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Abstract

The practice of disclosing price of electricity before consumption (dynamic pricing)

is essential to promote aggregator-based demand response in smart and connected com-

munities. However, both practitioners and researchers have expressed the fear that wild

fluctuations in demand response resulting from dynamic pricing may adversely affect

the stability of both the network and the market. This paper presents a comprehensive

methodology guided by a data-driven learning model to develop stable and coordinated

strategies for both dynamic pricing as well as demand response. The methodology is

designed to learn offline without interfering with network operations. Application of

the methodology is demonstrated using a sample 5-bus PJM network. Results show

that it is possible to arrive at stable dynamic pricing and demand response strategies

that can reduce price of electricity as well as improve network load balance.
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1. Introduction

Grid modernization will continue to enhance timely communication among the sys-

tem operator (SO), producers, and load aggregators. This will provide the infrastruc-

ture to implement dynamic pricing of electricity and increase demand response (DR)

participation. The phrase dynamic pricing has various interpretations in practice and

is used to refer to policies like critical peak pricing, real-time pricing and many vari-

ants thereof. In this paper, the term dynamic pricing is used to refer to the practice

of offering binding price of electricity just ahead of consumption. Whereas, the term

DR will refer to the load scheduling action by aggregators based on price of electricity

and preferences of the consumers in the households, businesses, and industries. DR

has long been recognized as an effective mechanism to improve functioning of power

network operation. Implementation of full fledged DR programs will require appropri-

ate pricing practices [1]. Dynamic pricing has been identified as a key to promote DR,

early in the millennium [2] and more recently [3, 4]. However, till date, dynamic pricing

policies have remained limited in the U.S. to time of use (TOU) pricing, critical peak

pricing (CPP), ex-post real time pricing (RTP), among others. Many pilot projects

across three continents in recent years have examined the benefits of dynamic pricing

on load balancing and consumer cost reduction [5, 6, 7].

Fig. 1. Dynamic pricing and DR framework

In this paper, we develop a comprehensive

methodology to design complimentary policies

for dynamic pricing decision by the system op-

erator and the DR actions by the load aggrega-

tors, while considering both market and net-

work characteristics. The framework of our

methodology is depicted in Fig. 1. The load

aggregators predict the day-ahead (DA) hourly demand by applying a Bayesian model
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on historical demand data (prior) and the most recent hourly demand (based on DR

actions). It is assumed that the load aggregators are price takers and submit the pre-

dicted DA quantities as demand bids to the system operator (SO). Using these demand

bids and the DA price bids submitted by the generators, the SO obtains a DA schedule

through a network constrained least cost dispatch approach. This yields DA hourly

quantities and corresponding LMPs. Now, before each hour of actual dispatch, the SO

determines the binding nodal dynamic prices and offers those to the aggregators. The

SO obtains these dynamic prices using an exponential learning model with two inputs:

the DA price and the previous day’s dynamic price for the current hour. The aggregators

at the load nodes decide their DR actions (consumption plan) for the current and the

remaining hours of the day using the binding dynamic prices for the current hour and

the predicted dynamic prices for the future hours, which they obtain using a regression

model. Any deviation in load consumption for the current hour from the DA demand

bid is settled using the real-time (RT) prices. It is considered that the generators sub-

mit separate RT bids to the SO, and the SO settles the market to pay the generators

for the hour using a two-settlement (DA and RT) approach. This determines the cost

to the SO for satisfying the demands. Note that, the SO’s revenue depends on the

binding dynamic prices and the correponding DR decisions by the aggregators, which

in turn determines the cost to the SO. Hence, if the dynamic prices are not designed

properly, the resulting DR actions may lead to imbalance in the revenue and cost for

the SO. Our model is designed to obtain stable dynamic pricing and demand response

policies to improve load balance and reduce cost to the consumers, while maintaining

revenue neutral status of the SO. A recent paper [8] addresses a similar problem using

a closed loop dynamical system model and derives stable ex-ante pricing strategy for

each interval of a network operation and the corresponding DR strategies. Our method-

ology offers a data-driven learning approach that is granular and can consider different
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types of load, their operating preferences, network constraints, and a two-settlement

approach for the market.

Literature shows that availability of smart technology (eg., advanced metering in-

frastructure, AMI) increases price elasticity and grid efficiency [9, 10]. Beneficial im-

pacts of dynamic pricing have been explored via seventy-four pricing experiments across

three continents during the last decade [5]. The results in these studies show that in the

presence of higher price peaks better benefits of load balancing from dynamic pricing.

It is shown in [7] that dynamic pricing can achieve a peak demand reduction of 10-14%,

customer cost reduction of 2-5%, and a social welfare increase by $141-$403 million in a

year. A study conducted in California [6] found that most consumers will benefit from

dynamic pricing, and also that low income consumers will not be impacted negatively,

a concern that was expressed earlier. The study presented in [11] claimed that a careful

design of dynamic pricing schemes is needed to increase the consumer flexibility. A

balanced RTP strategy was proposed in [12] where the consumers are offered binding

prices ahead of consumption (ex-ante prices). Need to understand consumer behavior

in a market to address volatility between the ex-ante and ex-post prices, inherent in

networks with RTP and DR, is emphasized in [13]. It was argued in [14, 15] that if the

RTP and the corresponding aggregator-guided DR strategies are not aligned properly

through design, there may be greater peaks in demand than normal condition, which

might instigate worst outcomes like blackouts.

As reported in [2], even a slight DR participation may significantly reduce the whole-

sale electricity prices. It is claimed that DR assisted balancing of consumer demand

and resulting increase in load factor will ease the burden of current practice of main-

taining peaking generation capacity at the level of 10 - 15% of the expected demand

[16]. In recent years, aggregator-guided DR has been proposed [17]. Aggregators rep-

resent interests of large groups of consumers (households, factories, and businesses) by
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monitoring and scheduling loads to minimize cost. With emerging home and building

energy management systems [18, 19], even individual consumers are being empowered

to engage in DR. Proliferation of smart grid with smart appliances will continue to

extend the potential of DR [20]. Aggregator-guided DR is claimed to improve users’

rationale in the event of price changes, however, true aggregator behavior is yet to be

investigated [21]; the authors present an iterative approach to design real time pricing

algorithms to minimize the peak-to-average demand ratio. Other approaches adopted

for aggregator coordinated DR can be found in [22, 23]. A dynamic energy manage-

ment framework to simulate DR and to estimate consumer behavior is proposed in [24].

Similar work with minimization of electricity price as a DR objective, can be found in

[25, 26]. To our knowledge, most of openly available methods for real time pricing and

DR are developed using limited history of price and consumption data. Some of the

recent pilot studies that model data to demonstrate potential DR benefits are [27, 28].

The remainder of this paper is organized as follows. The complete methodology is

described in Section 2. Section 3 contains a numerical demonstration of the method-

ology on a modified 5-bus PJM network. Concluding remarks are offered in section

4.

2. Dynamic pricing & DR Methodology

Fig. 2 shows the model elements of the dynamic pricing & DR methodology. In

what follows, we provide details of each model.

2.1. Bayesian DA demand prediction model

The aggregator at each load node submit their fixed hourly DA demand bids to SO,

which are predicted using the model given here. Let K denote the number of nodes

(or buses) in the network. At any node k ∈ {1, · · · , K} and hour t ∈ {1, · · · , 24}, let

x1,(k,t), x2,(k,t), · · · , xn,(k,t) denote the historical hourly load data for the demand random
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Fig. 2. Elements of dynamic pricing and DR methodology

variable Xk,t. We assume that this data is characterized by a normal distribution

N(µk,t, σ
2
k,t), which is thus the prior f(xk,t) for the demand Xk,t.

Let, for each hour of a day, the aggregator’s DR action yields an actual demand

denoted by yak,t. Then we can write the random variable for the actual demand generated

by DR action Y a
k,t as Y a

k,t| (Xk,t = xk,t) ∼ N
(
xk,t, σ

2
k,t

)
. We assume that the variance of

the demand resulting from DR action is same as that of the prior. Hence, the likelihood

for the observed data yak,t can be written as

L(xk,t|yak,t) = f(yak,t|xk,t) = (2πσ2
k,t)
−1/2 exp

−1

2σ2
k,t

(yak,t − xk,t)2 ∀t ∈ {1, · · · , 24},∀k ∈ {1, · · · , K}.

(1)

Using Bayes’ theorem, the posterior distribution (which is proportional to the like-

lihood times the prior) can be written as,

f(xk,t|yak,t) ∝ f(yak,t|xk,t).f(xk,t) ∝ exp
−1

2σ2
k,t

(yak,t − xk,t)2 · exp
−1

2σ2
k,t

(xk,t − µk,t)2. (2)

The posterior distribution of the normal conjugate prior is also a normal distribution,

the mean of which can be written as E
[
Xk,t|yak,t

]
= arg maxxk,t ln f(xk,t|yak,t). The pos-

terior mean can then be obtained, by equating to zero the first order partial derivative
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of the log-likelihood of f(xk,t|yak,t) with respect to xk,t, as follows:
∂ ln f(xk,t|yak,t)

∂xk,t
=

1

σ2
k,t

(yak,t − xk,t) +
−1

σ2
k,t

(xk,t − µk,t) = 0. (3)

The above yieldsE
[
Xk,t|yak,t

]
=

yak,t+µk,t

2
. Variance of the posterior distribution Var(Xk,t|yak,t)

is inverse of the Fisher information I(Xk,t|yak,t), which is obtained as,

I(Xk,t|yak,t) = −E

[
∂2 log f(xk,t|yak,t)

∂x2
k,t

]
= −

(
− 1

σ2
k,t

− 1

σ2
k,t

)
=

2

σ2
k,t

. (4)

Hence, the posterior distribution is N
(
µk,t+y

a
k,t

2
,
σ2
k,t

2

)
. The mean hourly DA predicted

demand vector for any node k is given by yk =
(
µk,1+yak,1

2
,
µk,2+yak,2

2
, . . . ,

µk,24+yak,24
2

)
. At

the end of each day, the hourly actual demands resulting from the DR actions are added

to the historical load data and are used to obtain new prior distribution parameters

(µk,t, σ
2
k,t) for the next day. Essentially, the aggregators update their prediction model

for the next day based on their DR actions today.

2.2. Day-ahead settlement model

Based on the generators’ DA supply offers (C(Pki)) and the aggregators’ DA demand

bids (yk,t), the SO solves a network constrained least cost dispatch model to obtain the

locational marginal prices (LMPs) for each node at every hour of the following day. Let

Gk represent the set of generators at node k. We assume that the generators’ supply

offer constitute quadratic functions given as C(Pki) = akiP
2
ki + bkiPki, ∀i ∈ Gk,∀k ∈

{1, · · · , K}, where Pki is real power output supplied at node k by generator i . The DA

settlement problem is formulated as a DCOPF [29] that minimizes the cost of supply

offers, while meeting the supply-demand balance and other network constraints.

min
K∑
k=1

∑
i∈Gk

akiP
2
ki + bkiPki. (5)

The dual variables from the power balance and the line flow constraints are de-

composed into three components namely, marginal cost of energy at reference buses,

marginal cost of losses, and the cost of congestion [30]. Using these, the LMPs (λk) for

all nodes are calculated. Solution of DCOPF for each hour yields λk = {λk,t}, the set
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of hourly DA LMPs for each node.

2.3. Regression model for predicting dynamic prices

The DR actions for each hour taken by the aggregators use the binding dynamic

prices for the current hour and the predicted dynamic prices for the remaining hours

of the day, which they obtain using the regression model. A piecewise linear regression

equation is developed for each load node k with hourly demand as the independent vari-

able and the corresponding cost (demand × DA price) as the dependent variable. We

use a data set containing the current DA hourly demand-price pairs (Dk) and historical

DA hourly demand-price pairs (Dh
k) for a number of days (say, H) to build the regres-

sion model. Note that Dh
k = {(yhk,t, λhk,t) : ∀h ∈ {1, 2, · · · , H},∀t ∈ {1, 2, · · · , 24}}

and Dk = (yk,t, λk,t). Considering a m piecewise components for the regression model,

we maximize a set of (up to m) affine functions by minimizing the least square. Let

U denote the (H + 1) × 24 demand-price pairs in the data set used in the regression

model. Denoting each demand-price pair as (yu, λu) for u ∈ U , we write the following

model to optimize the affine functions.

min
βi
0,β

i
1

∑
u∈U

[
max

i=1,...,m
(βi0 + βi1yu)− yuλu

]2

. (6)

The solution of the above yields an optimal set of l affine functions (l ≤ m) and the

corresponding l non-overlapping partitions of U . For more details on this approach, see

[31].

2.4. A learning model for hourly dynamic prices

The SO obtains the nodal dynamic prices for each hour of the day by applying a

learning model (as in [32]) on the previous day’s dynamic price and the DA price. Let

πk,t denote the dynamic price offered for node k at hour t, and γ > 0 denote the learning

rate. Then, using t̂ to denote the same hour t on the previous day, we write that

πk,t = γλk,t + (1− γ)πk,t̂. (7)
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2.5. A robust DR model

We first describe the types of loads that are managed by the aggregators. Loads are

either non-deferrable (fixed loads) or deferrable (shiftable and shift-adjustable loads).

Deferrable loads are managed by the aggregators based on user preferences. Load

curtailment is not considered as an option for aggregators in this model.

Non-deferrable load: These loads are fixed and have specified operation times and

energy consumption levels. Let C denote the set of load consuming entities (e.g.,

homes, businesses, and factories) managed by an aggregator. For i ∈ C, let Fi denote

the set of fixed loads and for each j ∈ Fi, fijt denotes the energy consumed during hour

t.

Deferrable load: A deferrable load is characterized by its power consumption level, total

duration of operation, and the interval(s) of time when it can be scheduled. These loads

are further classified as shiftable (that are operated with rated power and have flexible

hours of operation) and shift-adjustable (for which the power consumption levels can

be adjustable along with the hours of operation). We denote the set of shiftable loads

for load consuming entity i by Si. For load j ∈ Si, the consumption level is sij and

the length of operation is τij. The time window within which the operation can be

scheduled is [T sij, T
s
ij]. Hence, if xijt denote a binary variable indicating on/off status

of a shiftable load at time t, we can write the operating constraint as
T s

ij∑
t=T s

ij

xijt = τij, ∀i, j. (8)

The set of shift-adjustable loads for an entity i ∈ C is Ai. The rated (maximum) power

consumption per unit time of the individual loads j ∈ Ai is aij, which can be lowered

up to a prescribed threshold aij. The feasible operating time window of load j ∈ Ai is

[T ij, T ij]. Let uijt be a binary variable indicating the on/off status of j ∈ Ai at time t,

and αijt be a continuous variable indicating the level of power consumption. Then we
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can write that

aij ≤ αijt aij ≤ aij, ∀i, j, t. (9)

Denoting the total energy required to complete operation as Eij , we can write
T ij∑
t=T ij

uijt αijt aij = Eij, ∀i, j. (10)

Note the above constraint is bi-linear in uijt αijt. We linearize (10) by incorporating

uijt in (9). Hence, we have

uijt aij ≤ αijt aij ≤ uijt aij, ∀i, j, t, (11)

T ij∑
t=T ij

αijt aij = Eij, ∀i, j. (12)

Hence the total load scheduled by the aggregator at time t can be written as

yat =
∑

i∈C

[∑
j∈Fi

fijt +
∑

j∈Si
sijxijt +

∑
j∈Ai

αijt aij

]
.

The aggregator finds yat by solving an optimization model, described below, at each

node at the top of each hour. The model uses 24-hour day as the planning horizon. For

the current hour τ , based on the binding dynamic price πτ , an aggregator determines

the actual energy consumption for the current hour (yaτ ) and the planned consumption

for the remaining hours t ∈ {τ +1, · · · , 24}. The model uses the predicted values of the

dynamic prices for the remaining hours from the piecewise regression model presented

in Section 2.3. We note that these predicted values could differ from the dynamic prices

offered by SO in the remaining hours. Such price variations present a risk of ineffective

load scheduling. To reduce the impact of this risk, we adopt a robust optimization

approach.

Let πmax
t denote the chosen upper 100× (1−α)% confidence bound of the historical

values of the dynamic price for each hour t. These bounds are revised each day by

updating the data history. Let Γ denote the parameter (in percent) for the degree

of robustness, where Γ is 0% when price variations are not considered for any of the

remaining hours, and Γ is 100% when price variations are considered for all of the
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remaining hours, which yields the most conservative solution. For example, Γ = 80%

means that the model considers price variations for 0.8 × [24 − τ ] of the remaining

hours. The robust DR model is presented next. For notational simplicity, we write the

regression parameters as β0 and β1 (without their piecewise index i).

min πτy
a
τ +

24∑
t=τ+1

(β0 + β1y
a
t ) + max∑

z≤Γ,
0≤z≤1

24∑
t=τ+1

[πmax
t yat − (β0 + β1y

a
t )] z. (13)

By duality principle as described in [33], we can rewrite the objective function as

min πτy
a
τ +

24∑
t=τ+1

(β0 + β1y
a
t ) + zΓ +

24∑
t=τ+1

ζt, (14)

s.t.,

Constraints (8), (11), & (12), (15)

z + ζt ≥ πmax
t yat − (β0 + β1y

a
t ), ∀t ∈ {τ + 1, · · · , 24}, (16)

ζt ≥ 0, yat ≥ 0, ∀t ∈ {τ + 1, · · · , 24}, (17)

z ≥ 0, yaτ ≥ 0. (18)

In the above model, the numerical values of βi0 and βi1 for the decision variable yat

are obtained using minimizing piecewise linear cost functions formulation.

2.6. Real-time settlement model

Once the aggregators take DR actions, variation between the DA demand and the

actual consumption is settled by the SO using the real-time price bids in the DCOPF

model. This two-settlement process yields the integrated LMPs, which we refer to as

settled price in the numerical implementation study. Note that, the total payment

made by the SO to the generators could be different from the total revenue collected

from the aggregators. However, as demonstrated via numerical experiments, under

stable dynamic pricing and DR strategies, the average difference between the cost and

the revenue reduces to at or near zero. The SO (a non-profit agent) should neither

accumulate excess revenue nor incur deficit.
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3. Numerical implementation

In this section, we demonstrate our methodology by implementing it on a sample

network with congestion as described below. We conducted our numerical study in two

parts. First, for given load compositions and generator bids in DA and RT markets,

we determine stable dynamic pricing and DR strategies. Thereafter, we examine the

convergence of price and the corresponding load balancing profile over 24 hours, and

also analyze the impact of the percentage of deferable loads in the network on the

average dynamic price.

3.1. Sample network: A modified PJM 5-bus system

Fig. 3. Modified 5-bus PJM network

We use a minor variant of the PJM 5

bus system with 3 generators, 2 load nodes,

and 6 transmission lines as shown in Fig. 3.

The parameters a and b of the generators’

DA supply offers (see Section 2.2) are (0.009,

47), (0.007, 35), and (0.005, 10.25), represent-

ing high, medium, and low cost generators at

nodes 1, 5, and 4, respectively; correspond-

ing parameter values for the real-time bids are

(0.04, 80), (0.035, 70) and (0.03, 60). The maximum generating capacities are 2000,

2000 and 600 MW for generators at nodes 1, 4, and 5. The reactance of the transmis-

sion lines are as marked (see Fig. 3). We consider that the capacity of line connecting

buses 1 and 4 is limited to 75 MW, and the remaining lines are unconstrained. The

two load nodes are located at buses 2 and 3. In each of these load nodes, DR decisions

are made by the respective aggregators.

We make the following assumptions about the load composition of the network.
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The loads consist of entities and each entity comprises a number of households and

businesses. There are 60 and 40 entities in node 2 (managed by aggregator 1) and

node 3 (managed by aggregator 2), respectively. Each entity has non-deferrable (fixed)

and deferrable (shiftable and shift-adjustable) loads. It is assumed that distribution

of the hourly consumption levels of the fixed loads for all entities at a node can be

approximated by a normal distribution. Fig. 4 depicts the mean and the one standard

deviation confidence bounds of the hourly fixed loads at node 2. Similar load pattern

is considered for fixed loads at node 3. As seen from the figure, the time of operation

of the fixed loads are chosen to mimic the two-peak load pattern commonly observed

in power networks.

Fig. 4. Fixed load pattern for aggregator 1
at load node 2

There are three shiftable loads for each en-

tity under aggregator 1, whose consumption

levels are 2 MW/h, 3.7 MW/h and 5 MW/h.

Each of these shiftable loads runs for a to-

tal 3 hours a day, where the hours could be

non-contiguous. Shiftable load levels managed

by aggregator 2 are 1.5 MW/h, 2 MW/h, 3.7

MW/h and 5 MW/h, each with a 3-hour non-contiguous operating time. All entities

under both aggregators are considered to have two shift-adjustable loads. When op-

erating, the maximum (minimum) energy consumption levels per hour for these loads

are 1.5 (1.05) MW and 5 (3.5) MW. These loads can be run during any non-contiguous

hours of the day as long as the total consumption per day reaches 6 MWh and 20 MWh.

3.2. Discussion of numerical results

Since DA demand prediction is critical to the success of the dynamic pricing and

DR methodology, we first examine the performance of the Bayesian prediction model.

The predicted demand is used by the SO to determine the DA prices, which in turn
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Fig. 5. Performance of Bayesian model for aggregator 1 at hour 10 AM

help to yield the hourly dynamic prices. We then discuss the efficacy of the estimation

process for πmaxt , which is a key parameter for the robust DR model. In the remaining

part of this section, we discuss the evolution of the dynamic pricing and DR strategies

over the offline learning period of the methodology, followed by a brief sensitivity study.

Fig. 5 demonstrates the performance of the Bayesian model in predicting the DA

demand for aggregator 1. The model predicts hourly demands for all 24 hours, of which

the data for hour 10 AM is shown in the figure. It can be observed that during the

initial days of simulated learning, due to aggregator’s DR actions, the predicted DA

demand vary significantly from the actual demand. As the variations in actual demand

due to DR actions subside, the prediction error reduces to a very small value. A very

similar behavior is also observed for the demand prediction by aggregator 2.

Before discussing the evolution of prices and consumption pattern in the network,

we describe a key parameter of the robust DR model, πmaxt . It is the 100 × (1 −

α)% upper bound of the distribution of the historical values of dynamic prices πt, and

is the maximum possible price at a future hour t. This parameter plays a critical

role in setting the level of risk considered by the robust DR model. Hence, a proper

choice of πmaxt is essential to control how conservative we desire our DR actions to be.

Unlike robust models commonly found in the literature, we continuously update πmaxt

14



at every iteration of the offline learning using newly available dynamic price data. At

the beginning of the learning period, there is no available history of dynamic prices for

the network and hence no initial estimate of πmaxt .

Fig. 6. Trend of πmax
t at hour 11 AM

Therefore, for learning on day 1,

we generate a history by drawing

samples from a normal distribution

with the DA price of day 1 as the

mean and an assumed standard de-

viation ($4.0/MWh). The 100× (1−

α)% bound of this generated history

is considered to be the πmaxt . On day

2 onwards, the dynamic price of the

preceding day is added to the history and πmaxt is recalculated. Fig. 6 depicts the

evolution of πmaxt for an arbitrarily chosen hour (11 AM) over the days of simulated

learning. As expected, with learning, πmaxt approaches the dynamic price πt.The choice

of this initial value of standard deviation is not critical since it is updated as more data

is available with the progress of the learning process.

3.2.1. Day-ahead, dynamic, and settled prices for the sample network

The simulated learning using our methodology is continued for a sufficiently large

number of days until stable strategies arise with daily average dynamic prices sufficiently

close to the daily average settled prices (DA and RT integrated LMPs). The parameter

values used in our implementation are: α = .01, γ = 0.05, and Γ = 100%.

Fig. 7 depicts the evolution of the daily averages of day-ahead, dynamic, and settled

prices at nodes 2 and 3 for over 600 days of simulation. The simulation was run for up

to 1200 days, however, changes in prices are negligible after 600 days. As the two load

nodes have different load characteristics and the network is subjected to congestion,
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the price trajectories, as expected, are distinctly different. It can be seen from the

figure that the performance of our methodology is not dependent on the choice of the

dynamic prices for day 1. We chose, somewhat arbitrarily, identical starting dynamic

prices ($44/MWh) for both nodes.

Fig. 7. Evolution of daily average values of day-ahead,
dynamic, and settled prices

As observed, during the initial

days of learning with limited avail-

able data, the prices vary signifi-

cantly. This variation is caused by

wide alteration in DR actions. We

observed from our data, gathered

during learning, that initial varia-

tions in DR produced higher demand

peaks than usually observed in net-

works without dynamic pricing and

DR. This confirms the fear that has been expressed in the literature [14]. However, as

the offline learning of the dynamic prices continues over a sufficiently large number of

days, the SO and the aggregators are able to learn stable and consistent dynamic pricing

and corresponding DR strategies, respectively. This is manifested in the convergence of

the day-ahead, dynamic, and settled prices. For example, after learning, the standard

error (SE) between the settled and the dynamic prices reaches as low as 0.09%. Our

methodology demonstrates that a real-world power network that implements dynamic

pricing and aggregator guided demand response will not have to suffer through the

long periods of price and demand uncertainties, and it can begin its operation with

model-guided stable strategies. Table 1 shows the actual values of the stabilized hourly

prices for both nodes.
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Table 1 Hourly stabilized price for nodes 2 and 3

Node 2 (Aggregator 1) Node 3 (Aggregator 2)
Hours DAP

$/MWh
DP
$/MWh

SP
$/MWh

SP-DAP
$/MWh

SE(SP-DAP)
$/MWh

DAP
$/MWh

DP
$/MWh

SP
$/MWh

SP-DAP
$/MWh

SE(SP-DAP)
$/MWh

1 50.88 50.85 50.83 0.05560 0.12058 42.97 43.07 42.90 0.07821 0.30115
2 50.77 50.80 50.90 -0.13115 0.25232 42.90 42.91 42.93 -0.03059 0.56884
3 50.33 50.37 50.47 -0.13407 0.37648 42.50 42.57 42.72 -0.22751 0.75941
4 49.76 49.82 50.11 -0.35533 0.37592 41.97 42.01 42.05 -0.07857 0.69201
5 49.52 49.45 49.67 -0.15366 0.34717 41.78 41.96 42.10 -0.31128 0.49502
6 49.37 49.43 49.53 -0.15506 0.28856 41.66 41.62 41.63 0.03509 0.36658
7 49.29 49.21 49.30 -0.00453 0.15167 41.60 41.57 41.47 0.13486 0.28704
8 49.04 49.02 49.05 -0.01082 0.03019 41.38 41.40 41.52 -0.13367 0.06298
9 48.66 48.66 48.63 0.02757 0.07403 41.05 41.05 40.99 0.05815 0.05348
10 48.41 48.39 48.47 -0.06391 0.07190 40.84 40.85 40.88 -0.04590 0.06844
11 47.75 47.78 47.79 -0.03892 0.02081 40.29 40.30 40.35 -0.06450 0.04862
12 47.09 47.10 47.09 -0.00015 0.01648 39.71 39.72 39.71 -0.00124 0.00496
13 48.36 48.36 48.35 0.00215 0.00998 40.74 40.74 40.74 0.00064 0.00237
14 49.25 49.25 49.25 0.00018 0.00884 41.55 41.54 41.55 0.00023 0.00326
15 49.07 49.08 49.07 0.00411 0.00966 41.39 41.38 41.39 0.00003 0.00260
16 49.17 49.18 49.18 -0.00250 0.00929 41.47 41.47 41.47 0.00014 0.00111
17 46.21 46.21 46.22 -0.01254 0.02249 38.96 38.96 38.94 0.01301 0.01783
18 46.18 46.17 46.17 0.00922 0.02895 38.93 38.92 38.93 0.00056 0.00252
19 46.18 46.18 46.19 -0.00821 0.02777 38.93 38.94 38.93 0.00046 0.00374
20 46.12 46.12 46.12 0.00187 0.01223 38.88 38.89 38.88 0.00022 0.00351
21 45.99 45.99 45.98 0.00098 0.01007 38.76 38.77 38.76 0.00212 0.01671
22 45.94 45.94 45.94 0.00144 0.00707 38.72 38.72 38.72 0.00171 0.00194
23 45.92 45.92 45.92 -0.00045 0.00626 38.71 38.71 38.71 0.00210 0.00339
24 45.91 45.91 45.91 -0.00059 0.00224 38.70 38.70 38.70 0.00074 0.00044
Note: DAP - DA price; DP - Dynamic price; SP - Settled price

3.2.2. Load distribution at the nodes resulting from DR

Influence of dynamic pricing and corresponding DR actions on the daily demand

patterns and load factors at the two load nodes are depicted in Fig. 8. The plots on

the left exhibit the initial ad-hoc demand patterns that are simulated to mimic the two

peak demand patterns observed in real networks. Bars represent the fixed load. The

red dotted line represents the ad-hoc total demand pattern combining the fixed and

deferrable loads. The stable demand pattern achieved using DR is shown by the blue

dotted line. Clearly, the deferrable portion of the initial demand pattern is redistributed

from high to low demand periods by the DR actions, yielding a lower PAR (peak to

average ratio) value. The plots on the right demonstrate the evolution of the load

factor (ratio of average load to maximum load of a day) over the learning period. It is

considered in the sample network problem that between 10% to 15% of its daily loads
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Fig. 8. Load pattern and corresponding load factors

are deferrable. Despite the small proportion of deferrable loads, due to the fluctuations

in the DR actions in the initial learning stages, the load factors are at very low values

near 0.55. As the learning progresses and the DR actions stabilize, the load factors

improve to near 0.9.

3.2.3. Sensitivity of the proportion of deferrable loads

We studied the impact of the percentage of deferrable loads in the network on the

average daily dynamic price and the load factor. Table 2 shows that even for a small

level of deferrable load (5 - 7 %), a stable dynamic pricing and DR strategy improves

the load factor by about 10% compared to the scenario with no DR. Also, the load

factor and price improves with the increase in the percentage of deferrable loads. This

shows that both power networks as well as the consumers could benefit by being more

flexible, i.e., designating more of their loads as deferrable.
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Table 2 Effect of the level of deferrable load on load factor and average dynamic price

Node 2 (Aggregator 1) Node 3 (Aggregator 2)
% of Deferrable load
participation

Load factor Avg.Dynamic
price $/MWh

Load factor Avg.Dynamic
price $/MWh

0 (no DR) 0.7678 - 0.7109 -
5-7 0.8588 48.47 0.806 40.92
10-12 0.9192 48.24 0.8607 40.75
14-16 0.946 48.16 0.87331 40.75

4. Conclusions

This paper presents a new data driven offline methodology that simulates power

networks that operate with dynamic pricing and demand response. An application on

a congested network shows that it is possible to obtain stable strategies for dynamic

pricing and DR that can improve load balance in the network and reduce cost to the

consumers. This helps to dispel the common apprehension that dynamic pricing and DR

could increase electric power market volatility and reduce network reliability. It is also

evident from our results that it is viable for SO to offer binding dynamic prices ahead

of consumption. The methodology learns offline without disrupting actual network

operations. For any change in the network configuration and other parameters (e.g.,

DA and RT price bids), the simulation can be rerun and new strategies can be learned.

The sensitivity analysis shows that there is a financial motivation for the consumers

to designate more of their loads as deferrable, as DR yields lower average prices of

electricity.

Examination of the Bayesian demand prediction model (Fig. 5) shows that it is able

to incorporate varying demand from DR actions in the learning process and improve its

prediction to reduce forecasting error. In addition to effective demand forecasting, the

other aspect of our methodology that helps the dynamic prices to reach stable values is

the evolution of the πmaxt term in the robust DR model (see Fig. 6). A game theoretic

optimization approach to obtain stable dynamic pricing and DR actions for a network
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can be found in [34]. The findings of our data-driven methodology is similar to that in

[34], which also obtains stable policies while maintaining the revenue neutral status of

SO, balancing network load, and reducing cost to consumers.
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