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ABSTRACT
Network users may choose non-shortest paths, when (1) they satisfice with sub-optimal routes,
or (2) they have perception errors of the decision environment. The notion of generalized
bounded rationality has been recently proposed to create a unified framework for these two
sources of behavioral uncertainty in route choices. When the notion of generalized bounded
rationality is used in robust network design problems, we obtain a bi-level optimization problem
with the min-max objective function at the upper level, with three layers of optimization in
total. In this paper, we derive equivalent single-level path-based formulations that are readily
solvable by available optimization libraries. We show how to incorporate them into robust
multi-commodity network design problems in hazardous materials transportation.

Keywords: networks and graphs; satisficing; network design; hazardous materials; bi-level
optimization
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INTRODUCTION
The route choice behavior of a driver is a fundamental and critical component of the network
design problem. With growing evidence that drivers do not necessarily utilize the shortest
or minimum cost path [1, 2], route choice models have been extensively studied and the
incorporation of route choice behaviors into network design problems is attracting more
attention [3, 4].

Bounded rationality is a major route choice model among the various ones employed.
It can be traced back to the research by Simon [5] to “make fairly drastic revision of the
rational man” notion assumed in economics. The paper recognizes the existence of satisfaction
with certain aspiration levels and the perceived subjective environment compared to the
objective environment [6] due to the complexity of information gathering and preferences to
payoffs.

Mahmassani and Chang [7] first introduced bounded rationality (BR) to transportation
research. BR assumes that drivers act as if there is an indifference band, resulting in multiple
user equilibria (UE). Considering this property, Guo and Liu [8] study the effect of opening a
bridge using bounded rationality user equilibrium (BRUE). Di et al. [9] study how BRUE
affects the Braess paradox. Furthermore, Di et al. [10] theoretically explore the properties of
BRUE under the static traffic assignment problem by dividing BRUE into multiple subsets.
In the dynamic setting, Wu et al. [11] consider BR in an urban railway network assuming
that travelers update their path only if the difference is beyond a certain value on a daily
basis. For a dynamic traffic assignment problem considering route choice and departure time
together, Szeto and Lo [12] provide a discrete time nonlinear complementarity formulation.
Han et al. [13] give a variational inequality formulation and study the existence of solution,
as well as providing three algorithms to solve the problem.

The notion of BR is also incorporated in the congestion toll pricing problem. Due to
the non-convexity and non-uniqueness of BRUE, robust approaches are used by considering
the risk preferences of the decision makers, leading to risk averse and risk prone toll pricing
models [14, 15]. Moreover, Di et al. [15] examine the topology of the BRUE set in robust
toll pricing problems and established the property in terms of existence of the solution.
Alternatively, Guo [16] shows how to use a sequence of toll regulations to achieve a unique
user equilibrium when BR bounds are homogeneous for diverse origin destination (OD) pairs
and how to reduce the BRUE set in the heterogeneous case.

The boundedness of rationality comes from two sources: (1) satisficing behavior and (2)
subjective perception error of the objective environment [17]. Most transportation research,
however, is based on the first source of bounded rationality; that is, a driver is satisfied with
a route as long as the route’s utility reaches his aspiration level. Sun et al. [17] address
bounded rationality from the second source by proposing a perception error model where
a driver perceives the link cost with error and the error belongs to a closed and bounded
set. By using certain special perception error sets, they show that optimizing with perfect
information is equivalent to satisficing with perception error. This allows the study of the two
bounded rationality sources to be unified into a single framework and motivates the definition
of generalized bounded rationality (GBR). Sun et al. [17] then show the effectiveness of GBR
in robust multi-commodity network design problems using a link-based model. Sun et al. [17]
proposed a modified iterative cutting plane algorithm based on the work of Gzara [18].
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Contributions
Our main contributions are the single-level linear optimization reformulations that are
equivalent to the link-based formulation of Sun et al. [17] for robust network design problems
incorporating GBR. The link-based formulation is bi-level in the sense that there are two
distinct groups of decision makers: a network operator (upper-level) and drivers (lower-level).
The upper-level objective has a min-max structure to make decisions robust against behavioral
uncertainty of drivers. The lower-level problem is in the form of the shortest-path problem.
The resulting problem is hence a bi-level min-max problem with three layers of optimization
in total. A key challenge in the single-level reformulations is to capture drivers’ uncertain
behavior described in the lower-level problem, while considering the min-max robust objective
function in the upper-level problem. We propose novel reformulation techniques to tackle
this challenge.

While link-based formulations require specialized algorithms such as cutting plane,
our single-level path-based reformulations are readily solvable by standard optimization
solvers such as CPLEX and Gurobi. Our path-based reformulations are more effective in
small networks and in situations that particular path sets should be chosen for the study
of network design problems. We illustrate the path-based formulations in the context of
the hazmat (hazardous materials) network design problem (HNDP) proposed by Kara and
Verter [19], in which the upper level model (government) decides which road links to close
so as to minimize risk considering that the lower level model (hazmat carriers) will choose
the minimum cost routes. Verter and Kara [20] provide a path-based model for HNDP to
allow compromise between government and the hazmat carriers, which gives insights on the
path-based formulations of GBR in the robust network design problem.

Structure of the Paper
The remainder of the paper is organized as follows. In Section 3, we give more details on how
satisficing behaviors and perception error could be unified into a general framework: GBR. In
Section 4, the general structure of robust network design problems is discussed. In Section 5,
we provide path formulations for robust network design problems considering GBR. Finally,
we give numerical results in Section 6 and a conclusion in Section 7.

SATISFICING AND PERCEPTION ERROR
In this section, we give more details on the two sources of boundedness: satisficing and
perception error; and the notion of generalized bounded rationality by Sun et al. [17].

Compared to the literature on bounded rationality in transportation research, Sun
et al. [17] study route choice behaviors by focusing on the second source of boundedness. For
a given network G(N ,A), let i ∈ N be the set of nodes and (i, j) ∈ A be the set of links.
The cost of each link (i, j) is cij. Let xij denote whether link (i, j) is chosen by the driver or
not. Then for a single origin destination (OD) pair o and d, we have

X =

{
x :

∑
(i,j)∈A

xij −
∑

(j,i)∈A

xji = bi ∀i ∈ N , xij ∈ {0, 1} ∀(i, j) ∈ A
}

(1)

where bi = 1 for i = o, bi = −1 for i = d, and bi = 0 for all other nodes i ∈ N .
Given the above definition, Sun et al. [17] introduce the following satisficing route
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choice behaviors: Additive Satisficing (A-Sat), Multiplicative Satisficing (M-Sat) and Subpath
Multiplicative Satisficing (SM-Sat).

Definition 1 (Sun et al. 17). A path is called an additive satisficing (A-Sat) path, if the
path can be represented by a vector x ∈ X such that

(A-Sat)
∑

(i,j)∈A

cijxij ≤ c0 + E (2)

where c0 is the minimum cost path utility value and E is a nonnegative constant for the
additive indifference band.

Definition 2 (Sun et al. 17). A path is called a multiplicative satisficing (M-Sat) path, if
the path can be represented by a vector x ∈ X such that

(M-Sat)
∑

(i,j)∈A

cijxij ≤ (1 + κ)c0 (3)

where κ ∈ [0, 1) is a constant for the multiplicative indifference band.

Definition 3 (Sun et al. 17). A path is called a subpath multiplicative satisficing (SM-Sat)
path with a constant κ, if every subpath of the path is an M-Sat path with the same constant
κ between the corresponding origin and destination nodes.

Then a perception error (PE) model is proposed by Sun et al. [17] as the following:

(PE) min
x∈X

∑
(i,j)∈A

(cij − εij)xij (4)

for some constant cost vector ε ∈ E . The vector ε denotes the network user’s perception error
of link cost, and the set E is the set of uncertain perception errors. From the formulation of
PE, we notice that the model is optimizing, however there is error in the subjective perception.

By comparing the satisficing route choice behaviors and the PE model, for some
special cases of E , Sun et al. [17] prove that satisfying under perfect information is equivalent
to optimizing with perception error. Particularly,

PE + EA ⇐⇒A-Sat, EA =

{
ε :

∑
(i,j)∈A

εij ≤ E, εij ≥ 0

}

PE + EM ⇐⇒M-Sat, EM =

{
ε :

∑
(i,j)∈A

εij ≤ κc0, εij ≥ 0

}

PE + EL ⇐⇒SM-Sat, EL =

{
ε : 0 ≤ εij ≤

κ

1 + κ
cij,∀(i, j) ∈ A

}
.

Based on the above, a more general framework of generalized bounded rationality
(GBR) is proposed when the perception error could be modeled by any closed and bounded
set. For example, some general sets could be:

Hybrid Error Set, EH =

{
ε :

∑
(i,j)∈A

εij ≤ E,
∑

(i,j)∈A

εij ≤ κc0, εij ≥ 0

}
, (5)
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Leader: Government
Minimize system objective
ρ

Follower: Drivers
route choices based on generalized
bounded rationality

Banning road segments

FIGURE 1: Robust Network Design Problem Structure

Box Error Set, EB =

{
ε : lij ≤ εij ≤ uij ∀(i, j) ∈ A

}
, (6)

Ellipsoidal Error Set, EE =

{
ε : ||Q−1/2ε||2 ≤ ξ

}
. (7)

After the definition of GBR, Sun et al. [17] model a link-based robust multi-commodity
network design problem to illustrate its effectiveness and utilize a cutting plane algorithm to
solve the problem. In the next section, we introduce the robust multi-commodity network
design problem.

ROBUST NETWORK DESIGN PROBLEM
The network design problem in transportation has a structure of achieving certain objectives
by anticipating and interfering the behavior of drivers, mostly route choice behaviors. Due to
this nature, a leader-follower bilevel model can be formulated to represent the problem. The
leader makes decisions to obtain its best objective by considering the follower’s route choices.
Much of the literature in the network design problem assumes drivers utilize the minimum
cost routes (either measured in distance, time etc. or a utility function considering several
factors). However, it is nearly impossible to measure the drivers’ route choices exactly. Due
to the uncertainty in routes chosen by the drivers, a robust approach could be applied to
achieve a best worst case result. Particularly, we consider network design problems in which
the leader could close certain road segments, considering boundedly rational choice of drivers.
The structure of the robust network design problem is shown in Figure 1.

We introduce the bi-level min-max link-based robust network design formulation of
Sun et al. [17]:

min
y

(
α
∑

(i,j)∈A

(1− yij) + max
ε

∑
(i,j)∈A

∑
s∈S

nsρsijx
s
ij

)
(8)

yij ∈ {0, 1} ∀(i, j) ∈ A (9)
εs ∈ Es ∀s ∈ S (10)

min
x

∑
(i,j)∈A

(cij − εsij)xsij (11)

s.t.
∑

(i,j)∈A

xsij −
∑

(j,i)∈A

xsji = bsi ∀i ∈ N (12)
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xsij ≤ yij ∀(i, j) ∈ A, s ∈ S (13)
xsij ∈ {0, 1} ∀(i, j) ∈ A, s ∈ S (14)

This problem is a bi-level optimization wherein the upper-level problem has a min-max robust
objective function. Three are three layers of optimization in total. In the upper-level problem,
the decision variable is binary yij that denotes whether link (i, j) is open when yij = 1 or
closed otherwise. For each shipment s ∈ S, the transport demand is ns and its route-choice
is made by each carrier for the shipment independently. Since the upper-level decision maker
is uncertain about the suboptimal boundedly-rational route-choice of drivers, the robust
objective function in the min-max form is considered. The link property ρsij is the measure of
per-unit disutility to the upper-level decision maker from shipment s being traveling on link
(i, j). In the upper-level objective function, the first term is added with positive constant α
to minimize the number of links to be closed. The lower-level problem (11)–(14) models the
shortest-taking behaviors of drivers under the perception error εijs and closed links yij. In
constraint (10), Es is the chosen perception error set, for which we consider EH , EB, and EE.

PATH-BASED FORMULATIONS FOR ROBUST NETWORKDESIGN PROB-
LEMS
In this section, we provide path-based reformulations that are equivalent to the link-based
bi-level network design problems (8)–(14) for certain perception error sets. In particular, we
consider EH and EB. Note that EH includes EA and EM , and EB includes EL. We present the
path-based reformulations as mixed-integer linear programming (MILP) problems that can
be solved by popular optimization solvers such as CPLEX and Gurobi. These path-based
reformulations will be especially useful when the number of available paths for each OD
pair is relatively small and when a certain set of paths needs to be studied. For example,
the decision makers want to define the path set selectively, which would be impossible for
link-based models.

In order to enumerate the paths, we adopt a loopless K shortest paths algorithm.
Particularly, we use the improved algorithm of [21] by Martins and Pascoal [22], which has
the computational complexity of O [K|N |(|A|+ |N | log |N |)] and works in both directed
and undirected graphs. By changing the stopping rule to exceeding a certain cost threshold
instead of the number of paths reaching K, we have the flexibility of generating the set of
paths.

Path-Based Formulation with EH
Before we present the path-based reformulation of the robust network design problem
considering the hybrid perception error set EH (including EA and EM), we first explore how
to obtain the general bounded rationality path set based on EH .

By the definition of the hybrid error set, we generate paths whose lengths are less
than min{c0 + E, (1 + κ)c0}. We can utilize the loopless K shortest paths algorithm with a
sufficiently larger number K. We rank the paths generated by the K loopless shortest path
algorithm by their length in ascending order. Let Ps be the path set with K loopless shortest
paths for shipment s ∈ S and let psk be the k-th path in Ps with N s

k number of links. Let
K = {1, 2, · · · , K} be the index set of the generated paths.

A key challenge is that the length of the available shortest path, c0, changes as the
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network design changes and some paths become unavailable. To handle this varying nature
of the problem, we construct a set of paths

Ψs
k =

{
p ∈ Ps : (length of p) ≤ min{csk + E, (1 + κ)csk}

}
for each k ∈ K, s ∈ S, where csk is the length of path psk.

Now we propose a path-based formulation of the robust network design problem. For
each path psk, besides its cost csk, another important path characteristic is ρsk, any measure
that the network designer wants to minimize (see Figure 1). The structure of network design
problem could be summarized as utilizing certain regulation policy (in our case, closing
certain road links) to achieve paths with minimum objective

∑
s∈S ρ

s
k while drivers will take

the routes belonging to the generalized bounded rationality path sets.
We represent each path psk by a binary flow vector xks ∈ X. Accordingly, we define

the arc set for path psk as Ask = {(i, j) ∈ A : xksij = 1}. In order to formulate the path-based
models, we define the following decision variables:

yij: binary variable indicating whether link (i, j) ∈ A is open for shipments,
Xs
k: binary variable indicating whether path psk is used for shipment s,

Zs
k: binary variable indicating whether path psk is available for shipment s.

Then we can formulate the path-based robust network design problem with EH as
follows:

min
X,y,Z

(
α
∑

(i,j)∈A

(1− yij) + max
m∈Ψs

k

∑
s∈S

∑
k∈K

nsρsmX
s
k

)
, (15)

s.t.
∑
k∈K

Xs
k = 1, ∀s ∈ S, (16)

Xs
k ≤ Zs

k, ∀s ∈ S, k ∈ K, (17)
Zs
k ≤ yij, ∀s ∈ S, k ∈ K ∪Ψs

k, (i, j) ∈ Ask, (18)

Zs
k ≥

∑
(i,j)∈As

k

yij −N s
k + 1, ∀s ∈ S, k ∈ K ∪Ψs

k, (19)

Xs
k ≥ Zs

k −
k−1∑
n=1

Zs
n, ∀s ∈ S, k ∈ K, (20)

Xs
k, Z

s
k ∈ {0, 1}, ∀s ∈ S, k ∈ K, (21)

yij ∈ {0, 1}, ∀(i, j) ∈ A. (22)

The objective (15) of the model is to minimize the worst objective value desired by the leader
among the general bounded rational path set Ψs

k while minimizing the number of closed arcs.
Constraints (16) guarantee only one path is chosen for each OD pair. Constraints (17) allow
carriers to choose a path only if it is available. Constraints (18) forbid carriers from taking
the path if any of its arcs are closed while constraints (19) allow a path to be available if all
of its arcs are open. Constraints (20) enforce that the path with the smallest index should be
chosen. Constraints (21)–(22) ensure the decision variables to be binary.
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The model (15)–(22) is a bilevel program with a min-max structure. We reformulate
it as an MILP model. Let

ρ̃sk =

{
max {ρsm : psm ∈ Ψs

k, Z
s
m = 1} , Xs

k = 1,

0, Xs
k = 0.

(23)

Then the min max structure of objective (15) can be replaced by

min
X,y,Z,ρ̃

∑
s∈S

∑
k∈K

nsρ̃sk.

In order to formulate as an MILP, equation (23) can be modeled using the following constraints:

Xs
kZ

s
mρ

s
m ≤ ρ̃sk, ∀s ∈ S, k ∈ K,m ∈ Ψs

k. (24)

Note constraints (24) are nonlinear. Letting W s
mk = Xs

kZ
s
m and W s

mk ∈ {0, 1}, we achieve a
single level MILP as follows:

min
X,y,Z,ρ̃

∑
s∈S

∑
k∈K

nsρ̃sk + α
∑

(i,j)∈A

(1− yij), (25)

(16)− (22),

W s
mkρ

s
m ≤ ρsk, ∀s ∈ S, k ∈ K,m ∈ Ψs

k, (24a)
−Xs

k +W s
mk ≤ 0, ∀s ∈ S, k ∈ K,m ∈ Ψs

k, (24b)
− Zs

m +Wmk ≤ 0, ∀s ∈ S, k ∈ K,m ∈ Ψs
k, (24c)

−Wmk + Zs
m +Xs

k ≤ 1, ∀s ∈ S, k ∈ K,m ∈ Ψs
k, (24d)

where (24a)–(24d) are the linearized constraints for (24).

Path-Based Formulation with EB
For any path in the generalized bounded rationality path set based on EB (including EL), it
needs to be a shortest path for at least one realization of EB. We note that each element εij
is constrained in EL, while the sum of εij is constrained in EH . To handle this difference, we
give a necessary and sufficient condition for obtaining this path set based on Lemma 2 of
Sun et al. [17] and Proposition 2.3 in Karaşan et al. [23].

Proposition 1. A path p with flow vector x ∈ X is a solution to the perception-error model
(4) for some ε ∈ EB if and only if it can be perceived as the shortest path when the lengths of
all arcs (i, j) ∈ A = {(i, j) ∈ A : xij = 1} are at their lower bounds cij − uij and the lengths
of all the remaining arcs are at their upper bounds cij − lij.

Now based on Proposition 1, for path p with flow vector x, by setting the lengths of
all arcs (i, j) ∈ A at their lower bounds cij − uij and the lengths of all the remaining arcs
at their upper bounds cij − lij, we can compare path p with all paths enumerated using the
K loopless shortest path algorithm to test if it is a solution to perception-error model (4)
for some ε ∈ EB. Then by doing this procedure for all the paths, we can obtain the general
bounded rationality path set with box error EB.
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In order to formulate the robust network design problem with box perception error
EB, we first rank the paths Ps we generated for each OD pair s in descending order of the
path characteristic ρsk which is of interest by the upper level objective. Let Ask be the set
of arcs belonging to path psk and Ask′ be the set of arcs belonging to path psk′ . Based on
Proposition 1, for path psk ∈ Ps we define

Lsk =
∑

(i,j)∈As
k

(csij − usij),

Lskk′ =
∑

(i,j)∈As
k∩A

s
k′

(csij − usij) +
∑

(i,j)∈As
k′\A

s
k

(csij − lsij) ∀psk′ ∈ Ps.

Lsk is the length of path psk when all its arcs are at their lower bounds and Lskk′ is the length
of path psk′ when all its arcs are at their upper bounds except the common arcs with path psk.
We then design an auxiliary matrix Φs for each shipment s ∈ S to identify paths that can be
perceived as shortest:

Φs =


φs11 φs12 · · · φs1K
...

... . . . ...
φsk1 φsk2 · · · φskK
...

... . . . ...
φsn1 φsn2 · · · φsKK

 , where φskk′ =

{
0, Lsk > Lskk′ ,

1, Lsk ≤ Lskk′ ,
∀k, k′ = 1, ..., K.

Let V s
k be a binary variable indicating whether path psk is available and included in

the general bounded rationality path set with EB for shipment s or not. We then introduce
the following proposition.

Proposition 2. Suppose that Zs
k = 1 if path psk is available and Zs

k = 0 otherwise. For any
path psk, the definition of V s

k is equivalent to the following constraints:

V s
k ≤ φskk′ + (1− Zs

k′), ∀s ∈ S, k ∈ K, k′ ∈ K, (26)

V s
k ≥

∑
k′∈K

[(φskk′ − 1)Zs
k′ ] + Zs

k, ∀s ∈ S, k ∈ K, (27)

V s
k ≤ Zs

k. ∀s ∈ S, k ∈ K. (28)

Proof. For constraints (27), we have:
1. V s

k ≥ 1 if the path is available (Zs
k = 1) and φskk′ = 1 for all the available paths

that Zs
k′ = 1. Since V s

k is binary, V s
K = 1.

2. V s
k ≥ 0 if the path is not available (Zs

k = 0). With constraints (28), V s
k = 0.

3. V s
k ≥ 0 if the path is available (Zs

k = 1) and for any available path psk′ that is
available (Zs

k′ = 1) and φskk′ = 0. With constraints (26), V s
k = 0.

From Proposition 1 and the definition of Φs, we have V s
k = 1 if φskk′ = 1 for all the

available paths that Zs
k′ = 1 and V s

k = 0 if any available path that Zs
k′ = 1 has φskk′ = 0. This

is equivalent to the above interpretation of the constraints, which completes the proof.
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Then we can formulate the robust network design problem with box error EB as
follows:

min
X,y,Z,V

∑
s∈S

∑
k∈K

nsρskX
s
k + α

∑
(i,j)∈A

(1− yij), (29)

s.t.
∑
k∈K

Xs
k = 1, ∀s ∈ S, (30)

Xs
k ≤ V s

k , ∀s ∈ S, k ∈ K, (31)

Xs
k ≥ V s

k −
k−1∑
n=1

V s
n , ∀s ∈ S, k ∈ K, (32)

Zs
k′ ≤ yij, ∀s ∈ S, k′ ∈ K, (i, j) ∈ Ask, (33)

Zs
k′ ≥

∑
(i,j)∈As

k

yij −N s
k′ + 1, ∀s ∈ S, k′ ∈ K, (34)

V s
k ≤ φskk′ + (1− Zs

k′), ∀s ∈ S, k ∈ K, k′ ∈ K, (35)

V s
k ≥

∑
k′∈K

[(φskk′ − 1)Zs
k′ ] + Zs

k, ∀s ∈ S, k ∈ K, (36)

V s
k ≤ Zs

k. ∀s ∈ S, k ∈ K, (37)
Xs
k, V

s
k ∈ {0, 1}, ∀s ∈ S, k ∈ K, (38)

Zs
k′ ∈ {0, 1}, ∀s ∈ S, k ∈ K, (39)

yij ∈ {0, 1}, ∀(i, j) ∈ A. (40)

The objective (29) of the model is to minimize the worst objective value desired by the
leader among the paths that can be regarded as shortest under perception error EB while
minimizing the number of closed links. Constraints (30) guarantee only one path is chosen
for each OD pair. Constraints (31) allow carriers to choose paths that can be perceived
as shortest while constraints (32) restrict carriers to choose the worst case (smallest index)
path. Constraints (33) forbid a carrier from taking the path if any of its arcs are closed while
constraints (34) allow a path to be available if all of its arcs are open. Constraints (35)–(37)
are from Proposition 2. Constraints (35) rule out path psk ∈ Ps if Lsk > Lsk′ for any available
paths in Ps while constraints (36) ensure path psk ∈ Ps is perceived as the shortest path if
Lsk ≤ Lsk′ for all available paths in Ps. Constraints (37) require choosing from the available
paths only. Constraints (38)–(40) ensure the decision variables are binary.

Path-Based Formulation with Both EH and EB
After providing the formulations of path-based models with EH , EB separately, we now provide
a path-based formulation considering EH and EB together with minor modification of the
path-based formulation with EB. The formulation is as the following:

min
X,y,Z,V

∑
s∈S

∑
k∈K

nsρskX
s
k + α

∑
(i,j)∈A

(1− yij),

(30)− (40),

Xs
k

∑
(i,j)∈As

k

csij ≤ V s
k′(1 + κ)

∑
(i,j)∈As

k′

csij, ∀s ∈ S, k ∈ K, k′ ∈ K, (41)
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Xs
k

∑
(i,j)∈As

k

csij ≤ V s
k′

( ∑
(i,j)∈As

k′

csij + E

)
, ∀s ∈ S, k ∈ K, k′ ∈ K. (42)

This formulation has two set of additional constraints (41) and (42) compared to the path-
based formulation with EB. Constraints (41) enforce the chosen path is lower than 1 + κ of
the path cost for all paths in the generalized bounded rationality set with EB. Constraints
(42) restrict the chosen path is lower than a constant E pluses the path cost for all paths in
the generalized bounded rationality set with EB. These additional sets of constraints enforce
the chosen path length to satisfy the hybrid bounded rationality set definition.

Path-Based Formulation with EE
The ellipsoidal set EE is somewhat similar to EH , since it does not constrain each element εij ,
but the whole vector ε collectively as in

||Q−1/2ε||2 ≤ ξ. (43)

When path p with flow vector x is a solution to the perception-error model (4) for some
ε ∈ EE, Sun et al. [17] show that∑

(i,j)∈A

cijxij ≤ c0 + ξ
√
xTQx. (44)

We can use (44) instead of min{c0 + E, (1 + κ)c0} as in the case of EH to generate sets Ψs
k.

Not all paths whose lengths satisfy (44), however, are eligible to be included in Ψs
k. Some of

them may not be perceived as the shortest path under the PE model with ε ∈ EE.
For each ε ∈ EE, a given path vector x ∈ X to be an optimal solution to PE, there

should exist a dual vector π such that

xij(cij − εij + πi − πj) = 0 ∀(i, j) ∈ A (45)
cij − εij + πi − πj ≥ 0 ∀(i, j) ∈ A (46)

Therefore (43), (45), and (46) must admit feasible ε and π for the given path vector x to
be eligible to be included in the set Ψs

k. The feasibility check may be done by a convex
optimization solver that can handle second-order constraints (43). Once the sets Ψs

k are
constructed, the formulation remains the same as in the case of EH .

AN APPLICATION IN HAZARDOUS MATERIALS TRANSPORTATION
In this section, we show an application of the proposed concept of generalized bounded
rationality in the hazmat network design problem. For the hazmat network design problem,
the current literature assumes carriers always choose the minimum cost path. However, due
to the unobservable attributes of the carriers and the lack of knowledge of how they make
route decisions, this assumption is questionable. With the notation of generalized bounded
rationality, we are able to assign route and link preferences for carriers, which could better
capture how carriers make their route decisions.

For the illustration of the application, we use the set of data from the city of Ravenna,
Italy [24]. The data consists of 105 nodes and 134 undirected arcs. Experiments are performed
using C++ and CPLEX 12.6 on a computer with a Xeon processor and 32GB memory.
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(a) K = 200, R = 842.9 (b) K = 500, R = 767.0

FIGURE 2: Solution for the PHNDP-M-Sat Model. R is the worst-case risk measure.

(a) K = 200, R = 842.9 (b) K = 500, R = 767.0

FIGURE 3: Solution for the PHNDP-SM-Sat Model. R is the worst-case risk measure.

We run experiments on two cases of the path-based hazmat network design problem
considering M-Sat (with PE set EM) driver behaviors (PHNDP-M-Sat) and SM-Sat (with
PE set EL) driver behaviors (PHNDP-SM-Sat). For illustration, we first show the results on
one OD pair. For both cases, we show the result when K = 200 and K = 500 as in Figure
2 and Figure 3. The value of R shows the risk value desired by the government (leader).
When K = 500, the result is the same with that considering all the paths (obtained in Sun
et al. [17]). As we can see, for K = 500, PHNDP-M-Sat closes one more link than the
PHNDP-SM-Sat model since SM-Sat is more restrictive than M-Sat and the GBR path set
with SM-Sat is a subset of GBR considering M-Sat. For the case of K = 200, we observe the
risk value is 9.9% higher than that of the case K = 500. This is due to the limited path size
that could be chosen by the carrier. If the government wants to limit the cost increase of the
carrier, the path-based HNDP with GBR could achieve that by using a smaller K value. This
is one advantage of the path-based models, which is the flexibility in choosing certain paths.

We also tested both the models by considering various numbers of OD pairs: 5, 10, 15
and 20. For each case, we show the results with a different number of paths: 50, 100, 150, 200
and 250. The result is shown in Table 1. The value under the “OD Num” is the risk value
considering all paths obtained in Sun et al. [17]. For each model, we record the objective risk
value, the risk gap compared to the risk value considering all paths, and the time to solve
the model in seconds. We set a time limit of 2 hours. As can be seen, when the number of
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TABLE 1: Solutions Characteristics for Path-Based Reformulations

OD Num # of Paths PHNDP-M-Sat PHNDP-SM-Sat

(Optimal Risk) Risk RiskGap% Time (s) Risk RiskGap% Time (s)

50 263.1 3.99 14.3 263.1 3.99 6.5
100 263.1 3.99 37.0 263.1 3.99 15.2

5 150 263.1 3.99 95.2 263.1 3.99 28.6
(253.0) 200 263.1 3.99 193.7 263.1 3.99 38.6

250 263.1 3.99 346.7 263.1 3.99 74.9

50 453.0 4.23 42.7 453.0 4.26 18.4
100 439.4 1.1 185.4 439.4 1.13 57.0

10 150 439.4 1.1 379.3 439.4 1.13 203.7
(434.6) 200 439.4 1.1 915.3 439.4 1.13 522.3

250 435.0 0.09 1351.8 435.0 0.12 429.0

50 919.5 2.63 85.0 916.8 2.75 29.6
100 919.4 2.62 415.6 916.7 2.73 165.7

15 150 919.4 2.62 876.5 902.7 1.17 615.9
(895.9) 200 911.3 1.72 1834.6 909.9 1.97 579.4

250 911.3 1.72 2241.2 898.5 0.69 3000.7

50 1075.2 7.56 135.8 1066.4 6.89 57.7
100 1075.2 7.56 1050.5 1063.2 6.57 281.8

20 150 1075.2 7.56 3338.1 1278.7 28.16 1084.2
(999.6) 200 1081.8 8.22 > 7200 1075.0 7.75 2314.0

250 1098.4 9.88 > 7200 1078.6 8.11 > 7200

OD pairs and paths gets larger, it grows much harder to solve the problem. In the cases we
tested, three cases are solved sub-optimally.

By observing the results of model PHNDP-M-Sat, we see as the number of paths
increases, the risk value is non-decreasing. This is intuitive as the more paths we consider,
we can include paths with lower risk values. While we might include paths with higher risk
as well, the model always restricts them from being chosen. For example, if the number
of paths considered is 100, for the 100th path, model PHNDP-M-Sat would look beyond
to find the multiplicative bounded rationality paths set for path 100 and restrict any path
with higher risk from being chosen. We also notice that even with a small number of paths,
the risk gap is relatively small. For the PHNDP-SM-Sat model, the risk trend in terms of
increasing the number of paths is different. We see that some cases with a higher number of
paths considered have higher risk gap. This is due to the strict restriction of the predefined
number of paths. For example, if the number of paths considered is 100, for the 100th
path, model PHNDP-SM-Sat assumes no paths beyond 100 would be considered. Thus with
smaller number of paths, we could potentially omit higher risk paths, resulting in smaller
risk value. In utilizing the PHNDP-SM-Sat, we should test cases whose number of paths is
sufficiently large. Thus by comparison, even though the SM-Sat definition is more restrictive
and potentially has a better interpretation, the PHNDP-M-Sat model is better in obtaining
a more robust solution.
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CONCLUSION
In this paper, we proposed path-based models for network design problems in which the
drivers are boundedly rational. Particularly, we show path-based formulations with a hybrid
perception error set EH , a box perception error set EB, the combination of EH and EB, and
an ellipsoidal perception error EE. The advantage of the path-based model is the structure
of a single MIP formulation which could be solved by readily optimization solvers and the
flexibility of defining which paths to consider, compared to the linked based model proposed by
Sun et al. [17]. Further research in this area could be applying generalized bounded rationality
with path-based models in the case of network design problems with the consideration of
congestion.
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