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Abstract

Due to catastrophic consequences of potential accidents in hazardous materials (hazmat)

transportation, a risk-averse approach for routing is necessary. In this paper, we consider spec-

tral risk measures, for risk-averse hazmat routing, which overcome challenges posed in the

existing approaches such as conditional value-at-risk. In spectral risk measures, one can define

the spectrum function precisely to reflect the decision maker’s risk preference. We show that

spectral risk measures can provide a unified routing framework for popular existing hazmat

routing methods based on expected risk, maximum risk, and conditional value-at-risk. We first

consider a special class of spectral risk measures, for which the spectrum function is represented

as a step function. We develop a mixed integer linear programming model in hazmat routing to

minimize these special spectral risk measures and propose an efficient search algorithm to solve

the problem. For general classes of spectral risk measures, we suggest approximation methods

and path-based approaches. We propose an optimization procedure to approximate general

spectrum functions using a step function. We illustrate the usage of spectral risk measures and

the proposed computational approaches using data from real road networks.

Keywords: hazardous materials transportation; risk management; spectral risk; coherent

risk measures

1 Introduction

The U.S. Occupational Safety and Health Administration (2017) defines hazardous materials (haz-

mat) as “chemical hazards and toxic substances which pose a wide range of health hazards such

as irritation, sensitization, and carcinogenicity and physical hazards such as flammability, corro-

sion, and explosibility.” Widely used for hazmat transportation are cargo tank trucks. Cargo tank
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trucks transporting with road networks can bring potential risks for the public. According to in-

cident statistics (Pipeline and Hazardous Materials Safety Administration, 2017), there were 3,391

highway transit incidents involving hazmat, causing $32,806,352 of damages in 2017. In order to

protect the road network from severe accidents by hazmat, risk and regulatory analyses have been

conducted to provide effective solutions for operations and management in hazmat transportation.

In this paper, we consider a hazmat routing problem to determine a safe path between an

origin-destination (OD) pair. Transporting hazmat involves the risk of having an accident, which is

often modeled as a discrete random variable (Erkut and Verter, 1998; Erkut and Ingolfsson, 2005).

To assess the risk of hazmat transportation, Erkut et al. (2007) identified three key steps including

hazard and exposed receptor identification, frequency analysis and consequence modeling and risk

calculation. Hazard and exposed receptor identification involves identifying the potentional sources,

the types, and the quantities of compounds that impact the health and safety on the surrounding

environment (Oggero et al., 2006; Yang et al., 2010). In frequency analysis, the probability of

an undesirable event, the level of potential receptor exposure and the severity of consequence are

considered (Woodruff, 2005; Marhavilas et al., 2011; Rayas and Serrato, 2017). To calculate the

risk, all the data related to the relevant area can be collected using GIS (Tomasoni et al., 2010;

Van Raemdonck et al., 2013; Torretta et al., 2017). Various models of risk measures for hazmat

transport risk are considered in the literature. Most notably, the notion of conditional value-at-risk

(CVaR) has been proposed as a risk measure (Toumazis et al., 2013; Toumazis and Kwon, 2016)

to provide a flexible routing tool that can incorporate the decision maker’s risk preference. By

varying the probability threshold value in the CVaR framework, we can provide routing solutions

adequate for risk-neutral to risk-averse decision makers. In addition, Hosseini and Verma (2018)

proposed an optimization model for train configuration and routing of rail hazmat shipments with

conditional value-at-risk (CVaR).

Basically, CVaR is defined as the “average of the α100% worst cases in the long tail.” While

CVaR exhibits several desirable properties such as coherency in the sense of Artzner et al. (1999),

it has a couple of limitations. First, CVaR completely ignores what happens in the dominating

(1−α)100% cases, by only considering the α100% worst cases in the long tail; hence, CVaR cannot

distinguish random risk variables when their CVaR values are identical. Second, CVaR places a

uniform weight in the long tail for the consequences that pass the “cutoff” and, therefore, may fail

to provide risk-averseness against extremely large consequences with very small probabilities. Due

to these two properties, decision-making based solely on CVaR can lead to less desirable outcomes.

As a way to overcome these limitations, it is natural to consider weighted average of all possible

consequences, called the spectral risk measure (SRM) (Acerbi, 2002) of the underlying probabilistic

risk distribution. The weight function is referred as the spectrum function. Any admissible spec-

trum function is required to be nonnegative, non-decreasing, and normalized for the spectral risk

measure to be coherent. In connection with expected utility theory, researchers suggested some

legitimate spectrum functions for constructing spectral risk measures (Dowd et al., 2008; Brandt-

ner, 2016). Spectral risk measures have been studied for financial portfolio optimization problems
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(Acerbi and Tasche, 2002; Acerbi, 2004; Acerbi and Simonetti, 2008; Dowd and Blake, 2006) and

some researchers (Dowd et al., 2008; Brandtner, 2016) gave guidances on the choice of spectrum

functions.

The contributions of this paper can be summarized as follows. For the first time, we introduce

SRM as a more general and risk-averse approach in transportation problems, particularly, hazmat

routing. We note that some existing hazmat risk measures including CVaR are special cases of SRMs

and demonstrate that a weighted sum of those existing hazmat risk measures can be represented

as an SRM. Hence, we emphasize that the theory and algorithm developed for SRM minimization

can provide a unified framework for hazmat routing in various settings. We also show that SRMs

with a special class of discrete spectrum functions can be formulated as the weighted sum of CVaR

measures. We devise efficient algorithms for both special and general classes of spectrum functions

to find the minimal SRM paths for hazmat routing. We confirm the efficiency of the algorithms

and the key advantages of SRM via case studies.

In Section 2 we review various risk measures for hazmat routing and illustrate limitations of

the existing CVaR-based approach. After we define the SRM in Section 3, we study a special class

of SRMs and propose an efficient algorithm to solve the SRM minimization model in Section 4.

For general spectral risk measures, we propose an approximation scheme to simplify the problem

in Section 5. Case studies of road networks are conducted and comparisons for different hazmat

routing models are introduced in Section 6. Section 7 provides concluding remarks for this paper.

2 Review of Risk Measures for Hazmat Routing

For a graph G(N ,A), we denote the accident probability and the accident consequence in arc

(i, j) ∈ A by pij and cij , respectively. To transport a commodity, the approximated risk distribution

along path l can be written as follows (Jin and Batta, 1997):

Pr[Rl = x] ≈


1−

∑
(i,j)∈Al

pij if x = 0

pij if x = cij for some (i, j) ∈ Al
(1)

Note that the approximation is from the fact that pij � 1 for hazmat accidents, and therefore,

pijpi′j′ ≈ 0 for any (i, j), (i′, j′) ∈ A. The accident consequence (loss) in path l can be written as

the following distribution (Kang et al., 2014a):

Rl =



0, w.p. 1−
∑|Al|

i=1 p
l
(i)

cl(1), w.p. pl(1)
...

cl
(|Al|), w.p. pl

(|Al|)

(2)

3



0 1 2 3 4 5 6
Accident consequence (1,000 population exposure)

0

0.000005

0.000010

0.000015

0.000020

0.000025

0.000030

0.000035

0.000040

0.999500

0.999750

1

Pr
ob

ab
ilit

y

(a) pmf

0 1 2 3 4 5 6
Accident consequence (1,000 population exposure)

0.99975

0.99980

0.99985

0.99990

0.99995

1

Pr
ob

ab
ilit

y

(b) cdf

Figure 1: The pmf and cdf for the accident consequence of a path

whereAl is the set of arcs contained in path l, cl(i) is the i-th smallest in the set {cij : (i, j) ∈ Al}, and

pl(i) is the probability corresponding to cl(i). The probability mass function (pmf) and cumulative

distribution function (cdf) for Rl of a path in the Ravenna network1 is shown in Figure 1. Note

that the accident probabilities are as small as 10−5.

For the random risk variable Rl, several measures of risk have been proposed in the literature,

as summarized in Table 1. Let us consider two risk measures that are popular in the literature:

the traditional risk (TR) and the maximum risk (MM). The TR is the expected consequence along

a path, and the MM is the maximum arc consequence in a path. Both measures invoke some

problems in hazmat transportation. First, the TR measure considers the expected value, which is

risk-neutral. In hazmat transportation, it is recommended to use risk-averse approaches to avoid

catastrophic consequences. On the other hand, the MM measure, although risk-averse, often leads

to a circuitous path (Erkut and Ingolfsson, 2005).

2.1 VaR and CVaR Defined

As a flexible alternative that covers risk attitudes between the attitudes of TR and MM, the notion

of value-at-risk (VaR) and conditional value-at-risk (CVaR) have been proposed. VaR and CVaR

are defined as follows:

Definition 1 (VaR Measure). The value-at-risk (VaR) along path l is defined as follows:

VaRlp = inf{x : Pr[Rl ≤ x] ≥ p} (3)

where p ∈ (0, 1) is a threshold probability.

1The path is 106 → 1 → 2 → 7 → 17 → 19 → 28 → 34 → 39 → 47 → 55 → 52 → 53 → 48 → 51 → 63 → 67 → 71,
and the details about the Ravenna network (Bonvicini and Spadoni, 2008; Erkut and Gzara, 2008) are introduced in
Section 6.
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Table 1: Measures of hazmat transport risk along path l. E[Rl] and VAR[Rl] denote the expected
value and the variance of random risk Rl in path l, respectively. Note that q, k, p, and α are some
model-specific scalars.

Model Risk Measure

Expected Risk 1 TRl = E[Rl] ≈
∑

(i,j)∈Al

pijcij

Population Exposure 2 PEl =
∑

(i,j)∈Al

cij

Incident Probability 3 IPl = Pr[Rl > 0] ≈
∑

(i,j)∈Al

pij

Perceived Risk 4 PRl = E[(Rl)q] ≈
∑

(i,j)∈Al

pij(cij)
q

Maximum Risk 5 MMl = supRl = max
(i,j)∈Al

cij

Mean-Variance 5 MVl = E[Rl] + kVAR[Rl] ≈
∑

(i,j)∈Al

(pijcij + kpij(cij)
2)

Disutility 5 DUl = E[exp(kRl)] ≈
∑

(i,j)∈Al

pij [exp(kcij)− 1]

Conditional Risk 6 CRl = E[Rl|Rl > 0] ≈
( ∑

(i,j)∈Al

pijcij

)/( ∑
(i,j)∈Al

pij

)
Value-at-Risk 7 VaRlp = inf{x : Pr[Rl ≤ x] ≥ p}

Conditional VaR 8 CVaRlα =
1

1− α

∫ 1

α
VaRlp dp ≈ min

r

(
r +

1

1− α
∑

(i,j)∈Al

pij [cij − r]+
)

1 Alp (1995); 2 ReVelle et al. (1991); 3 Saccomanno and Chan (1985); 4 Abkowitz et al. (1992); 5 Erkut and Ingolfsson
(2000); 6 Sivakumar et al. (1993); 7 Kang et al. (2014b); 8 Toumazis et al. (2013)
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Definition 2 (CVaR Measure). The conditional value-at-risk (CVaR) along path l is defined as

follows:

CVaRlα =
1

1− α

∫ 1

α
VaRlp dp (4)

for a threshold probability α ∈ (0, 1).

In the context of hazmat transportation, VaR and CVaR, with a threshold probability α, become

identical to TR when α is sufficiently small, and identical to MM when α is sufficiently large

(Toumazis et al., 2013). Therefore, VaR and CVaR in hazmat transportation provide risk measures

that are more general than both the TR and MM measures.

Artzner et al. (1999) propose the four axioms for any risk measure ξ, which maps a random loss

X to a real number, to be coherent :

Translation Invariance For any real number m, ξ(X +m) = ξ(X) +m.

Subadditivity For all X1 and X2, ξ(X1 +X2) ≤ ξ(X1) + ξ(X2).

Positive Homogeneity For all λ ≥ 0, ξ(λX) = λξ(X).

Monotonicity For all X1 and X2 with X1 ≤ X2 a.s., ξ(X1) ≤ ξ(X2).

Not all risk measures in Table 1 are coherent. Most notably, VaR is not a coherent risk measure,

while CVaR is coherent (Rockafellar and Uryasev, 2002).

2.2 Limitation of CVaR: an Illustrative Example

While CVaR provides a flexible and coherent risk measure for hazmat routing to avoid high con-

sequence events, it has a limitation. For the demonstration purpose, let us consider the following

three discrete random variables:

R1 =



0 w.p. 0.900

5 w.p. 0.090

10 w.p. 0.008

50 w.p. 0.002

, R2 =


0 w.p. 0.900

5 w.p. 0.090

18 w.p. 0.010

, R3 =


0 w.p. 0.900

10 w.p. 0.090

18 w.p. 0.010

. (5)

CVaR measures for the above three random (loss) variables with various probability threshold

values can be computed as follows (Rockafellar and Uryasev, 2002; Pflug, 2000):

CVaRiα = min
r

{
r +

1

1− α
E[Ri − r]+

}
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for each i = 1, 2, 3 where [x]+ = max{0, x}. We obtain the following values:

α CVaR1
α CVaR2

α CVaR3
α

0.900 6.3 6.3 10.8

0.990 18.0 18.0 18.0

0.998 50.0 18.0 18.0

From the above, it is obvious that R2 is the most desirable, since it is a non-dominated solution for

all probability thresholds. It is, however, not straightforward to make R2 outstanding using CVaR.

When R1, R2, and R3 are compared at α = 0.990, both have the identical CVaR value, and hence

CVaR-based decision making is indifferent among the three random variables. We note, however,

that R1 has a significant loss of 50 with probability 0.002, which should be avoided. To distinguish

R1 from R2, increasing α to 0.998 does not help, because it will still remain indifferent between R2

and R3. Although R3 exhibits the same long-tail behavior as R2 does, R3 certainly has a higher

CVaR value than R2 when α = 0.900; hence R2 should be preferred to R3. As a remedy, one can

consider a weighted sum as follows:

WSl = w1CVaR
l
0.900 + w2CVaR

l
0.990 + w3CVaR

l
0.998,

which surely confirms R2 as the least risky choice for any positive weight parameters w1, w2, and

w3. For risk-aversion, it is desirable to have w1 < w2 < w3. Note that WSl may or may not be a

coherent risk measure depending on how the weight parameters are chosen. This motivates us to

consider another class of coherent risk measures that are more general than CVaR.

3 Defining the Spectral Risk Measure

To extend and generalize the notion of CVaR, we define the spectral risk measure—a coherent risk

measure first introduced by Acerbi (2002).

Definition 3 (Spectral Risk Measure). The spectral risk measure (SRM) for hazmat routing risk

along path l is defined as follows:

SRMl
φ =

∫ 1

0
φ(p)VaRlp dp (6)

where φ : [0, 1]→ R+ is a nonnegative and non-decreasing function such that∫ 1

0
φ(p) dp = 1. (7)

Note that (7) is necessary for the translational invariance condition (Acerbi, 2004).
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Figure 3: An example of the spectral risk measure (8) with n = 4

We can easily see that CVaR is a special case of spectral risk measures, by noting that

φ(p) =

1/(1− α) if p > α

0 if p ≤ α

for a certain probability α ∈ (0, 1). Since TR and MM are the same as CVaR when α is very small

and large, respectively (Toumazis et al., 2013; Toumazis and Kwon, 2016), TR and MM are also

special cases of spectral risk measures. The comparisons can be seen in Figure 2. It is illustrated

that TR covers full probability spectrum [0, 1] uniformly, while CVaR covers only [α, 1] uniformly.

A general spectrum function φ(p) may be defined to cover the full probability spectrum [0, 1], but

non-uniformly.

4 A Class of Spectral Risk Measures Applied in Hazmat Trans-

portation

In this section, we consider a special class of spectrum functions; namely, non-decreasing step

functions. We show that the spectral risk measure defined by such spectrum functions can be

represented as a weighted sum of CVaR measures.

Let us consider a spectrum function φ that is a non-decreasing, step function. In particular, we
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consider

φ(p) =



φ1, ∀p ∈ (α1, α2]

φ1 + φ2, ∀p ∈ (α2, α3]

φ1 + φ2 + φ3, ∀p ∈ (α3, α4]
...

φ1 + φ2 + . . .+ φn, ∀p ∈ (αn, 1)

(8)

where the values of φk are nonnegative constants and α1 = 0. An example of such φ is provided in

Figure 3 when n = 4.

Lemma 1 (Normalization). For a step function (8), the values of φk must satisfy
∑n

k=1 φk(1−αk) =

1.

When the spectrum function of the form (8) is used, the spectral risk measure can be simplified

as a weighted sum of CVaR measures.

Theorem 1. With (8), the spectral risk measure for path l with spectrum function φ can be written

as follows:

SRMl
φ =

n∑
k=1

φk(1− αk)CVaRlαk
(9)

where

CVaRlαk
= min

rk

[
rk +

1

1− αk

∑
(i,j)∈Al

pij [cij − rk]+
]

(10)

for all k = 1, . . . , n.

As a corollary, Theorem 2 demonstrates how to construct a weighted sum of TR, CVaR, and

MM, while maintaining coherency, as a special case of SRM.

Theorem 2. Consider a weighted sum of TR, CVaR with α, and MM for path l ∈ P as follows:

Σl = w1TR
l + w2CVaR

l
α + w3MMl (11)

where w1, w2, w3 ≥ 0 and α ∈ (0, 1). Let pl be a constant such that Pr[Rl = max(i,j)∈Al cij ] < pl < 1

and α < pl. If w1 + w2(1− α) + w3(1− pl) = 1, then the weighted sum Σl itself is an SRM.

4.1 Spectral Risk Measure Minimization

The routing problem based on the spectral risk measure is to choose a path l ∈ P that minimizes

the spectral risk measure from an origin to a destination; that is,

min
l∈P

SRMl
φ. (12)

Note that (12) is a path-based formulation for hazmat transportation, which requires path enu-

meration. Instead of the path-based formulation, we present an arc-based formulation that can
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represent all feasible paths implicitly using flow conservation constraints. Let us define:

Ω ≡
{
x :

∑
(i,j)∈A

xij −
∑

(j,i)∈A

xji = bi ∀i ∈ N , and xij ∈ {0, 1} ∀(i, j) ∈ A
}

where the parameter bi has the following values:

bi =


1 if i =origin

−1 if i =destination

0 otherwise

We obtain the following results:

Theorem 3. The hazmat routing problem with SRM (12) is equivalent to:

min
l∈P

SRMl
φ = min

r

[ n∑
k=1

φk(1− αk)rk + z(r)

]
(13)

where z(r) is obtained by a shortest path problem

z(r) = min
x∈Ω

∑
(i,j)∈A

{ n∑
k=1

φkpij [cij − rk]+
}
xij (14)

and r = [r1, . . . , rn]> ∈ Rn.

With Theorem 3, we can solve the routing problem (12) by searching the space of r. With each

search of r, we can obtain the path and its spectral risk measure value by solving a shortest-path

problem (14). It is, however, inefficient to search r within Rn when the dimension n is large. We

provide useful results to reduce the searching efforts for r.

Lemma 2 (Kang et al. 2014a). For any α ∈ (0, 1), we have VaRlα ∈ {0} ∪ {cij : (i, j) ∈ A}.

Lemma 3. For all 0 < α1 < α2 < 1, there exist minimizers rα1 = VaRlα1
and rα2 = VaRlα2

of

F lα2
(r) and F lα2

(r), respectively, such that rα1 ≤ rα2 where

F lα(r) = r +
1

1− α
∑

(i,j)∈Al

pij [cij − r]+

Therefore we only need to search for r ∈ {0}∪{cij : (i, j) ∈ A} to obtain CVaRlα. For solving the

SRM minimization problem (13), Lemma 2 says that it is sufficient to search the mesh determined

by 0 and cij only, and the number of searches is (|A| + 1)n. In addition, Lemma 3 indicates that

there is no need to search any r such that rk > rk+1 for any k.

The computational method inspired by Lemmas 2 and 3 searches all valid combinations thus

guaranteeing an exact optimal solution. In addition, we can also consider a mixed integer linear
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programming (MILP) reformulation of (13) after linearization, and use an optimization solver for

a solution.

4.2 MILP Reformulation

The SRM minimization model (13) can be reformulated as a mixed integer linear programming

(MILP) problem. We introduce new continuous variables yijk. When xij are binary, we observe

yijk = [cij − rk]+xij = max{cij − rk, 0}xij = max{cijxij − rk, 0}.

Therefore, we obtain the following equivalent formulation:

min
l∈P

SRMl
φ = min

r,x,y

[ n∑
k=1

φk(1− αk)rk +
∑

(i,j)∈A

n∑
k=1

φkpijyijk

]
(15)

subject to

x ∈ Ω

xij ∈ {0, 1} ∀(i, j) ∈ A

yijk ≥ cijxij − rk ∀(i, j) ∈ A, k = 1, . . . , n

yijk ≥ 0 ∀(i, j) ∈ A, k = 1, . . . , n.

The computational time for both approaches—the exact search method based on Lemmas 2

and 3 and any exact algorithms for solving the MILP problem (15)—increases exponentially as n

increases.

4.3 A Multi-dimensional Cyclic Coordinate Search Method with Mapping

We propose a heuristic search algorithm to find a quality solution more efficiently. The algorithm

still utilizes the results from Lemmas 2 and 3 but we only need to evaluate a very limited number

of combinations of {0} ∪ {cij : (i, j) ∈ A} values in ascending order of r. It is a modification of

the multi-dimensional cyclic coordinate search algorithm by mapping the infeasible points to the

feasible region. For each dimension, we use a line search method. The algorithm is summarized in

Algorithm 1.

The definition of z(r) is provided in (14) and the function value can be obtained by solving a

shortest path problem for any given r value. To find the minimum on each dimension in Step 2, we

solve the shortest path problem only when the first component of the objective
∑n

k=1 φk(1−αk)rtk
is smaller than the current best minimum. Furthermore, we can utilize a line search algorithm such

as golden section search on all the values in {0}∪{cij : (i, j) ∈ A} to speed up the solution process.

The above algorithm obtains the minimum value by searching each dimension sequentially, while

enforcing the ascending order of r. This is realized by mapping a search point to the diagonal

direction when it surpasses the diagonal line. Since this algorithm does not guarantee the global

11



Algorithm 1 A Multi-dimensional Cyclic Coordinate Search Method with Mapping for A Class
of SRM Hazmat Routing Problems

1: Let Z = +∞. Sample an initial solution r0 uniformly from {0} ∪ {cij : (i, j) ∈ A} and sort in
ascending order. Let rc = r0, rl = r0.

2: Let k = 1 and go to Step 3.
3: Find the value λk ∈ {0} ∪ {cij : (i, j) ∈ A} such that the objective z(rt) is minimized where

rtm =

{
rcm, if rcm < λk,m < k or rcm > λk,m > k

λk, otherwise,
∀m = 1, . . . , n.

Let rc = rt and go to Step 4.
4: If k < n, let k = k + 1 and go to Step 3; otherwise go to Step 5.

5: If rc equals rl, let Z =
n∑
k=1

φk(1 − αk)rck + z(rc) and terminate. Otherwise, let rl = rc and go

to Step 2.

optimality, we may begin with multiple initial points to ensure the quality of the final solution.
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Figure 4: Search processes

Examples of the search process for OD pair (1,84) in the Buffalo network (Toumazis and
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Kwon, 2016) with two dimensions are shown in Figure 4. In this example, we used n = 3,

α2 = 0.999970, α3 = 0.999985, and φ1 = 0, φ2 = 22222.22, φ3 = 22222.22. Figure 4a shows

the algorithm process without hitting the diagonal line while Figure 4b demonstrates one with

searching the direction on the diagonal line. For the same starting point as in Figure 4b, Figure 4c

shows the search process with a traditional multi-dimensional cyclic search without enforcing the

ascending order of r. By comparing Figures 4b and 4c, we can see how the points that surpass the

diagonal line are mapped. While both algorithms reach the same optimal solution in this example,

we also have found some examples that can obtain worse solutions in higher dimensions without

enforcing an ascending order of r . In general, enforcing an ascending order of r helps finding an

optimal solution.

5 General Spectral Risk Measures Applied in Hazmat Transporta-

tion

In this section, we consider the spectral risk measures with any general spectrum function. For any

integrable, non-decreasing spectrum function φ(·) that satisfies the normalization condition (7), we

can define the general spectral risk measure of path l based on Definition 3. While the general

spectrum function can be continuous, the underlying random risk variable in hazmat transportation

is still discrete as shown in (2).

The general SRM minimization model in hazmat transportation is represented as follows:

min
l∈P

SRMl
φ =

∫ 1

0
φ(p)VaRlp dp

=

|Al|∑
k=0

∫ πl
(k+1)

πl
(k)

φ(p)cl(k) dp

=

|Al|∑
k=0

φl(k)c
l
(k) (16)

where

πl(k) =


0, if k = 0

1−
∑|Al|

i=k p(i) if k = 1, 2, . . . , |A|

1, if k = |A|+ 1

φl(k) =

∫ πl
(k+1)

πl
(k)

φ(p) dp

and cl(0) = 0. Different from the case with step spectrum functions, the general SRM minimization

problem does not allow a transformation into an arc-based formulation.

13
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Figure 6: Power Spectrum functions

5.1 Exponential and Power Spectral Risk Measures

We introduce possible choices for the spectrum function φ(·). Inspired by popular utility functions

from expected utility theory, Dowd et al. (2008) proposed the following spectrum functions:

exponential functions φ(p) =
σe−σ(1−p)

1− e−σ
, σ > 0 (17)

power functions φ(p) = κpκ−1, κ ≥ 1 (18)

In fact, Dowd et al. (2008) proposed another class of power functions, which creates some incon-

sistencies between the risk measure value and the risk-aversion level of decision makers. Hence,

we only consider (17) and (18). Figures 5 and 6 show the exponential and power spectrum func-

tions with some parameters. Power functions exhibit similar properties as exponential functions if

parameters are large.

Wächter and Mazzoni (2013) concluded that the inconsistencies found in Dowd et al. (2008) arise

because of an inappropriate construction of the link between utility functions and the risk spectrum.

Recently, Brandtner and Kürsten (2017) proposed procedures to develop spectrum functions with

which spectral risk and expected utility users can have the same decisions. The linking procedure

to produce spectrum functions, however, requires knowledge of the risk distribution beforehand.

In this paper, the risk distribution is dependent on the path choice of hazmat transportation.

Therefore, the linking approach cannot be applied to our work.

In hazmat transportation, the distribution of risk is highly skewed to the right due to extremely

small probabilities for accidents. If we use small σ and κ in spectral risk measures, it addresses very

limited weights for catastrophic accident consequences thus having similar results to TR. To develop

appropriate spectral risk measures reflecting a risk-averse attitude towards hazmat transportation,

large parameters for exponential functions and power functions are used.

14
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5.2 Computational Methods for the General Cases

The general SRM minimization problem (16) cannot be transformed into an arc-based formulation.

While we can solve the problem directly based on the path-based formulation in (16), the path-

based formulation requires path enumeration beforehand. Once we prepare a set of feasible paths,

the spectral risk measure SRMl
φ in (16) can be computed for each path l from the set. While full

path enumeration guarantees optimality of the solution obtained, it costs enormous computational

effort as the number of available paths between an OD pair increases exponentially. A possible

method in such a case is to limit the problem to a set of geographically dissimilar paths (Akgün

et al., 2000; Kang et al., 2014a) and choose a path from those dissimilar paths.

Another approach is to approximate the general spectrum function φ(·) by a step function of

the form in (8) and solve the corresponding SRM minimization problem as discussed in Section

4. Figure 7 demonstrates an example. We can use Algorithm 1 in Section 4.3 to solve such

approximated problems. To approximate φ(·) accurately, however, we require a large number of

steps. Such an approximation is inefficient for large-scale problems, since the dimension of the

search space increases exponentially and we need to solve many shortest-path problems.

We can also combine the two ideas. The approximation based on a step function determines

probability breakpoints αk for k = 1, . . . , n and corresponding CVaR measures CVaRlαk
for path l.

For each k, we can find the minimal CVaR path, which can be done by solving a series of shortest-

path problems. For the solution procedure for finding the minimal CVaR path, see Toumazis et al.

(2013); it is a single-dimensional special case of Algorithm 1. By collecting the minimal CVaR

paths, we can form a set of paths for the given OD pair. The spectral risk measure (16) can be

computed for each path in the set, thus determining the minimal SRM path. We summarize the

two methods based on approximation in Algorithms 2 and 3.

Algorithm 2 A Multi-dimensional Cyclic Coordinate Search Method with Mapping for General
SRM Hazmat Routing Problems

1: Approximate the given spectrum function φ(·) using a step function and obtain α1, . . . , αn and
φ1, . . . , φn.

2: Solve the corresponding minimization problem using Algorithm 1 in Section 4.3.
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Algorithm 3 A CVaR Path Generation Method for General SRM Hazmat Routing Problems

1: Approximate the given spectrum function φ(·) using a step function and obtain α1, . . . , αn and
φ1, . . . , φn.

2: For each k = 1, . . . , n, solve
min
l∈P

CVaRαk

using the method in Toumazis et al. (2013), and call the obtained path lk.
3: Compute SRMlk

φ in (16) for each k = 1, . . . , n and choose the path with the minimal value.

Although we consider a limited number of paths, Algorithm 3 is expected to produce optimal

or near-optimal solutions, since minimal CVaR paths can be regarded as safe paths already and

hence are good candidates for the minimal SRM path. Furthermore, the value of n in Algorithm 3

can be made much larger than in Algorithm 2. While the computational complexity in Algorithm

1 used by Algorithm 2 increases exponentially as n increases, it increases linearly in Algorithm 3.

5.3 Optimal Approximation by Step Functions

We propose an optimization procedure to approximate the general spectrum function by a step func-

tion. Suppose we use n number of probability breakpoints α1, . . . , αn. In each interval [αk−1, αk],

we approximate φ(·) by a constant hk, as shown in Figure 8. To minimize the approximation error,

we formulate an optimization problem as follows:

min E(α, h) =
n∑
k=1

∫ αk

αk−1

(φ(p)− hk)2 dp (19)

s.t.
n∑
k=1

hk(αk − αk−1) = 1 (20)

αk−1 ≤ αk, k = 1, · · ·n. (21)

where α0 is set to zero. To make it consistent with the notation in Section 4, we can let hk =
∑k

s=1 φs

or hk − hk−1 = φk with α0 = 0 and αn = 1. Problem (19) minimizes the sum of the squared

approximation errors, while enforcing the normalization condition (7) in constraint (20).

As done similarly in Maybee et al. (1979), we obtain the following result:

Theorem 4. The optimal approximation problem (19) is equivalent to the following unconstrained

optimization problem:

min J(α) = −
n∑
k=1

[Φ(αk)− Φ(αk−1)]2

αk − αk−1
(22)

where Φ(αk) =
∫ αk

0 φ(p) dp. Once optimal αk values are determined, we can determine

hk =
Φ(αk)− Φ(αk−1)

αk − αk−1
(23)
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Figure 8: Approximating φ(p) by hk in the interval of [αk−1, αk].

for all k = 1, . . . , n.

To minimize J(α), a gradient projection algorithm is implemented. Note that ∂Φ(αk)
∂αk

= φ(αk)

and the derivative of J(α) with respect to α is

∂J(α)

∂αk
=

[Φ(αk)− Φ(αk−1)]2

(αk − αk−1)2
− 2

Φ(αk)− Φ(αk−1)

αk − αk−1
φ(αk)

− [Φ(αk+1)− Φ(αk)]
2

(αk+1 − αk)2
+ 2

Φ(αk+1)− Φ(αk)

αk+1 − αk
φ(αk) (24)

for all k = 1, . . . , n. The algorithm is summarized in Algorithm 4.

Algorithm 4 Optimization for Approximating General Spectrum Functions

1: Initialize α with α0 = 0, αn = 1 and αk ≤ αk+1 for all k = 1, . . . , n− 1. Set t← 1.

2: Compute the gradient ∂J(αt)
∂αk

using (24).

3: Let αt+1
k = αtk − θt

∂J(α)
∂αt

k
and αt+1

(k) be the k-th smallest in set {αt+1
k : k = 1, 2, . . . , n}. Set

αt+1
k ← αt+1

(k) for all k and t← t+ 1. Repeat Step 2 until ||αt − αt−1|| ≤ ε.

Step 3 guarantees αk−1 ≤ αk by sorting {αk : i = 1, 2, . . . , n} in ascending order in each

iteration. Note that ε is a small positive constant and θt is the step size at iteration t. We use the

diminishing step size rule for θt. When α is obtained, h can be calculated by (23) and φ in the

optimal step function will be given accordingly. Figure 9 shows an arbitrary step function and the

optimal solution to approximate an exponential function with σ = 104 using 3 steps.

6 Numerical Experiments

In this section, applications of the proposed model are shown. We conduct the numerical experi-

ments on the Ravenna (Bonvicini and Spadoni, 2008; Erkut and Gzara, 2008), the Albany (Kang

et al., 2014b), the Buffalo (Toumazis and Kwon, 2016) and the Barcelona (Transportation Networks

for Research Core Team, 2018) networks. Ravenna is a small town located in Italy where large
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Figure 9: Different approximations for a spectral risk function

amounts of hazardous materials are processed annually. In the Ravenna network, there are 105

nodes and 134 undirected arcs. The data set includes the length, the population that hazmat would

influence and the probability of accidents for each arc. The size of Albany and Buffalo networks are

similar to Ravenna network. The Barcelona network is large and complicated with 1020 nodes and

2522 directed arcs. For the Barcelona network, accident probabilities and accident consequences

are randomly generated.

All computational schemes introduced in this paper are coded in Python. The Gurobi solver

version 6.5.1 is used. The experiments are implemented on a 2.2 GHz Xeon processor and 32 GB

of RAM.

6.1 Comparisons for Algorithms

To show the performances of the proposed algorithms, the computation time and optimality gap

are provided in Table 2. MILP reformulation introduced in Section 4.2 is directly solved by Gurobi

while k shortest path approach generates 10,000 candidates to obtain minimal SRM path. With

the optimal step function obtained by Algorithm 4, we implement MILP reformulation, Algorithms

2 and 3 for finding a safe path in hazmat transportation. In Table 2, Algorithms 2 and 3 are always

more efficient than the k shortest path approach. For small networks such as Buffalo, Ravenna and

Albany, Algorithm 2 can still solve the SRM hazmat routing problem efficiently with extremely

small or none optimality gaps although MILP reformulation usually performs best in such cases.

Algorithms 2 and 3 can be both effective and efficient for the Barcelona network while MILP

reformulation and k shortest path are inefficient. Figure 10 shows the computation time for the

Barcelona network with various OD pairs. For this large and complicated network, we can see that

Algorithm 2 is the most efficient. Algorithm 3 also performs well in most cases.

Detailed comparions for Algorithms 2 and 3 are conducted on the Ravenna network. The

results show that exponential functions and power functions share the same optimal step function
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Table 2: Comparisons of different algorithms

Computation time in seconds (optimality gap)
Network OD pair σ MILP reformulation k shortest path Algorithm 2 Algorithm 3

Buffalo (1,15)
104 0.427 (0%) 441.890 (0%) 5.049 (0%) 175.464 (0%)
105 0.633 (0%) 438.998 (0%) 9.960 (0%) 166.252 (0%)
106 4.609 (0%) 439.000 (0%) 22.601 (2.63%) 179.742 (0%)

Ravenna (106,71)
104 21.550 (0%) 402.870 (0%) 16.161 (0%) 186.103 (0%)
105 2.920 (0%) 402.789 (0%) 10.401 (0%) 184.690 (0%)
106 1.135 (0%) 407.712 (0%) 10.451 (3.34%) 200.474 (0%)

Albany (1,15)
104 0.431 (0%) 318.061 (0%) 5.064 (0%) 150.950 (0%)
105 1.057 (0%) 318.057 (0%) 16.100 (0%) 147.464 (0%)
106 0.956 (0%) 318.038 (0%) 10.380 (0%) 158.821 (0%)

Barcelona (3,600)
104 107.204 (0%) 7988.353 (2.18%) 57.266 (0%) 2469.816 (0%)
105 39321.988 (0%) 7985.875 (6.88%) 184.726 (0%) 2567.690 (0%)
106 872.329 (0%) 7984.812 (0.98%) 237.256 (0%) 2546.374 (0%)

(607,218) (54,577) (205,334) (3,486) (1,15) (71,376) (18,291) (376,17) (106,71) (3,600)
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Figure 10: Computation time for various OD pairs with Barcelona network when σ = 105
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(a) min
l∈P

SRMl
φ = 1791.507 by Algorithm 2 (b) min

l∈P
SRMl

φ = 1791.507 by Algorithm 3

Figure 11: Comparisons for Algorithm 2 and Algorithm 3 when σ = κ = 104

(a) min
l∈P

SRMl
φ = 2555.770 by Algorithm 2 (b) min

l∈P
SRMl

φ = 2555.783 by Algorithm 3

Figure 12: Comparisons for Algorithm 2 and Algorithm 3 when σ = κ = 105

approximations when σ = κ under the three alternatives. Using node 106 as an origin and node

71 as a destination, the results for the minimal SRM path in hazmat routing are shown in Figures

11, 12, and 13.

Two algorithms can have different performances for different spectral risk measures. In Figure

11, it can be seen that Algorithms 2 and 3 have the same optimal solution when σ = κ = 104. With

σ = κ = 105, Algorithm 2 yields the optimal solution while Algorithm 3 does not. Algorithm 3

provides the optimal solution while Algorithm 2 does not yield the optimal solution if σ = κ = 106.

A local optimal solution may be found by Algorithm 2 despite a full path set based on the arc-based

formulation. On the other hand, Algorithm 3 cannot guarantee the optimal solution because the

optimal is chosen from a limited number of path candidates. While there exist some differences in

the optimal path solutions, both algorithms obtain similar SRM values.

Both algorithms have their advantages and limitations. If the number of steps for approximation
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Figure 13: Comparisons for Algorithm 2 and Algorithm 3 when σ = κ = 106

is very small, Algorithm 2 is recommended. Although losing accuracy in the objective function,

the arc-based formulation in Algorithm 2 explores all feasible paths while CVaR path generation in

Algorithm 3 produces only a few dissimilar paths when n is small. Algorithm 2 is inefficient if the

spectrum function involves a large n. In addition, it can terminate at some local optimal solutions

by Algorithm 1 given too many steps of φ(·). Algorithm 3 is recommended with a large number of

steps due to its linear computation complexity in n. Both algorithms can be implemented when a

reasonable number of steps is chosen to approximate the general φ(·).

6.2 Comparisons of Risk Measures and Limitation of CVaR

In the existing literature for hazmat transportation, there are various risk measures including TR,

MM and CVaR. Table 3 shows a comparison of paths produced by different models in the Ravenna

network. We can find that only the CVaR model with confidence level of 0.999999 and the SRM

minimization model with σ = 106 generate the same path; i.e., l3 = l6. The CVaR model with

extremely high confidence levels and the SRM model with very large parameters are equivalent

because they only consider MM. Here, the MM path is different from CVaR and SRM paths with

extremely large parameters due to multiple optimal solutions aiming at MM.

Table 3: Comparisons of paths for different models in the Ravenna network. Optimal path names
are arbitrarily given for convenient explanation.

Model Optimal Path

TR lTR 106→ 1→ 2→ 7→ 17→ 19→ 28→ 34→ 39→ 47→ 55→ 52→ 53→ 48→ 51→ 63→ 67→ 71

MM lMM 106→ 1→ 2→ 4→ 17→ 19→ 23→ 40→ 59→ 64→ 61→ 102→ 82→ 84→ 103→ 81→ 71

CVaR
0.9999 l1 106→ 1→ 2→ 7→ 5→ 10→ 20→ 24→ 26→ 30→ 36→ 43→ 46→ 56→ 69→ 76→ 75→ 77→ 80→ 73→ 71
0.99999 l2 106→ 1→ 2→ 4→ 17→ 7→ 5→ 3→ 6→ 11→ 14→ 98→ 31→ 45→ 54→ 62→ 78→ 74→ 76→ 75→ 77→ 80→ 73→ 71
0.999999 l3 106→ 1→ 2→ 7→ 17→ 4→ 13→ 19→ 23→ 40→ 59→ 64→ 61→ 102→ 82→ 84→ 103→ 81→ 71

SRM
104 l4 106→ 1→ 2→ 7→ 9→ 10→ 20→ 24→ 26→ 30→ 36→ 43→ 46→ 56→ 69→ 76→ 75→ 77→ 80→ 73→ 71
105 l5 106→ 1→ 2→ 7→ 5→ 3→ 6→ 11→ 14→ 98→ 31→ 45→ 54→ 62→ 78→ 74→ 76→ 75→ 77→ 80→ 73→ 71
106 l6 = l3 106→ 1→ 2→ 7→ 17→ 4→ 13→ 19→ 23→ 40→ 59→ 64→ 61→ 102→ 82→ 84→ 103→ 81→ 71
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Table 4: Comparisons of various risk measures for different models in the Ravenna network.

Model
Optimal

TRl MMl CVaRlα SRMl
σ # of arcs length

Path l (×10−4) 0.9999 0.99999 0.999999 104 105 106

TR lTR 4.07 5.23 2.32 3.85 5.23 1.95 3.60 5.19 17 24.33

MM lMM 6.28 2.60 2.22 2.60 2.60 2.05 2.56 2.60 16 39.36

CVaR
0.9999 l1 4.30 3.47 2.07 3.47 3.47 1.81 3.15 3.47 20 30.15
0.99999 l2 5.58 2.69 2.23 2.59 2.69 1.92 2.56 2.69 23 45.68
0.999999 l3 7.62 2.60 2.27 2.60 2.60 2.14 2.56 2.60 18 45.58

SRM
104 l4 4.10 3.47 2.07 3.47 3.47 1.79 3.15 3.47 20 28.64
105 l5 4.93 2.69 2.23 2.59 2.69 1.89 2.56 2.69 21 37.32
106 l6 = l3 7.62 2.60 2.27 2.60 2.60 2.14 2.56 2.60 18 45.58

For the Ravenna network, Table 4 compares TR, MM, CVaR and SRM models with respect

to various risk measures, the number of arcs and the length of the path. We can re-confirm the

limitation of CVaR, observed in the small example in Section 2.2, from the results in Table 4. For

the minimization problem with CVaR0.9999, path l1 is chosen by algorithm, although l4 also is an

optimal solution for the same problem. Path l4, however, has not only a smaller TR measure value,

but also a shorter length than l1. When SRM model with σ = 104 is used, l4 is chosen. Similarly,

we can also compare l2 and l5. While both l2 and l5 have the same CVaR0.99999 value, path l5 has

smaller TR measure value and shorter length.

When l1 and l4 are compared, the only difference is that l1 utilizes link 7 → 5 → 10, while l4

uses link 7→ 9→ 10. In these two subpaths, the accident probability and the accident consequence

in each link are shown below:

(7, 5) (5, 10) (7, 9) (9, 10)

pij(×10−5) 1.23 1.42 0.61 0.54

cij 1.13 1.42 1.54 0.87

Note that in both l1 and l4, we have VaR0.9999 = 1.57. In the evaluation fo CVaR0.9999, any link

consequence that is smaller than VaR0.9999 is cut off, or ignored, as we can see from Theorem 5—

note E[X − r]+ in (25). Therefore, all four above links have no impact on CVaR0.9999. However, we

should note that the risk in 7→ 9→ 10 has the smaller expected value than in 7→ 5→ 10; hence

l4 should be preferred to l1.

Similarly, when l2 and l5 are compared, the only difference is that l2 utilizes link 2→ 4→ 17→
7, while l5 directly moves 2→ 7. The probabilities and consequences respectively are

(2, 4) (4, 17) (17, 7)

pij(×10−5) 3.68 3.65 3.70

cij 0.58 1.88 0.69

Since VaR0.99999 = 2.46 in path l2, all above three links are cut off in computing CVaR0.99999. Hence,
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Table 5: Multiple optimal paths for CVaR0.999995 in the Barcelona network for OD pair (3, 600).
Optimal path names are arbitrarily given for convenient explanation.

Model Optimal Path l TRl VaRl0.999995 CVaRl0.999995 # of arcs

CVaR

lB1 0.0312 1.7473 3.4831 60
lB2 0.0310 1.7473 3.4831 61
lB3 0.0311 1.7473 3.4831 60
lB4 0.0309 1.7473 3.4831 61
lB5 0.0309 1.7473 3.4831 61
lB6 0.0312 1.7473 3.4831 60
lB7 0.0299 1.7473 3.4831 64

SRM lB8 0.0297 1.7473 3.4831 65

in the shortest-path sub-problem to compute CVaR0.99999, these three links are regarded as links

with zero link costs. It is evident, however, that l5 must be preferred to l2.

The paths in Table 5 are shown in Table 6 in the appendix. We find multiple optimal

CVaR0.999995 paths while SRM model can directly find lB8 with a two-step spectrum function for

α2 = 0.999995 and some 0 < φ1 < 1, φ2 = 2 · 105(1− φ1). Note that the SRM model is equivalent

to CVaR model when φ1 = 0. Given φ1 > 0, the SRM model here considers the minimum weight

average of TR and CVaR. The eight CVaR paths have significant differences in TR values among

which the minimum TR path is obtained by SRM model. For large-scale networks like Barcelona, it

is possible that there exsit multiple optimal CVaR paths. CVaR model, however, cannot distiguish

those paths in terms of other measures of interest. With proper SRM parameters, we can use the

proposed model to find the path with both minimal CVaR value and minimal TR value.

As it is demonstrated in the above cases, SRM is obviously a better decision model than CVaR,

although CVaR provides a flexible tool for risk-averse hazmat routing.

7 Concluding Remarks

To make risk-averse decisions, we consider spectral risk measures, which are coherent and more

general than other well-known risk measures such as conditional value-at-risk. In the context of

hazmat transportation, we apply spectral risk measures to the routing problem. We propose the

SRM minimization model for a safe path and develop an efficient algorithm for a special class

of spectral risk measures. For the general spectral risk measures, it is difficult to transform the

path-based formulation to an arc-based formulation. Hence, we propose two algorithms for general

spectral risk routing problems. In addition, various spectrum functions are discussed to provide

some guidance for generating safe paths in hazmat transportation. The performance of algorithms

are compared for various networks to show the effectiveness and efficiency of the proposed methods.

The two algorithms to obtain the general minimal SRM path are also compared in different cases. In

some situations, there exist differences in the optimal routing between the two algorithms, however
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their spectral risk measures are very close.

Through numerical examples, we have demonstrated the cases when CVaR minimization pro-

vides less desirable solutions. Often there are multiple least CVaR paths, since CVaR cuts off links

whose accident consequences are smaller than VaR. In such case, CVaR minimization algorithms

can find a path with greater expected risk values, which must be avoided. We demonstrated that

SRM can be a solution for such cases.

Although SRM demonstrate desirable properties, there still exists a limitation. In most cases, it

is unclear how the spectrum function or parameters in a spectrum function should be determined.

As in Theorem 2, we can define a special SRM as a weighted average of three popular risk measures,

namely, TR, CVaR, and MM. When a proper choice of the spectrum function is vague, such a

weighted average can serve a practical way of determining a safe route for hazmat transportation.

We propose a few avenues for future research. First, we can consider the uncertainty of data

associated with risk in hazmat routing. Since there exist few accident statistics for hazmat trans-

portation, we can incorporate data uncertainty into spectral risk measures to obtain safe paths.

Second, a network design problem addressing spectral risks can be developed. In this design prob-

lem, decision makers can introduce a road banning policy or a road pricing policy to minimize

the system-wide spectral risk measure value by considering routing behavior of hazmat carriers via

bilevel optimization as in Stackelberg games. Third, we can apply SRM to other transportation

problems. Since CVaR or related concepts, such as mean-excess measures, have been applied in

other areas of transportation (Chen and Zhou, 2010; Chen et al., 2006; Soleimani and Govindan,

2014), it will be worth studying the shortcomings of CVaR in other applications and how SRM can

be utilized.
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Appendix

We need the following theorem for proofs:

Theorem 5 (Rockafellar and Uryasev, 2002). For r ∈ R, let us define

Fα(r;X) = r +
1

1− α
E[X − r]+, (25)

where [x]+ = max(x, 0). Then the CVaR measure is equivalent to:

CVaRα(X) = min
r∈R

Fα(r;X) (26)

and

VaRα(X) = arg min
r∈R

Fα(r;X). (27)
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We provide proofs for lemmas and theorems as follows:

Proof of Lemma 1. Note that∫ 1

0
φ(p) dp

=

∫ α2

α1

φ1 dp+

∫ α3

α2

(φ1 + φ2) dp+

∫ α4

α3

(φ1 + φ2 + φ3) dp+ · · ·+
∫ 1

αn

(φ1 + φ1 + · · ·+ φn) dp

= φ1(α2 − α1) + (φ1 + φ2)(α3 − α2) + (φ1 + φ2 + φ3)(α4 − α3) + · · ·+ (φ1 + φ2 + · · ·+ φn)(1− αn)

= φ1(1− α1) + φ2(1− α2) + · · ·+ φn(1− αn)

=
n∑
k=1

φk(1− αk).

From the normalization condition (7), we obtain the lemma.

Proof of Theorem 1. From Definition 3, we have

SRMl
φ =

∫ 1

0
φ(p)VaRlp dp

= φ0

∫ 1

0
VaRlp dp+ φ1

∫ 1

α1

VaRlp dp+ φ2

∫ 1

α2

VaRlp dp+ · · ·+ φn

∫ 1

αn

VaRlp dp

=
n∑
k=1

φk(1− αk)CVaRlαk

where we use the definition of CVaR in (4). Note that CVaRlα1
is E[Rl]. Theorem 5 yields (10).

Proof of Theorem 2. From Theorems 1 and 2 of Toumazis and Kwon (2013), we have

Σl = w1TR
l + w2CVaR

l
α + w3MMl

= w1E[Rl] + w2CVaR
l
α + w3 supRl

= w1CVaR
l
α1

+ w2CVaR
l
α + w3CVaR

l
α3

where α1 = 0 and α3 = pl. By Theorem 1, we have a proof.

Proof of Theorem 3. We have

min
l∈P

SRMl
φ = min

l∈P

n∑
k=1

φk(1− αk) min
rk

[
rk +

1

1− αk

∑
(i,j)∈Al

pij [cij − rk]+
]

= min
x∈Ω

n∑
k=1

φk(1− αk) min
rk

[
rk +

1

1− αk

∑
(i,j)∈A

pij [cij − rk]+xij
]

= min
x∈Ω

n∑
k=1

min
rk

φk(1− αk)
[
rk +

1

1− αk

∑
(i,j)∈A

pij [cij − rk]+xij
]
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= min
x∈Ω

n∑
k=1

min
rk

fk(rk, x)

where

fk(rk, x) ≡ φk(1− αk)
[
rk +

1

1− αk

∑
(i,j)∈A

pij [cij − rk]+xij
]

We note that fk(rk, x) is independent from rj for all j 6= k. Therefore, introducing a vector notation

r = [r1, . . . , rn]T , we can write:

min
l∈P

SRMl
φ = min

x∈Ω
min
r

n∑
k=1

fk(rk, x)

= min
x∈Ω

min
r

n∑
k=1

φk(1− αk)
[
rk +

1

1− αk

∑
(i,j)∈A

pij [cij − rk]+xij
]

= min
x∈Ω

min
r

[ n∑
k=1

φk(1− αk)rk +
n∑
k=1

φk
∑

(i,j)∈A

pij [cij − rk]+xij
]

= min
r

[ n∑
k=1

φk(1− αk)rk + min
x∈Ω

∑
(i,j)∈A

{ n∑
k=1

φkpij [cij − rk]+
}
xij

]
(28)

When r is a given vector, we can solve the inner problem as a shortest-path problem with the cost

in each arc (i, j) as
∑n

k=1 φkpij [cij − rk]+.

Proof of Lemma 3. By letting rα1 = VaRlα1
and rα2 = VaRlα2

, the lemma is immediate from

Definition 1.

Proof of Theorem 4. We rewrite (19) as follows:

E(α, h) =

n∑
k=1

[ ∫ αk

αk−1

{φ(p)}2 dp− 2hk

∫ αk

αk−1

φ(p) dp+ h2
k(αk − αk−1)

]
. (29)

For any given αk values, we note that

∂E

∂hk
= −2

∫ αk

αk−1

φ(p) dp+ 2hk(αk − αk−1), (30)

∂2E

∂h2
k

= 2(αk − αk−1) ≥ 0 (31)

for all k = 1, . . . , n. Thus, E(α, h) is convex with respect to hk, for any given αk values. Letting
∂E
∂hk

= 0, we obtain

hk =

∫ αk

αk−1
φ(p) dp

αk − αk−1
=

Φ(αk)− Φ(αk−1)

αk − αk−1
(32)

for all k = 1, . . . , n. Besides,
∑n

k=1 hk(αk − αk−1) =
∫ 1

0 φ(p) dp = 1 satisfies (20) automatically.
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Using (32) in (29), we obtain

n∑
k=1

[ ∫ αk

αk−1

{φ(p)}2 dp− [Φ(αk)− Φ(αk−1)]2

αk − αk−1

]

=
n∑
k=1

∫ αk

αk−1

{φ(p)}2 dp−
n∑
k=1

[Φ(αk)− Φ(αk−1)]2

αk − αk−1

=

∫ 1

0
{φ(p)}2 dp−

n∑
k=1

[Φ(αk)− Φ(αk−1)]2

αk − αk−1
(33)

Since
∫ 1

0 {φ(p)}2 dp is a constant, we obtain the theorem.

Table 6: Paths in Table 5

lB1 {3, 306, 308, 307, 312, 305, 313, 90, 322, 318, 332, 851, 846, 841, 317, 27, 824, 825, 328, 320, 329, 339, 448, 338, 364, 779,
787, 769, 772, 810, 773, 796, 815, 802, 348, 444, 349, 395, 396, 464, 459, 453, 468, 483, 205, 206, 486, 545, 547, 532, 533,
15, 538, 539, 226, 235, 236, 602, 605, 593, 600}

lB2 {3, 306, 308, 307, 312, 305, 313, 90, 322, 318, 332, 851, 846, 841, 317, 27, 824, 825, 328, 320, 329, 339, 448, 338, 364, 779,
787, 769, 772, 810, 773, 796, 815, 802, 348, 444, 349, 395, 396, 464, 459, 453, 468, 483, 205, 206, 486, 545, 547, 532, 533,
15, 538, 539, 226, 235, 236, 602, 603, 606, 593, 600}

lB3 {3, 306, 308, 307, 312, 305, 313, 90, 322, 318, 332, 851, 846, 841, 317, 27, 824, 825, 328, 320, 329, 339, 448, 338, 364, 779,
783, 768, 790, 794, 809, 800, 388, 442, 443, 444, 349, 395, 396, 464, 459, 453, 468, 483, 205, 206, 486, 545, 547, 532, 533,
15, 538, 539, 226, 235, 236, 602, 605, 593, 600}

lB4 {3, 306, 308, 307, 312, 305, 313, 90, 322, 318, 332, 851, 846, 841, 317, 27, 824, 825, 328, 320, 329, 339, 448, 338, 364, 779,
783, 768, 790, 794, 809, 800, 388, 442, 443, 444, 349, 395, 396, 464, 459, 453, 468, 483, 205, 206, 486, 545, 547, 532, 533,
15, 538, 539, 226, 235, 236, 602, 603, 606, 593, 600}

lB5 {3, 306, 308, 307, 312, 305, 313, 90, 322, 318, 332, 851, 846, 841, 317, 27, 824, 825, 328, 320, 329, 339, 448, 338, 364, 779,
787, 788, 790, 794, 809, 800, 388, 442, 443, 444, 349, 395, 396, 464, 459, 453, 468, 483, 205, 206, 486, 545, 547, 532, 533,
15, 538, 539, 226, 235, 236, 602, 603, 606, 593, 600}

lB6 {3, 306, 308, 307, 312, 305, 313, 90, 322, 318, 332, 851, 846, 841, 317, 27, 824, 825, 328, 320, 329, 339, 448, 338, 364, 779,
787, 788, 790, 794, 809, 800, 388, 442, 443, 444, 349, 395, 396, 464, 459, 453, 468, 483, 205, 206, 486, 545, 547, 532, 533,
15, 538, 539, 226, 235, 236, 602, 605, 593, 600}

lB7 {3, 306, 308, 307, 312, 305, 313, 90, 322, 318, 332, 851, 846, 841, 317, 27, 824, 825, 328, 320, 329, 339, 448, 338, 364, 779,
787, 769, 772, 767, 791, 764, 780, 812, 798, 804, 458, 505, 451, 495, 511, 453, 475, 454, 455, 471, 476, 568, 530, 523, 581,
580, 578, 575, 240, 241, 538, 539, 226, 235, 236, 602, 605, 593, 600}

lB8 {3, 306, 308, 307, 312, 305, 313, 90, 322, 318, 332, 851, 846, 841, 317, 27, 824, 825, 328, 320, 329, 339, 448, 338, 364, 779,
787, 769, 772, 767, 791, 764, 780, 812, 798, 804, 458, 505, 451, 495, 511, 453, 475, 454, 455, 471, 476, 568, 530, 523, 581,
580, 578, 575, 240, 241, 538, 539, 226, 235, 236, 602, 603, 606, 593, 600}
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