, the WSM
calls WSO(λ1, λ2) after setting λ1 = y12 − y22 and λ2 = y21 − y11 to compute (x̄, ȳ). Note that in
this way, λ1y1 + λ2y2 is a function which is parallel to the line that connects y1 and y2 in the
criterion space. Figure 3a shows an example with y1 = yT and y2 = yB. As discussed before
since ȳ is a nondominated point, if GLB < ȳ1ȳ2 then we set GLB = ȳ1ȳ2 and (x∗,y∗) = (x̄, ȳ).
Also, the WSM adds λ1y1 + λ2y2 ≤ λ1ȳ1 + λ2ȳ2 to the list of cuts. Finally, it is evident that if
λ1ȳ1 + λ2ȳ2 > λ1y

1
1 + λ2y

1
2 then ȳ is not a convex combination of y1 and y2. So, in that case, a

similar procedure is applied recursively to search R(y1, ȳ) and R(ȳ,y2) for additional nondominated
points (see Figure 3b).

Algorithm 2 shows a precise description of the weighted sum method or the proposed prepro-
cessing technique.

7. Computational study

As we will explain later in this section, based on the study of Ben-Tal and Nemirovski (2001),
Problem (2) can be reformulated as a mixed integer SOCP. So, in this section, we compare the
performance of our proposed branch-and-bound algorithm with the performance of the mixed inte-
ger SOCP solver of CPLEX 12.7 (CPLEX-MI-SOCP). We implement our algorithm in C++ and
use CPLEX 12.7 to solve linear programs and mixed integer programs arising during the course of
Algorithm 1 and Algorithm 2. The computational experiments are conducted on a Dell PowerEdge
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Algorithm 2: Preprocessing

1 Input: An instance of Problem (2)
2 List.create(Cuts)
3 Queue.create(Q)
4 GLB = −∞
5 (xT ,yT )← arg lex max(y2, y1)
6 if (xT ,yT ) 6= (null, null) then
7 yB ← arg lex max(y1, y2)
8 GLB ← yT1 y

T
2 , (x∗,y∗)← (xT ,yT )

9 Cuts .add(y2 ≤ yT2 )
10 if yT 6= yB then
11 Q.add(R(yT ,yB))
12 if GLB < yB1 y

B
2 then

13 GLB ← yB1 y
B
2 , (x∗,y∗)← (xB,yB)

14 Cuts .add(y1 ≤ yB1 )

15 while not Queue.empty(Tree) do
16 Q.PopOut(R(y1,y2))
17 λ1 ← y12 − y22
18 λ2 ← y21 − y11
19 (x̄, ȳ)←WSO(λ1, λ2)
20 if GLB < ȳ1ȳ2 then
21 GLB ← ȳ1ȳ2, (x∗,y∗)← (x̄, ȳ)

22 Cuts .add(λ1y1 + λ2y2 ≤ λ1ȳ1 + λ2ȳ2)
23 if λ1ȳ1 + λ2ȳ2 > λ1y

1
1 + λ2y

1
2 then

24 Q.add(R(y1, ȳ))
25 Q.add(R(ȳ,y2))

26 return x∗,y∗,GLB,Cuts
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R360 with two Intel Xeon E5-2650 2.2 GHz 12-Core Processors (30MB), 128GB RAM, the RedHat
Enterprise Linux 6.8 operating system, and using a single thread. Both the relative and optimal-
ity gap are set to 10−6 in both solution methods, i.e., our branch-and-bound algorithm and the
CPLEX-MI-SOCP. Also, a time limit of 7,200 seconds is imposed for each instance in both solution
methods. Furthermore, if the preprocessing is active then a time limit of 0.1n seconds is imposed for
it. Note that the preprocessing can be used both in our proposed branch-and-bound algorithm and
CPLEX-MI-SOCP. Consequently, if the preprocessing is active then a time limit of 7200−t seconds
is imposed for a solution method where t is the time (in seconds) used by the preprocessing (note
that t ≤ 0.1n). The code and instances used in this study can all be found at https://goo.gl/p7ezR5
and https://goo.gl/bgHciY, respectively. Next, we explain how the instances are generated.

Since pure integer instances can be linearized easily by introducing additional sets of variables
and constraints, they can be solved as pure integer linear programs by commercial solvers. Conse-
quently, in this computational study, all instances involve continuous decision variables, i.e., nc > 0
for all instances. In particular, this computational study is conducted over two sets of instances
each with 80 randomly generated instances. In both sets, nc = 0.5n for all instances. However, in
the first set, there is no general integer variables, i.e, ni = 0 and nb = 0.5n, and in the second set,
there is no binary decision variable, i.e., i.e, nb = 0 and ni = 0.5n. Each set contains 16 subclasses
of instances based on the dimensions of the matrix Am×n, and each subclass contains 5 instances.
Specially, we assume that m ∈ {200, 400, 800, 1600} and n = αm where α ∈ {0.5, 1, 1.5, 2}. For
example, the subclass 200 × 100 implies that m = 200 and n = 100, i.e., α = 0.5. The sparsity of
matrix A is set to 50%. The components of vector b and the entries of matrix A are randomly drawn
from discrete uniform distributions [50, 200] and [10, 30], respectively. We set the components of
vector d to zero. The sparsity of each row of the matrix D was also set to 50% and its components
were drawn randomly from a discrete uniform distribution [1, 10]. Note that, since all constraints
of the set X are inequality constraints and all coefficients of matrix A are nonnegative, the set X
is bounded. Next, we explain how Problem (2) can be reformulated as mixed integer SOCP.

By introducing a new non-negative variable γ and introducing a geometric mean constraint,
Problem (2) can be reformulated as follows:

max γ

s.t. 0 ≤ γ ≤
( p

Π
i=1
yi

) 1
p

y = Dx + d

Ax ≤ b

x,y ≥ 0, x ∈ Rnc × Bnb × Zni , y ∈ Rp, .

If γ̄ is the optimal objective value of the reformulated problem, then γ̄p is the optimal objective value
of the original formulation. Ben-Tal and Nemirovski (2001) show how an optimization problem
of this form can be written as a mixed integer SOCP. Let k be the smallest integer value such
that 2k ≥ p. By introducing a set of non-negative variables and constraints, the geometric mean
constraint can be replaced as follows:

max γ

s.t. 0 ≤ γ ≤ Γ

0 ≤ Γ ≤
√
τk−11 τk−12
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0 ≤ τ lj ≤
√
τ l−12j−1τ

l−1
2j for j = 1, . . . , 2k−l and l = 1, . . . , k − 1

0 ≤ τ0j = yj for j = 1, . . . , p

0 ≤ τ0j = Γ for j = p+ 1, . . . , 2k

y = Dx + d

Ax ≤ b

x,y ≥ 0, x ∈ Rnc × Bnb × Zni , y ∈ Rp.

The above formulation is a mixed integer SOCP since any constraint of the form {u, v, w ≥ 0 :

u ≤
√
vw} is equivalent to {u, v, w ≥ 0 :

√
u2 + (v−w2 )2 ≤ v+w

2 }.

7.1. A performance comparison on instance of set I: mixed binary instances

In this section, we first compare the performance of the proposed branch-and-bound algorithm
under different settings obtained by employing the proposed branching strategies, node selecting
strategies, and the preprocessing technique on the instances of set I, i.e., those with no general
integer variables. After computing a good setting for the proposed algorithm, we then try to find a
good setting for the CPLEX-MI-SOCP by exploring whether the proposed preprocessing technique
is useful or not. Finally, we compare the performance of both solution methods under their best
obtained settings.

It is worth mentioning that in this computational study, we frequently use performance profiles
(Dolan and Moré, 2002) to compare different algorithms in term of their solution times. A per-
formance profile presents cumulative distribution functions for a set of algorithms being compared
with respect to a specific performance metric. The run time performance profile for a set of algo-
rithms is constructed by computing for each algorithm and for each instance the ratio of the run
time of the algorithm on the instance and the minimum of the run times of all algorithms on the
instance. The run time performance profile then shows the ratios on the horizontal axis and, on
the vertical axis, for each algorithm, the percentage of instances with a ratio that is greater than
or equal to the ratio on the horizontal axis. This implies that values in the upper left-hand corner
of the graph indicate the best performance.

The run time performance profile of the proposed branch-and-bound algorithm for different
branching settings is shown in Figure 4a. It is evident that the most infeasible branching strategy
performs the best for the set I of instances, and it outperforms the reliability branching by a factor
of up to 10. So, in the remaining, we set the branching strategy to the most infeasible. The run
time performance profile of the proposed branch-and-bound algorithm for different node selecting
settings is shown in Figure 4b. Observe that the best-bound search strategy performs the best, and
it outperforms the depth-first search strategy by a factor of up to 6.2. So, in the remaining, we set
the node selecting strategy to the best-bound search strategy.

The run time performance profile of the proposed branch-and-bound algorithm for different
enhancements including producing an initial primal bound and producing cuts are shown in Fig-
ure 4c. Observe that the performance of the algorithm with no enhancement seems to be similar to
the performance of the algorithm when both generating cuts and providing an initial primal bound
are used. Consequently, there are two best settings for the proposed branch-and-bound algorithm.
It is worth noting that the preprocessing operation is a time-consuming operation. So, we observe
that if we only use the preprocessing for providing an initial primal bound then the performance
of the algorithm decreases.
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(b) Node selecting strategies

0

20

40

60

80

100

1
1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9
.5 1
0

P
e
rc
e
n
ta

g
e

Ratio

MostInf+ BestBound
MostInf+ BestBound+Primal

MostInf+ BestBound+Primal+Cuts

(c) Enhancements

Figure 4: The run time performance profile of the proposed branch-and-bound algorithm for different settings on
mixed binary instances
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Figure 5: The run time performance profile of CPLEX-MI-SOCP for different settings on mixed binary instances
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The run time performance profile of CPLEX-MI-SOCP for different enhancements including
producing an initial primal bound and producing cuts are shown in Figure 5. We observe that the
performance of CPLEX-MI-SOCP with no enhancement seems to be far better than the case where
the cuts and/or an initial primal bound are provided to CPLEX-MI-SOCP. So, the best setting for
CPLEX-MI-SOCP is to make the preprocessing inactive.

A detailed comparison between the performance of the best obtained settings for the proposed
branch-and-bound algorithm and the CPLEX-MI-SOCP are shown Table 1 where ‘#N’ is the
number of nodes, ‘#LPs’ is the number of (single-objective) linear programs solved, ‘T(sec.)’ shows
the solution time in seconds, and finally ‘%G’ shows the optimality gap percentage. Note that in
this table averages over 5 instances are reported. Note too that, as discussed earlier, there are two
best settings for the proposed branch-and-bound algorithm. So, in Table 1, ‘B&B’ is used for the
case with no preprocessing and ‘B&B+ Preprocessing’ is used for the case that providing cuts and
an initial primal bound is active.

From Table 1, we observe that for small-sized instances, i.e., the classes with 200 and 400
constraints, CPLEX-MI-SOCP seems to perform the best on average. However, as the number
of constraints increases, the performance of CPLEX-MI-SOCP decreases dramatically. For classes
with 800 and 1,600 constraints, the solution time of the B&B+Preprocessing is better by a factor
of around 2 on average. It is worth mentioning that both B&B and CPLEX-MI-SOCP fail to solve
instances with 2,400 variables and 3,600 variables in the time limit, i.e., 7,200 seconds. The only
algorithm that was able to solve these instances to optimality is B&B+preprocessing.

Table 1: Performance comparison between the best settings of the branch-and-bound algorithm and CPLEX-MI-
SOCP on the mixed binary instances

m× n
B&B B&B+Preprocessing CPLEX-MI- SOCP

#N #LPs T(sec.) %G #N LPs T(sec.) %G #N T(sec.) %G
200× 100 31.8 1,019.2 2.2 0 5.0 272.2 10.3 0 30.0 2.7 0
200× 200 28.6 884.4 4.1 0 8.6 370.6 21.0 0 27.0 4.5 0
200× 300 107.0 3,180.4 24.4 0 40.6 1,460.6 37.3 0 86.2 13.9 0
200× 400 59.4 1,704.8 20.1 0 52.2 1,637.0 51.1 0 50.6 13.9 0
Avg 56.7 1,697.2 12.7 0.0 26.6 935.1 29.9 0.0 48.4 8.8 0.0
400× 200 75.8 2,137.2 20.5 0 67.0 1,861.8 32.5 0 47.4 18.9 0
400× 400 70.6 1,943.6 45.9 0 73.4 2,455.0 72.0 0 57.8 36.1 0
400× 600 66.2 1,826.4 85.5 0 50.6 1,597.8 92.0 0 63.8 61.8 0
400× 800 81.4 2,208.8 174.7 0 70.6 2,151.0 140 0 73.8 93.6 0
Avg 73.5 2,029.0 81.6 0.0 65.4 2,016.4 84.1 0.0 60.7 52.6 0.0
800× 400 64.2 1,764.4 90.1 0 36.6 1,133.0 70.0 0 62.6 137.4 0
800× 800 101.8 2,493.6 457.7 0 105.8 2,993.8 258.0 0 104.4 473.5 0
800× 1200 81.4 2,153.6 898.5 0 83.4 2,329.8 358.8 0 100.4 792.2 0
800× 1600 76.2 1,983.6 1,496.9 0 79.4 2,328.2 488.7 0 96.4 1,068.6 0
Avg 80.9 2,098.8 735.8 0.0 76.3 2,196.2 293.9 0.0 90.95 617.9 0.0
1600× 800 65.8 1,652.8 698.2 0 67.0 2,060.2 373.6 0 62.2 1,118.1 0
1600× 1600 64.2 1,602.0 2,875.0 0 56.2 1,503.4 681.9 0 86.6 3,189.2 0
1600× 2400 64.2 1,758.8 6,793.2 - 85.0 2,571.8 1,851.6 0 113.6 6,903.8 0.04
1600× 3200 38.2 976.4 7,200.0 - 93.4 2,784.6 2,944.1 0 86.0 7,200.0 0.09
Avg 58.1 1,497.5 4,391.7 - 75.4 2,230.0 1,462.8 0.0 87.1 4,602.9 0.0

7.2. A performance comparison on instance of set II: mixed general integer instances

Similar to the previous section, in this section, we first compare the performance of the proposed
branch-and-bound algorithm under different settings obtained by employing the proposed branching
strategies, node selecting strategies, and the preprocessing technique on the instances of set II, i.e.,
those with no binary variables. After computing a good setting for the proposed algorithm, we
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then try to find a good setting for the CPLEX-MI-SOCP by exploring whether the proposed
preprocessing technique is useful or not. Finally, we compare the performance of both solution
methods under their best obtained settings.
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(b) Node selecting strategies
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(c) Enhancements

Figure 6: The run time performance profile of the proposed branch-and-bound algorithm for different settings on
mixed integer instances

The run time performance profile of the proposed branch-and-bound algorithm for different
branching settings is shown in Figure 6a. Again, it is evident that the most infeasible branching
strategy performs the best for the set II of instances. So, in the remaining, we set the branching
strategy to the most infeasible. The run time performance profile of the proposed branch-and-
bound algorithm for different node selecting settings is shown in Figure 6b. Based on this figure,
in the remaining, we set the node selecting strategy to the best-bound search strategy because it
performs the best. The run time performance profile of the proposed branch-and-bound algorithm
for different enhancements including producing an initial primal bound and cuts are shown in
Figure 6c. Observe that the performance of the algorithm with no enhancement performs the best.
So, in the remaining, the preprocessing is inactive for the proposed branch-and-bound algorithm.

The run time performance profile of CPLEX-MI-SOCP for different enhancements including
producing an initial primal bound and producing cuts are shown in Figure 5. We again observe
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Figure 7: The run time performance profile of CPLEX-MI-SOCP for different settings on mixed integer instances

that the performance of CPLEX-MI-SOCP with no enhancement seems to be far better than the
case where the cuts and/or an initial primal bound are provided to CPLEX-MI-SOCP. So, the best
setting for CPLEX-MI-SOCP is to make the preprocessing inactive.

A detailed comparison between the performance of the best obtained settings for the proposed
branch-and-bound algorithm and the CPLEX-MI-SOCP are shown Table 2. Observe that B&B
performs the best across all classes. In fact, B&B outperforms CPLEX-MI-SOCP by a factor of
around 2 for all instances on average. Also, we again observe that CPLEX-MI-SOCP fails to solve
instances with 2,400 variables and 3,600 variables in the time limit, i.e., 7,200 seconds.

Table 2: Performance comparison between the best settings of the branch-and-bound algorithm and CPLEX-MI-
SOCP on the mixed integer instances

m× n
B&B CPLEX-MI-SCOP

#N #LPs T(sec.) %G #N T(sec.) %G
200× 100 39.0 1,169.2 2.1 0 28.2 2.3 0
200× 200 52.2 1,586.8 5.3 0 41.4 6.4 0
200× 300 38.2 1,165.2 6.0 0 34.0 8.2 0
200× 400 77.4 2,190.0 14.7 0 68.0 17.0 0
Avg 51.7 1,527.8 7.0 0.0 42.9 8.5 0.0
400× 200 46.6 1,457.2 10.1 0 40.4 17.9 0
400× 400 74.6 2,101.2 28.7 0 59.8 38.9 0
400× 600 90.6 2,601.6 54.4 0 85.6 88.5 0
400× 800 115.4 3,252.0 93.7 0 119.2 157.0 0
Avg 81.8 2,353.0 46.7 0.0 76.2 75.6 0.0
800× 400 96.6 2,592.4 74.4 0 77.6 185.8 0
800× 800 89.4 2,498.0 154.3 0 110.4 524.0 0
800× 1200 73.4 2,029.6 206.7 0 94.6 680.5 0
800× 1600 86.2 2,155.2 315.9 0 95.8 914.3 0
Avg 86.4 2,318.8 187.8 0.0 94.6 576.2 0.0
1600× 800 73.4 1,956.4 285.2 0 79.6 1,410.1 0
1600× 1600 82.2 2,144.0 772.5 0 94.6 3,493.7 0
1600× 2400 95.4 2,388.8 1,491.5 0 95.8 6,202.1 0.02
1600× 3200 104.2 2,484.8 2,223.0 0 75.2 7,200.0 0.11
Avg 88.8 2,243.5 1,193.6 0.0 86.3 4,576.7 0.0
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8. Final remarks

We developed a multi-objective linear programming based branch-and-bound algorithm for
solving a class of mixed integer linear maximum multiplicative programs. This class of optimization
problems has only one objective function and it can be solved directly by a commercial mixed integer
second-order cone programming solver. However, it was shown that the proposed branch-and-
bound algorithm outperforms such a solver by a factor of around 2 on average. Using an extensive
computational study, different branching and node selecting strategies as well as enhancement
techniques were explored. It was shown that the most infeasible branching and best-bound search
strategies perform the best for the proposed branch-and-bound algorithm. However, enhancement
techniques were only useful for mixed binary instances. One drawback of the proposed method is
that it can only be applied to mixed integer linear maximum multiplicative programs in which its
objective function involves a bi-linear term. Therefores, developing a multi-objective optimization
based algorithm for cases where the objective function involves a multi-linear term can be a future
research direction.
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