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Abstract

We study robust network design problems for hazardous materials transportation considering

risk uncertainty. Risk uncertainty is considered in two ways: (1) uncertainty on each link for each

shipment, and (2) uncertainty on each link across all shipments. We extend an existing heuristic

framework to solve these two robust network design problems and propose a Lagrangian relaxation

heuristic to solve subproblems within the framework. We present our computational experiences

and illustrate general insights based on real networks.
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1 Introduction

In this paper, we consider robust versions of the hazardous materials (hazmat) network design problem

(HNDP) with the design decision being that government authorities can ban certain roads from trans-

porting various hazardous materials. Kara and Verter (2004) define HNDP as follows: (1) given an

existing road network, the hazmat network design problem involves selecting the road segments that

should be closed so as to minimize total risk, and (2) the carriers will then choose the minimum cost

routes on the resulting network. Hence the government should consider the behaviour of the carriers

when designing the road network.
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Kara and Verter (2004) formulate HNDP as a bilevel model with the government as a leader in the

upper level and the carriers as followers in the lower level. They transform the bilevel model into a single

level mixed integer problem by substituting the lower level problem with its optimality conditions and

solve the single model with a standard optimization solver (CPLEX). Erkut and Alp (2007) consider

HNDP as a tree selection problem to guarantee only one route desired by the government is available

for each origin destination (OD) pair. Erkut and Gzara (2008) generalize the problem considered by

Kara and Verter (2004) to the undirected case and propose a heuristic method. They also formulate

the problem as a biobjective bilevel model to include trade-offs between risk and cost. Verter and

Kara (2008) present a path-based formulation to identify paths that are mutually acceptable by the

government and the carriers. Amaldi et al. (2011) provide an exact formulation for the HNDP and

use duality theory to transform the problem to a single level mixed integer problem. Gzara (2013)

proposes a family of valid cuts and incorporates them within an exact cutting plane algorithm to solve

the HNDP.

Besides banning certain road segments, government can also set tolls to regulate hazmat transporta-

tion. Marcotte et al. (2009) first propose the use of tolls in mitigating hazardous materials transport

risk. Wang et al. (2012) extend the approach to a dual toll pricing method to simultaneously control

both regular and hazmat vehicles to reduce risk. Bianco et al. (2015) consider toll policies to regulate

hazardous material transportation to not only minimize the total risk but also to spread the risk in

an equitable way. In order to avoid confusion, we note here that we consider only the regulation of

banning certain road segments in this paper. By default, when we mention hazmat network design

problems, we mean the hazmat network design problems with the regulation method of banning certain

road segments.

In the current literature, very few works deal with uncertainty in HNDP. Only recently, Xin et al.

(2013) consider the hazmat network design problem for risk uncertainty with interval data. However,

generally, parameters have uncertainty and ignoring uncertainty can lead to an undesirable solution.

This is especially critical in hazardous materials transportation since risk is complex due to different

weather conditions, road conditions, potential population exposed etc. Hence, dealing with uncertainty

is essential. In fact, how to measure risk is a main research topic in hazmat transportation (readers

can refer to Section 3 of Erkut et al. (2007) for a review on risk assessment). While Xin et al. (2013)

apply the maximum regret criterion on HNDP that may lead to a too conservative network design, we

consider the worst-case risk-measures with uncertainty budget for flexible decision making.

Robust optimization (Ben-Tal and Nemirovski, 1998; El Ghaoui and Lebret, 1997) is a method pro-

posed to deal with uncertainty. It has received much attention due to its tractability, conservativeness,
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probability guarantees, and flexibility. This method constructs a solution that is feasible to any real-

ization of the uncertainty in a given set and behaves well over all the likely uncertain outcomes. It does

so by solving a problem that is no harder than the deterministic problem in many cases. Generalizing

robust optimization to integer linear programming cases, Bertsimas and Sim (2003) considered robust

discrete optimization problems and network flows using a cardinality uncertainty set for cost coefficients,

and showed that those problems may be solved by enumerating a finite number of dual variable values.

Robust optimization has been utilized in many applications. In transportation, for example, ro-

bust optimization has been applied to two-stage network flow and design under demand uncertainty

(Atamtürk and Zhang, 2007), capacity expansion of network flows (Ordóñez and Zhao, 2007), network

design problem under transportation cost and demand uncertainty (Mudchanatongsuk et al., 2007), and

facility location problem for hazardous waste transportation (Berglund and Kwon, 2014). A detailed

introduction on the theory and application of robust optimization is found in Bertsimas et al. (2011).

In this paper, we examine robust versions of HNDP. Our contributions are as follows. First, we

model the risk uncertainty in the hazmat network design problem using a cardinality uncertainty set

in a robust optimization framework. Second, for large networks, we provide a Lagrangian relaxation

algorithm with projection and a Golden Section Search method to obtain solutions efficiently. While

the Lagrangian relaxation method is developed here to deal with large networks, it can be used for a

class of robust optimization problems that cannot be solved by the dual-variable enumeration method

of Bertsimas and Sim (2003). Third, we modify an existing algorithm (Erkut and Gzara, 2008) to solve

the robust hazmat network design problem.

The remainder of the paper is organized as follows. The next section introduces the deterministic

HNDP. In Section 3, we present the mathematical formulation of the robust HNDP using a cardinality

uncertainty set. Section 4 provides the existing algorithmic framework and shows how to modify this

algorithm to robust cases. In Section 5, we show how a Lagrangian heuristic and golden section search

methods can be applied to solve larger networks. Computational results are shown in Section 6. Finally,

Section 7 provides a conclusion and suggestions for future research.

2 Nominal Problem Formulation

We consider HNDP in which the government determines the available road segments by minimizing

total risk and carriers choose routes on the resulting network to minimize cost. Suppose we have a

transportation network that is defined by a graph G = (N ,A), where N denotes the set of nodes (road

intersections) and A denotes the set of arcs (road segments). HNDP involves transporting S shipments
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between different origins and destinations. For each shipment s ∈ S, ns is the corresponding number

of shipments, rijs and cijs are the risk and cost associated with arc (i, j) ∈ A. Let xijs = 1 if arc (i, j)

is used to transport shipment s and yij = 1 if arc (i, j) is open to hazmat traffic. Then the problem

can be formulated using a bilevel integer linear programming model (Kara and Verter, 2004) as

min
yij∈{0,1}

∑
(i,j)∈A

∑
s∈S

nsrijsxijs, (1)

where xijs is obtained by

min
xijs

∑
(i,j)∈A

∑
s∈S

nscijsxijs, (2)

subject to

∑
i,k∈A

xiks −
∑
k,i∈A

xkis =


+1 i = o(s)

−1 i = d(s)

0 otherwise

∀i ∈ N , s ∈ S, (3)

xijs 6 yij ∀(i, j) ∈ A, s ∈ S, (4)

xijs ∈ {0, 1} ∀(i, j) ∈ A, s ∈ S. (5)

The objective in (1) is the total risk on the entire network, which should be minimized by the

government by choosing yij values to decide open arcs. The lower level problem (2)–(5) decides the

routes with corresponding arcs xijs based on open segments. Here we assume carriers choose the

shortest (least cost) path. The objective for the lower level problem in (2) is the cost for the carriers.

Constraints (3) are the flow conservation requirements and constraints (4) restrict carriers from choosing

arcs that are not open to hazmat transportation. Note this is a formulation for directed networks. For

the undirected case, an additional constraint yij = yji for all (i, j) ∈ A should be added to the upper

level problem to ensure both arcs (i, j) and (j, i) are open to use if either direction is used for hazmat

traffic (Erkut and Gzara, 2008).

3 Robust Formulations

In this section, we first briefly introduce robust optimization theory and show how it can be applied to

avoid uncertainty. Then we propose several robust formulations for HNDP and describe their meanings.
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3.1 Robust Optimization

Suppose we model a real-world problem using optimization techniques, and the parameters in our model

are not deterministic but are estimated. Therefore we have to consider the uncertainty in our model

to be more realistic. Robust optimization is a method to deal with this uncertainty. It allows us to

construct an uncertainty set with our knowledge about the parameters. Then it generates a solution

that is feasible to any realization of the specified uncertainty set. There are many ways to construct the

uncertainty set. Here we give some details on using the cardinality uncertainty set to model uncertainty

in the cost coefficients for a combinatorial optimization problem. We consider the following nominal

problem:

min
x∈X

c>x (6)

where c>x =
∑n
j=1 cjxj and X is a feasible set defined on {0, 1}n. We consider uncertainty on the

objective coefficients. For each j ∈ N = {1, 2, · · · , n}, cj can take any value in the interval [cj , cj + dj ].

Then the robust counterpart for (6) is

min
x∈X

{
c>x+ max

{S|S⊆N,|S|6Γ}

∑
j∈S

djxj

}
. (7)

Γ in model (7) is to control the level of conservativeness in the objective. It is referred to as the budget

of uncertainty. We are interested in finding an optimal solution which optimizes against all scenarios

under which a number Γ of cost coefficients can vary in such a way as to maximally influence the

objective (Bertsimas and Sim, 2003). When Γ = 0, model (7) is equivalent to the nominal problem (6).

As Γ increases, we consider more worst cases and become more conservative in generating the robust

solution. A more explicit formulation for model (7) is as follows:

min
x∈X

{
c>x+ max

u∈U

∑
j∈N

ujdjxj

}
, (8)

where

U =
{
u :
∑
j∈N

uj 6 Γ, 0 6 uj 6 1 ∀j ∈ N
}
. (9)

An optimal solution to the inner maximization problem for (8) consists of bΓc variables equal to 1 and

one at Γ− bΓc. So set U equals set S and formulation (8) is equivalent to (7).
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3.2 Robust Hazmat Network Design Problem

Now we use the methodology introduced in Section 3.1 to formulate the robust counterpart of HNDP.

In this problem, we are particularly interested in the uncertainty in risk. In the hazmat network design

problem, there are several ways to consider uncertainty and construct the budget of uncertainty Γ.

One way to model the uncertainty is to consider the number of arcs that are subject to uncertainty

across all shipments. The risks on all arcs for different shipments are different and can take any value

in [rijs, rijs + dijs] for all (i, j) ∈ A, s ∈ S where dijs is the uncertainty upper bound. The uncertainty

budget Γ value is the sum of the number of arcs exposed to uncertainty for all shipments. We refer to

this problem as the Robust Arc-Shipment-Risk HNDP and its formulation is:

(R1) min
yij∈{0,1}

( ∑
(i,j)∈A

∑
s∈S

nsrijsxijs + max
u∈U

∑
(i,j)∈A

∑
s∈S

nsdijsuijsxijs

)
, (10)

where

U =

{
u :

∑
(i,j)∈A

∑
s∈S

uijs 6 Γ, 0 6 uijs 6 1 ∀(i, j) ∈ A, s ∈ S
}

and xijs solves the lower level problem defined by (2)–(5). This formulation is flexible to model the

uncertainty and computationally easier, but may not be as easy for decision makers to understand to

choose an appropriate Γ value. For each shipment, the route consists of a certain number of arcs and

this is the maximum number of arcs that can be considered to be exposed to uncertainty. Because

uncertainty on the unused arcs will make no difference, you have to get an idea of how many arcs could

be used for each shipment or the average number of arcs used for each shipment to decide the Γ value.

A more interpretable way to model Γ is to consider it as the number of arcs that can be subject to

uncertainty. This is meaningful and can be understood by decision makers easily but is computationally

harder. We refer to this problem as the Robust Arc-Risk HNDP and it can be formulated as follows:

(R2) min
yij∈{0,1}

( ∑
(i,j)∈A

∑
s∈S

nsrijxijs + max
u∈U

∑
(i,j)∈A

∑
s∈S

nsdijuijxijs

)
, (11)

where

U =

{
u :

∑
(i,j)∈A

uij 6 Γ, 0 6 uij 6 1 ∀(i, j) ∈ A
}

and xijs solves the lower level problem defined by (2)–(5). We assume for each arc (i, j), its associated

risk can take any value in [rij , rij + dij ] where dij is the uncertainty upper bound for each arc. Note

here we have rij instead of rijs since we consider the uncertainty budget as the number of arcs in the
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network. In this problem, we assume all shipments are homogeneous in terms of the accident risk.

This scenario can represent transferring only a single kind of hazmat and not differentiating carriers

for various OD pairs. In order to apply the model to the case of multiple kinds of hazmat, this method

can be used by assigning a Γ value to each kind of hazmat.

We can also consider the uncertainty as the number of arcs with uncertainty on each specified

shipment (route). The formulation for this problem is

(R3) min
yij∈{0,1}

( ∑
(i,j)∈A

∑
s∈S

nsrijsxijs + max
u∈U

∑
(i,j)∈A

∑
s∈S

nsdijsuijsxijs

)
, (12)

where

U =

{
u :

∑
(i,j)∈A

uijs 6 Γs, 0 6 uijs 6 1 ∀(i, j) ∈ A, s ∈ S
}

and xijs solves the lower level problem defined by (2)–(5). This formulation is only of use when

the government wants to consider the uncertainty for several chosen shipments. For example, the

government only wants to consider the shipments with very large flow and assign a specified uncertainty

level Γ for each shipment. Then for each shipment, it is the same with the robust shortest path problem

considered in Bertsimas and Sim (2003). If the number of shipments the government wants to consider

is large, it is not practical to use this formulation since deciding Γ values for each shipment is excessive.

Thus in this paper we consider only the Robust Arc-Shipment-Risk (R1) and Robust Arc-Risk (R2)

HNDPs.

By using model R1, the government can assign different risk and uncertainty values for various

shipments. Model R2 assumes shipments are homogeneous. This means that the risk and its associated

risk uncertainty are the same for all shipments. The government will not be able to consider the possible

difference of risk uncertainty due to different hazardous material types and carriers in one formulation.

Moreover, the difference of the two models lies in the interpretation of uncertainty level Γ. For model

R1, Γ is considered as the number of arcs that are subject to uncertainty over all shipments. If one

arc is considered for having uncertainty on one certain shipment, it does not affect other shipments.

However, for model R2, Γ is interpreted as the number of arcs that are subject to uncertainty in the

network. If one arc is considered for having uncertainty, it is considered for all shipments using this arc.

Thus model R1 provides a flexible way of modeling uncertainty but its uncertainty level Γ is difficult to

interpret. On the other hand, model R2 provides a model with homogeneous shipments while providing

a more interpretable meaning of uncertainty level.
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4 Heuristic Framework

In this section, we propose a heuristic solution framework that is suitable for solving the hazmat network

design problem with various risk measures, which is based on the method of Erkut and Gzara (2008).

While Erkut and Gzara (2008) consider the expected risk measure in their hazmat network design

problems, this framework can be generalized to solve the hazmat network design problem with any risk

measure.

We first discuss the method of Erkut and Gzara (2008) for a general risk measure γ(x) for traffic

pattern x. By considering risk with uncertainty as a robust risk measure, the heuristic framework is

able to solve the robust HNDPs. The method begins with the full arc set A and eliminates an arc in

each iteration. Let Ak denote the set of available arcs in the k-th iteration. We first solve the following

problem:

MinRisk(Ak) = min
x
γ(x),

subject to

∑
(i,k)∈Ak

xiks −
∑

(k,i)∈Ak

xkis =


+1 i = o(s)

−1 i = d(s)

0 otherwise

∀i ∈ N , s ∈ S,

xijs ∈ {0, 1} ∀(i, j) ∈ Ak, s ∈ S.

Let xk denote a solution of the Min Risk problem. The obtained traffic pattern xk is the desired

traffic pattern in terms of the hazmat risk and the risk measure γ. Our objective is to introduce a

network design so that the selfish hazmat carriers who minimize their own travel costs use the desired

paths described by the best traffic pattern. However, such a pattern may often not be obtainable, so

we will try to reduce the risk as much as we can.

We now introduce network design variable yk, based on xk. We let ykij = 1 and ykji = 1 if xkijs = 1

or xkjis = 1. Then we construct a new set of arcs A(yk) = {(i, j), (j, i) : ykij = 1, (i, j) ∈ A, (j, i) ∈ A}.

Given A(yk), we obtain the traffic pattern that actually describes the selfish carriers route choices by

solving the following problem

MinCost(A(yk)) = min
z

∑
s∈S

∑
(i,j)∈A(yk)

nscijzijs,
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subject to

∑
(i,k)∈A(yk)

ziks −
∑

(k,i)∈A(yk)

zkis =


+1 i = o(s)

−1 i = d(s)

0 otherwise

∀i ∈ N , s ∈ S,

zijs ∈ {0, 1} ∀(i, j) ∈ A(yk), s ∈ S,

which is a collection of shortest-path problems. We identify all solutions of the Min Cost problem, and

call the set of all solutions Zk. As Erkut and Gzara (2008) pointed out, it is possible that Zk is not a

singleton, and therefore the risk induced by the actual carriers’ traffic pattern may be as high as the

following:

MaxRisk(Zk) = max
z∈Zk

γ(z).

We let zk denote the solution, which means the traffic pattern with the highest risk among all possible

carriers’ route choices. If we compare the two solutions xk and zk, we can observe which arcs are used

in the actual carriers’ traffic pattern zk but not included in the desired pattern xk. Let us denote the

set of such arcs by Ak = {(i, j) : zkijs = 1, xkijs = 0,∀s ∈ S, (i, j) ∈ A}. We will choose an arc in Ak and

remove it from the network, i.e. close the arc to hazmat traffic.

When there is more than one element in Ak, we can choose an arc that has the biggest contribution

to increase γ. Such elimination is not guaranteed to reduce the total risk in the next iteration, but it is

a good heuristic rule. A simple rule is to choose the link with the largest risk value and we will adopt

this rule in the implementation of the heuristic algorithm.

We repeat this procedure until the lower bound of γ(zk) does not improve. The following statement

summarizes the algorithm:

Step 0. (Initialization) Set k ← 1, Ak ← A, γ0 ← ∞, and y0 ← {yij = 1 : (i, j) ∈ A}. Choose a

positive integer N , and an arc selection rule.

Step 1. (Min Risk Problem) Compute MinRisk(Ak) on the network Ak, and call the obtained min risk

traffic pattern xk. Let ykij = 1 and ykji = 1 if xkijs = 1 or xkjis = 1 for any s ∈ S, and

A(yk) = {(i, j), (j, i) : ykij = 1, (i, j) ∈ A, (j, i) ∈ A}.
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Step 2. (Min Cost Problem) Identify the set of all solutions, Zk = argMinCost(A(yk)) on the network

A(yk).

Step 3. (Max Risk Problem) Find the maximum risk value by solving MaxRisk(Zk), which is a simple

comparison, and call the maximal traffic pattern zk.

Step 4. (Stopping Criteria) If γ0 does not improve for N consecutive iterations, stop and declare y0

as the heuristic network design solution. Otherwise, do the following:

(a) If γ(zk) > γ(xk), then determine the set

Ak = {(i, j) : zkijs = 1, xkijs = 0,∀s ∈ S, (i, j) ∈ A}

and select an arc (i, j) ∈ Ak by the arc selection rule. Set Ak+1 ← Ak \ {(i, j), (j, i)},

γ0 ← min(γ0, γ(zk)), y0 ← yk and k ← k + 1, and go to Step 1.

(b) If γ(zk) = γ(xk), then declare yk as the heuristic network design solution.

There are three problems involved: Min Risk, Min Cost, and Max Risk. While the Max Risk

problem is a simple comparison, we need to discuss how to solve the Min Risk problem depending on

the risk measure of choice, γ, and how to identify all solutions of the Min Cost problems.

The Min Cost problem may have multiple minimum cost routes with different risk values. If the

heuristic framework does not consider the maximum risk route among those minimum cost routes, the

resulting traffic pattern may exhibit a higher level of risk than the Min Risk problem intended; such a

solution of HNDP is called unstable (Erkut and Gzara, 2008). The HNDP literature (Erkut and Gzara,

2008; Amaldi et al., 2011; Gzara, 2013) assumes carriers choose the worst risk route among all minimum

cost routes to guarantee that the resulting risk measure is single valued and the solution is stable. This

approach is referred to as the pessimistic formulation in bilevel optimization literature (Colson et al.,

2005; Xu and Wang, 2014). For stable solutions, we solve a Max Risk problem in each iteration to

obtain the worst risk route among the alternative optimal lower-level minimum-cost routes.

In order to solve the Max Risk problem, we need to identify all solutions of the Min Cost problem

first. We propose to slightly revise the K-shortest path algorithm of Yen (1971). Instead of stopping

after finding K paths, we stop when the cost of a new path is greater than MinCost(A(yk)). This

is possible because Yen’s algorithm finds paths in ascending order of path cost. After identifying all

minimum cost paths, we can do a simple comparison of the γ values of those paths to find MaxRisk(Zk).

Note that the original algorithm by Erkut and Gzara (2008) solves the Max Risk problems only when

the risk value by a solution of MinCost(A(yk)) is no greater than γ(zk); that is, the original algorithm
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does not find all solutions when it is unnecessary. On the other hand, in the proposed algorithm in

this paper, we always identify all solutions to track γ0 and to terminate the algorithm if it does not

improve. The proposed algorithm obtains a singleton in each step, which ensures the solution obtained

will be stable as defined in the HNDP literature. In most cases, there would only be one shortest path,

i.e. Zk is a singleton, for most realistic road networks. Note also that the original algorithm by Erkut

and Gzara (2008) requires a Mixed-Integer-Program solver for the Max Risk problem.

Now with the heuristic framework introduced above, in order to solve the robust versions of the

hazmat network design problem, we need to modify the method accordingly. First, we need to modify

the selection rule. In the heuristic framework, one common selection rule is to select the link with

largest risk rij value. For the robust versions, with the existence of risk uncertainty, we can choose the

link with the largest rij + dij value where dij is the maximum risk associated with link (i, j). We can

consider the same approach in solving the Max Risk problem. Second, in calculating the risk for the

routes chosen by the carriers, we should also consider risk uncertainty. For the cardinality uncertainty

set, we can choose Γ number of links which contribute most to the risk value. Third, since the heuristic

algorithm does not guarantee an optimal solution, we add a check to see if the obtained robust solution

has lower worst risk than the nominal solution. If not, we terminate with the nominal solution as best

incumbent or restart the algorithm with the nominal solution as the initial. Finally, we need to solve

a different Min Risk problem with a risk measure that considers robustness. Solving the Min Risk

problem with robustness consideration can be complex. Thus in the next section, we will discuss how

to solve the Min Risk problem for different robust cases.

5 Solving the Min Risk Problem

In this section, we will formulate the Min Risk problem separately for each of the Robust Arc-Shipment-

Risk and Robust Arc-Risk HNDPs. The Min Risk problem with the risk measure considering robustness

has a min-max structure and can be reformulated as a single level problem using dualization. Optimiza-

tion solvers like CPLEX can solve moderate size problems. However when solving the robust network

design problem, we need to solve the Min Risk problem for each iteration so we also provide methods

to solve the Min Risk problem more efficiently.
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5.1 Min Risk Problem for Robust Arc-Shipment-Risk HNDP (R1)

First we consider the Min Risk problem for the Robust Arc-Shipment-Risk HNDP which considers the

budget of uncertainty Γ on the number of arcs that are subject to uncertainty for all shipments. The

formulation is

min
x

max
u

∑
(i,j)∈Ak

∑
s∈S

ns(rijs + dijsuijs)xijs, (13)

subject to

∑
(i,j)∈Ak

∑
s∈S

uijs 6 Γ, : θ (14)

0 6 uijs 6 1 ∀(i, j) ∈ Ak, s ∈ S, : ρijs (15)

∑
i,k∈Ak

xiks −
∑

k,i∈Ak

xkis =


+1 i = o(s)

−1 i = d(s)

0 otherwise

∀i ∈ N , s ∈ S, (16)

xijs ∈ {0, 1} ∀(i, j) ∈ Ak, s ∈ S. (17)

This formulation can be transformed into a single level problem by using the dual of the inner

problem. However, since the uncertainty number is dependent on both arcs and shipments, we are able

to apply the method for solving robust combinatorial problems proposed by Bertsimas and Sim (2003).

First we consider only the inner maximization problem and dualize it. It then becomes

min
θ,ρ

Γθ +
∑

(i,j)∈Ak

∑
s∈S

ρijs, (18)

subject to

θ + ρijs > nsdijxijs ∀(i, j) ∈ Ak, s ∈ S,

ρijs > 0 ∀(i, j) ∈ Ak, s ∈ S,

θ > 0.

Because xijs ∈ {0, 1}, we can transform the constraints of model (18) and obtain

ρijs = max(nsdijsxijs − θ, 0) = max(nsdijs − θ, 0)xijs.
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Let X denote the set of constraints (16) and (17), then the original problem becomes

Z∗ = min
x∈X ,θ>0

Γθ +
∑

(i,j)∈Ak

∑
s∈S

nsrijsxijs +
∑

(i,j)∈Ak

∑
s∈S

max(nsdijs − θ, 0)xijs. (19)

For the notational simplicity, we introduce a tuple h = (i, j, s) and the set Hk = {(i, j, s) : (i, j) ∈

Ak, s ∈ S}. We let rh = nsrijs, dh = nsdijs, xh = xijs. Then problem (19) becomes

Z∗ = min
x∈X ,θ>0

Γθ +
∑
h∈Hk

rhxh +
∑
h∈Hk

max(dh − θ)xh. (20)

In order to solve the problem, we arrange dh in descending order and let d|Hk|+1 = 0. Now, according

to Bertsimas and Sim (2003), problem (20) can be solved by solving |Hk|+ 1 nominal problems:

Z∗ = min
l=1,··· ,|Hk|+1

Gl, (21)

where for l = 1, · · · , |Hk|+ 1,

Gl = Γdl + min
x∈X

( ∑
h∈Hk

rhxh +

l∑
h=1

(dh − dl)xh
)

and x|Hk|+1 = 0. In the Robust Arc-Shipment-Risk HNDP, the number of nominal problems needs to

be solved is |Hk| + 1 = |S| · |Ak| + 1 in each iteration k. However, in the case of large networks or a

large number of shipments, even if it is polynomially solvable, the time of solving the problem could be

excessive. Although the objective function cannot be shown to be strictly quasiconvex in general, all

of our analysis showed it to be quasiconvex with possible exceptions in the tails far from the optimal

solution. Thus it is practical to use a line search algorithm and again we always find the optimum.

Here we use a modified golden section search algorithm (Bazaraa et al., 2013) by rounding the interval

to integers. A summary of the method is shown below.

Step 0. (Initialization) Choose an allowable final length of uncertainty ∆ > 0. Let [α1, β1] be the

initial interval where α1 = 1, β1 = |S| · |Ak| + 1. Initialize η1 = bα1 + (1 − δ)(β1 − α1)c and

ξ1 = bα1 + δ(β1 − α1)c, where δ = 0.618. Evaluate Gη1 and Gξ1 , and let the iteration number

t = 1.

Step 1. If βt −αt < ∆, stop; the optimal solution lies in the interval [αt, βt]. Otherwise, if Gηt > Gξt ,

go to step 2; and if Gηt 6 Gξt , go to step 3.
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Step 2. Let αt+1 = ηt, βt+1 = βt. Furthermore, let ηt+1 = ξt, and let ξt+1 = bαt+1 + δ(βt+1 − αt+1)c.

Evaluate Gξt+1 and go to step 4.

Step 3. Let αt+1 = αt, βt+1 = ξt. Furthermore, let ξt+1 = ηt, and let ηt+1 = bαt+1 + (1 − δ)(βt+1 −

αt+1)c. Evaluate Gηt+1 and go to step 4.

Step 4. Replace t by t+ 1 and go to step 1.

5.2 Min Risk Problem for Robust Arc-Risk HNDP (R2)

Now we consider the Min Risk problem for the Robust Arc-Risk HNDP where the budget of uncertainty

is considered as how many arcs are subject to uncertainty. It can be formulated as

min
x

max
u

∑
(i,j)∈Ak

∑
s∈S

ns(rij + dijuij)xijs, (22)

subject to

∑
(i,j)∈A

uij 6 Γ,

0 6uij 6 1 ∀(i, j) ∈ Ak,

∑
i,k∈Ak

xiks −
∑

k,i∈Ak

xkis =


+1 i = o(s)

−1 i = d(s)

0 otherwise

∀i ∈ N , s ∈ S,

xijs ∈ {0, 1} ∀(i, j) ∈ Ak, s ∈ S.

This formulation can be transformed into one single model by dualizing the inner maximization

problem. Similar to the Robust Arc-Shipment-Risk HNDP (R1) case, we first consider only the inner

maximization problem:

max
u

∑
(i,j)∈A

∑
s∈S

nsdijuijxijs, (23)

subject to

∑
(i,j)∈Ak

uij 6Γ, : θ

0 6 uij 6 1 ∀(i, j) ∈Ak. : ρij
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By dualizing the inner maximization problem to an equivalent minimization problem and merging

it into problem (22), we have the single level formulation as:

min
x,θ,ρ

Γθ +
∑

(i,j)∈Ak

∑
s∈S

nsrijxijs +
∑

(i,j)∈Ak

ρij , (24)

subject to

θ + ρij >
∑
s∈S

nsdijxijs ∀(i, j) ∈ Ak, (25)

∑
i,k∈Ak

xiks −
∑

k,i∈Ak

xkis =


+1 i = o(s)

−1 i = d(s)

0 otherwise

∀i ∈ N , s ∈ S, (26)

xijs ∈ {0, 1} ∀(i, j) ∈ Ak, s ∈ S, (27)

ρij > 0 ∀(i, j) ∈ Ak, (28)

θ > 0. (29)

However, different from Robust Arc-Shipment-Risk HNDP (R1), if we perform a similar transformation

of constraint (25), it becomes ρij = max
(∑

s∈S nsdijxijs − θ
)

, which cannot be decomposed by xijs

because of the summation. Thus we cannot apply the method in Bertsimas and Sim (2003). The Min

Risk problem for Robust Arc-Risk HNDP (R2) is a mixed integer linear programming problem and has

the integer multi-commodity network flow problem form. Although it may be solved by a solver such

as CPLEX, it is difficult in general to solve large-scale networks. Also we need to solve this problem

for each iteration, so we need to consider a more efficient algorithm. In the remaining, we develop a

Lagrangian relaxation algorithm with projection.

5.2.1 Lagrangian Relaxation for the Min Risk Problem of Robust Arc-Risk HNDP

In order to solve large-scale problems, we propose a Lagrangian relaxation method. We relax constraint

(25) which is θ + ρij >
∑
s∈S

nsdijxijs, ∀(i, j) ∈ Ak. By introducing Lagrangian multiplier vector
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µ = {µij : (i, j) ∈ Ak} for constraint (25), the objective (24) becomes

Γθ +
∑

(i,j)∈Ak

∑
s∈S

nsrijxijs +
∑

(i,j)∈Ak

ρij +
∑

(i,j)∈Ak

µij

(∑
s∈S

nsdijxijs − θ − ρij
)

=

(
Γ−

∑
(i,j)∈Ak

µij

)
θ +

∑
(i,j)∈Ak

∑
s∈S

ns(rij + µijdij)xijs +
∑

(i,j)∈Ak

(1− µij)ρij . (30)

Since our problem is to minimize the risk, if Γ −
∑

(i,j)∈Ak

µij < 0, θ will go to +∞; if 1 − µij < 0, ρij

will go to +∞. This makes the objective goes to −∞. In order to get bounded results, we must have

Γ−
∑

(i,j)∈Ak

µij > 0 and 1−µij > 0 for all (i, j) ∈ Ak. These restrictions will be realized in the projection

step of our subgradient search algorithm which we will discuss in Section 5.2.3. If Γ −
∑

(i,j)∈Ak

µij > 0

and 1 − µij > 0 for all (i, j) ∈ Ak, we will have θ = 0 and ρij = 0 for all (i, j) ∈ Ak since it is a

minimization problem. Then the objective in equation (30) will become
∑

(i,j)∈Ak

∑
s∈S

ns(rij + µijdij)xijs

as θ = 0, ρij = 0 for all (i, j) ∈ Ak. Thus we have the equivalent Lagrangian relaxation problem Pµ for

any fixed µ formulated as:

(Pµ) min
x

∑
(i,j)∈Ak

∑
s∈S

ns(rij + µijdij)xijs, (31)

subject to

∑
i,k∈Ak

xiks −
∑

k,i∈Ak

xkis =


+1 i = o(s)

−1 i = d(s)

0 otherwise

∀i ∈ N , s ∈ S,

xijs ∈ {0, 1} ∀(i, j) ∈ Ak, s ∈ S,

where the Lagrange multipliers µij must satisfy 0 6 µij 6 1 and Γ−
∑

(i,j)∈Ak

µij > 0.

The Lagrangian Relaxation problem Pµ is easy to solve since it can be decomposed as a series of

shortest path problems. Let v(Pµ) denote the value of an optimal solution to problem Pµ, then the

Lagrangian dual problem (DL) is

(DL) max
µ

v(Pµ), (32)
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subject to

Γ−
∑

(i,j)∈Ak

µij > 0,

µij > 0 ∀(i, j) ∈ Ak,

µij 6 1 ∀(i, j) ∈ Ak.

The dual problem can be solved by a customized subgradient method by modifying the set of multipliers.

The Lagrangian dual problem provides a lower bound to the original problem (24). Below, we will show

how to obtain an upper bound.

5.2.2 Obtaining an Upper Bound

In the Lagrangian relaxation, we can also obtain an upper bound during the subgradient process for

fixed values of xijs by solving the following linear optimization problem,

min
θ>0,ρij>0

Γθ +
∑

(i,j)∈Ak

∑
s∈S

nsrijxijs +
∑

(i,j)∈Ak

ρij ,

subject to

θ + ρij >
∑
s∈S

nsdijxijs ∀(i, j) ∈ Ak.

Since xijs are fixed, the objective for the linear optimization problem becomes min
θ,ρ

Γθ +
∑

(i,j)∈Ak

ρij .

Then the linear problem U that obtains the upper bound becomes

(U) min
θ>0,ρij>0

Γθ +
∑

(i,j)∈Ak

ρij , (33)

subject to

θ + ρij >
∑
s∈S

nsdijxijs ∀(i, j) ∈ Ak.

The linear problem U can be reformulated as

min
θ
ϕ = Γθ +

∑
(i,j)∈Ak

max

{
0,
∑
s∈S

nsdijxijs − θ
}

for θ > 0.
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Now suppose we rank
∑
s∈S

nsdijxijs in ascending order as {s1, s2, ..., s|Ak|} and let s0 = 0. Then for

sl < θ < sl+1, 0 6 l 6 |Ak|, the objective ϕ becomes

ϕ = Γθ + sl+1 − θ + sl+2 − θ + ...+ s|Ak| − θ. (34)

By taking the derivative of ϕ in (34), we have

∂ϕ

∂θ
= Γ− (|Ak| − l)

By letting ∂ϕ
∂θ = 0 we have l∗ = |Ak| − Γ. If l < l∗, then ∂ϕ

∂θ < 0, which means the objective ϕ is

decreasing in interval (sl, sl+1). Similarly, if l > l∗, then ∂ϕ
∂θ > 0, which means the objective ϕ is

increasing in interval (sl, sl+1). Besides, the objective is continuous. So l∗ is optimal. Then θ∗ can be

any value in [sl∗ , sl∗+1]. We let θ∗ = sl∗ here. Then ρ∗ij = max

{
0,
∑
s∈S

nsdijxijs − θ∗
}

.

5.2.3 Lagrangian Heuristic Algorithm Framework

Now we introduce the proposed algorithm. The idea is that we try to find an upper bound and a lower

bound so that the gap between them falls into a certain range. The detailed process for the algorithm

is described in the following:

Step 0: Arbitrarily choose µtij for all (i, j) ∈ Ak such that 0 6 utij 6 1 and Γ −
∑

(i,j)∈Ak

µtij > 0. Set

t = 1, let an initial incumbent for problem DL be v0 = −∞ (lower bound) and let an initial value

for problem U be w0 = +∞ (upper bound).

Step 1: Solve the Lagrangian relaxation problem P tµ and obtain an optimal solution xtijs. Put the

obtained optimal solution xtijs into the linear optimization problem U t and solve it to obtain

optimal solution θt and ρtij .

Step 2: Let v(·) denote the value of an optimal solution to problem (·). If v(P tµ) > vt−1 then set

vt = v(P tµ) to obtain a new incumbent for v(DL) (improved lower bound). Otherwise set vt = vt−1.

If v(U t) < wt−1, then set wt = v(U t) to obtain a better upper bound. Otherwise set wt = wt−1.

If (wt − vt)/vt 6 τ (the upper bound is close enough to the lower bound), or a certain time limit

is reached, stop.
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Step 3: Find a new vector of Lagrange multipliers µt+1
ij by setting

µt+1
ij = µtij + λt

∑
s∈S

nsdijx
t
ijs − θ − ρij∥∥∥∥ ∑

s∈S
nsdijxtijs − θ − ρij

∥∥∥∥ = µtij + λt

∑
s∈S

nsdijx
t
ijs∥∥∥∥ ∑

s∈S
nsdijxtijs

∥∥∥∥ , (35)

since θ = 0, ρij = 0 for all (i, j) ∈ Ak must hold in the Lagrangian relaxation problem. Note that

λt is a scalar that satisfies λt > 0 for all t, lim
t→∞

λt = 0,
∞∑
t=1

λt =∞.

Step 4: Project µt+1 onto
{
µt+1 : 0 6 µt+1

ij 6 1 ∀(i, j) ∈ Ak,Γ−
∑

(i,j)∈Ak

µt+1
ij > 0

}
. Go to Step 1.

The above algorithm falls into a standard subgradient search method except for the last step of

projection. The standard projection is to project µ onto {µ > 0}; however, here we will project onto

{µ : 0 6 µij 6 1 ∀(i, j) ∈ Ak,Γ −
∑

(i,j)∈Ak
µij > 0}. We denote the current values as µij and the

projected values as µij . The projection procedure is as follows:

Step 0: Project µ onto {µ : 0 6 µij 6 1 ∀(i, j) ∈ Ak}, i.e. µij = max{0,min{1, µij}}. Check whether∑
(i,j)∈Ak

µij 6 Γ or not. If satisfied, we obtain µij ; otherwise go to Step 1.

Step 1: Rank µij and µij − 1 in non-increasing order as bt where 1 6 t 6 2|Ak|. Starting from t = 1,

obtain λ that satisfies λ > 0, λ ∈ [bt+1, bt] and

∑
{(i,j)∈Ak:µij−16bt<µij}

(µij − λ) +
∑

{(i,j)∈Ak:bt<µij−1}

(1) = Γ.

Then assign µij = max{0,min{1, µij − λ}}.

We prove that the above procedure indeed achieves the projection onto {µ : 0 6 µij 6 1 ∀(i, j) ∈

Ak,Γ−
∑

(i,j)∈Ak
µij > 0} in Appendix A using a method similar to Held et al. (1974) and Peinhardt

(2003). The basic idea is to consider its KKT conditions and derive an optimal solution. The Lagrangian

relaxation method is developed in the robust HNDP context. However, we believe that this method can

be applied to many other general robust optimization problems when the problem cannot be solved by

enumerating a finite number of uncertain parameters.

6 Experiments

In this section, we provide some computational results for the methods we introduced. We perform the

numerical analysis on two datasets. The first set of data is from the city of Ravenna, Italy (Bonvicini
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and Spadoni, 2008; Erkut and Alp, 2007). The data consists of 105 nodes and 134 arcs. Risks are

carefully measured as functions of both the accident frequency and its damage effects. 12 nodes of

the entire network can be origin or destination nodes. 35 origin-destination (OD) pairs are formed to

transport four kinds of hazmat, namely, chlorine, LPG, gasoline, and methanol. Demand is the number

of shipments between each OD pair. Also various number of OD pairs can be generated on this network

data. We also test our methods on a larger network. The dataset is constructed based on the Barcelona

Network (Bar-Gera, 2013). The transportation cost is generated using the free flow time. For this data

set, we only use the network structure. There are 1020 nodes and 2522 links. We simulate the risks

that are uniformly distributed on [0, 50] and demands that are uniformly distributed on [100, 500].

Experiments are performed using C++ and CPLEX 12.2 on a generic computer with 6GB memory and

Intel Core i5 processor. Due to memory issues, a higher performance computer with a Xeon processor

and 32GB memory is used for the Barcelona network to solve the Robust Arc-Risk HNDP.

We will first briefly introduce some results on the heuristic framework procedures. Then we will

provide results on the two versions of robust HNDPs: Robust Arc-Shipment-Risk HNDP (R1) and

Robust Arc-Risk HNDP (R2).

6.1 Heuristic Framework

Here we briefly show some results on the heuristic framework. We illustrate the results on a represen-

tative case of Robust Arc-Shipment-Risk HNDP with Γ = 50 using the Ravenna data.

First we show the necessity of using network design by considering three cases: (a) the network

obtained by minimizing risk designed by government with full regulation, (b) the network obtained by

minimizing cost by carriers without any regulation, and (c) the network chosen by carriers if given the

network of case (a). The networks are shown in Figure 1. We can see that without any regulation, the

carriers can choose the minimum cost routes and this results in higher risk, approximately 20.2% higher

in this case. If government can force the carriers to choose any route, it will result in the minimum risk.

However this is not applicable since government can only give carriers a network over which to choose

routes. But the carriers’ choices can deviate from the routes that the government wants carriers to

choose. For example, in Figure 1(c), the carriers’ chosen network based on the minimum risk network

is different and results in higher risk. So a network design model is needed in order to reduce the risk.

To illustrate how the heuristic works, we have shown four steps of the heuristic procedure for

illustration in Figure 2. In each iteration, Rg and Cg denote the risk and cost for the routes chosen by

the government and Rc and Cc denote the risk and cost for routes chosen by the carriers. By closing
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(a) Minimize Risk, Risk=173679,
Cost=2.68164

(b) Minimize Cost,
Risk=208859, Cost=2.28267

(c) Carrier network based on
min risk network (a),

Risk=184517, Cost=2.47775

Figure 1: Network for different cases.

a certain link at each step, the risk for the carriers can decrease or increase but we can regard the

minimum risk case as the solution. For this case, the carriers’ risk goes as follows: 184517→ 184544→

177226 → 174476. The best solution is obtained at iteration 4. The procedure stops when Rg and Rc

are close enough or the risk for carriers cannot be reduced for a certain number of consecutive steps.

6.2 Robust Arc-Shipment-Risk HNDP (R1)

For the Robust Arc-Shipment-Risk HNDP version, we first show the efficiency of the Min Risk problem

using the method described in Bertsimas and Sim (2003) (referred to as the Bersimas-Sim method) and

the Golden Section Search method. The Bersimas-Sim method is polynomially solvable; however, the

number of nominal problems needed to be solved can be |S|·|Ak|+1, which makes solving larger datasets

inefficient. Although the objective function cannot be shown convex in general, it is practical to use a

search algorithm like the Golden Section Search method in the context of HNDP. A comparison of time

and gap for the Bersimas-Sim method and the Golden Section Search method for the Min Risk problem

can be found in Table 1. We observe that both methods find the same optimal solution, while the

Golden Section Search method saves considerable computational time. Additionally, we test different Γ

values on the Ravenna dataset and the objectives are still the same. Thus, the Golden Section Search

method can be a very good practical approach.

After examining the efficiency of the algorithms, we now show the effectiveness of the robust network

design model solutions. The solutions are obtained by the heuristic framework using our Golden Section

Search method to solve the Min Risk problem. We assume that 40% of all links—which are randomly

chosen in experiments—are subject to uncertainty and the possible risk uncertainty upper bound dijs

is randomly generated using a uniform distribution between 0 and 2rijs for all (i, j) ∈ A and s ∈ S.

We test different Γ values and a visualization of the solutions with Γ = 0 (nominal), 25, 50, 75 for the
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(a) Government network in iteration
1, Rg = 173679, Cg = 2.68164

(b) Carrier network in iteration 1,
Rc = 184517, Cc = 2.47775

(c) Government network in iteration 2,
Rg = 173768, Cg = 2.68155

(d) Carrier network in iteration 2,
Rc = 184544, Cc = 2.47665

(e) Government network in iteration 3,
Rg = 174423, Cg = 2.69179

(f) Carrier network in iteration 3,
Rc = 177226, Cc = 2.66276

(g) Government network in iteration
4, Rg = 174476, Cg = 2.68697

(h) Carrier network in iteration 4,
Rc = 174476, Cc = 2.68697

Figure 2: Government and carrier networks at each iteration of the heuristic procedure.
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Table 1: Time (sec) and gap analysis for the Min Risk problem of Robust Arc-Shipment-Risk HNDP
(R1)

Data OD Number
Bersimas-Sim Golden Section Search

Time Objective Time Objective

Ravenna
20 246 104050 2.3 104050
40 1078 173335 4.5 173335
60 2135 284209 6.5 284209

(a) Nominal (b) Γ = 25

(c) Γ = 50 (d) Γ = 75

Figure 3: Network solutions for different Γ values for Robust Arc-Shipment-Risk HNDP (R1)

Ravenna network can be found in Figure 3. A larger Γ value denotes that we are considering more

uncertain links and are more conservative. Note in Figure 3, solutions with Γ = 50 and Γ = 75 are the

same.

In order to test the effectiveness of the robust solutions, we use a simulation to obtain the risk

distributions of the nominal and robust solutions. We generate 10,000 samples with risk values rijs +

uijsdijs where uijs is uniformly distributed in the interval [0, 1]. For the Ravenna network, the budget

of uncertainty for generating the samples is 1,000 while for the Barcelona network, all links of the

shipments are associated with risk uncertainty values. Due to the limited variation of solutions, we

only record robust solutions with Γ up to 100 for the Ravenna network. Based on the samples, we then

obtain the risk profile for each network design solution with different Γ values. The statistics of the
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mean for overall risk (MOR), standard deviation (SD), mean worst case risk (MWCR), worst case risk

(WCR) are recorded in Table 2 to measure solution performance. MWCR is the mean for the highest

3% risk values and WCR is the risk corresponding to the worst (highest) risk scenario. Additionally we

calculate the corresponding quantitative gap of the robust solutions compared to the nominal solution.

The value is negative if there is risk reduction and vice versa.

From the MOR Gap column in Table 2, the robust solutions do not necessarily have lower MOR

values since the objective of the robust models is minimizing the worst case risk. For example, the cases

when Γ = 25 for the Ravenna network and Γ = 200, 250, 300 for the Barcelona network have higher

MOR values. However, for the WCR and MWCR, the robust solutions mostly reduce risk compared to

the nominal solution. The highest risk reduction is 3.26% for the WCR and 3.42% for MWCR. Note

here for the case of Γ = 250 for the Barcelona network, the WCR has higher risk value than that of

the nominal solution. The reason could be that the generated samples failed to capture the worst case

scenario. Thus we make comparisons of robust solutions to the nominal one regarding the theoretical

worst case risk (TWCR) and the results are shown in Table 3. The robust TWCR is the objective

value of the robust Arc-Shipment-Risk HNDP model with budget of uncertainty Γ. For each robust

solution, we calculate the worst risk possible for the nominal solution accordingly to obtain the nominal

TWCR. This is achieved by adding the possible highest Γ number of uncertainty values (nsdijsx
0
ijs) to

the nominal HNDP objective risk value (
∑
s∈S

∑
(i,j)∈A nsrijsx

0
ijs) where x0

ijs is the nominal solution.

We also calculate the gap and record the time of obtaining each robust solution. We can see for all the

theoretical worst cases, the robust solutions have smaller risk values. The highest risk reduction can

be 4.71% for the Ravenna network and 6.33% for the Barcelona network. Additionally, from Table 2,

we observe that compared to the nominal solution, the robust solutions have significant SD reductions,

which can be as high as 11.79% and 31.87% among the test cases for the Ravenna and Barcelona network

respectively. The SD represents the variability for a certain solution and denotes the risk preference of

the government. For robust solutions considering uncertainty, they might sacrifice the chances of having

even lower risk values. However, they gain a lower probability of having higher risk values due to the

smaller SD. Based on the analysis of the generated statistics, the government can decide an appropriate

Γ to mitigate risk uncertainty.

For the Ravenna network, we also record the overall and tail distributions (5% highest risks) for

Γ = 0 (nominal), Γ = 25, Γ = 50 and Γ = 75 solutions in Figure 4. The results are consistent with

Table 2 and provide a visual distribution of the risk under uncertainty. The tail distribution can clearly

show the difference of the worst case risk. Note here the cases of Γ = 50 and Γ = 75 have the same

solution.
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Table 2: Statistics of nominal and robust solutions for Robust Arc-Shipment-Risk HNDP (R1)

Dataset Γ MOR SD MWCR WCR MOR Gap SD Gap MWCR Gap WCR Gap

Ravenna

0 8.51380×104 1881.5 9.06982×104 9.30860×104 NA NA NA NA
25 8.58621×104 1683.1 9.07777×104 9.21784×104 0.85% -11.79% 0.09% -0.98%
50 8.37950×104 1710.1 8.87698×104 9.12604×104 -1.58% -10.03% -2.13% -1.96%
75 8.37950×104 1710.1 8.87698×104 9.12604×104 -1.58% -10.03% -2.13% -1.96%

100 8.37950×104 1710.1 8.87698×104 9.12604×104 -1.58% -10.03% -2.13% -1.96%

Barcelona

0 1.07567×107 60582.3 1.08934×107 1.09595×107 NA NA NA NA
50 1.05331×107 52476.9 1.06520×107 1.07207×107 -2.08% -13.38% -2.22% -2.18%

100 1.05892×107 54657.3 1.07140×107 1.08068×107 -1.56% -9.78% -1.65% -1.39%
150 1.07194×107 53424.2 1.08414×107 1.09211×107 -0.35% -11.82% -0.48% -0.35%
200 1.07684×107 50209.9 1.08828×107 1.09592×107 0.11% -17.12% -0.10% 0.00%
250 1.08746×107 41275.4 1.09682×107 1.10335×107 1.10% -31.87% 0.69% 0.68%
300 1.07627×107 51422.6 1.08789×107 1.09463×107 0.06% -15.12% -0.13% -0.12%
350 1.04369×107 52503.4 1.05567×107 1.06490×107 -2.97% -13.34% -3.09% -2.83%
400 1.04126×107 48557.8 1.05209×107 1.06027×107 -3.20% -19.85% -3.42% -3.26%
450 1.04126×107 48557.8 1.05209×107 1.06027×107 -3.20% -19.85% -3.42% -3.26%
500 1.04126×107 48557.8 1.05209×107 1.06027×107 -3.20% -19.85% -3.42% -3.26%

Table 3: Theoretical worst case comparison and solution time for Robust Arc-Shipment-Risk HNDP
(R1)

Dataset Γ Nominal TWCR Robust TWCR Gap Time(s)

Ravenna

25 9.5592×104 9.2952×104 -2.76% 61.7
50 1.0000×105 9.6389×104 -3.61% 53.4
75 1.0191×105 9.7789×104 -4.04% 41.2

100 1.0301×105 9.8592×104 -4.29% 40.8
125 1.0363×105 9.9041×104 -4.43% 45.7
150 1.0401×105 9.9265×104 -4.56% 32.6
175 1.0420×105 9.9359×104 -4.65% 31.8
200 1.0429×105 9.9376×104 -4.71% 27.2

Barcelona

50 1.00391×107 9.94587×106 -0.93% 4988
100 1.06920×107 1.05943×107 -0.91% 4915
150 1.11663×107 1.11194×107 -0.42% 6817
200 1.15111×107 1.13875×107 -1.07% 11033
250 1.17718×107 1.15975×107 -1.48% 11382
300 1.19921×107 1.18250×107 -1.39% 6013
350 1.21711×107 1.16695×107 -4.12% 6226
400 1.23084×107 1.16341×107 -5.48% 5125
450 1.24110×107 1.16777×107 -5.91% 5053
500 1.24856×107 1.16953×107 -6.33% 5026
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Figure 4: Performance comparison of solutions generated with different Γ values for Robust Arc-
Shipment-Risk HNDP (R1) on the Ravenna network
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Figure 5: Lagrangian heuristic search process illustration.

Table 4: Comparison between CPLEX solver and Lagrangian heuristic for Robust Arc-Risk HNDP

OD Number
CPLEX Lagrangian heuristic

GapA GapB
Time(s) Objective Time(s) Upper Bound Lower Bound

500 86.8 5.10344×107 26.1 5.10477×107 5.09256×107 0.24% 0.026%
1500 323.7 1.55458×108 35.4 1.55559×108 1.55066×108 0.32% 0.065%
2500 613.2 2.58295×108 43.2 2.58520×108 2.57608×108 0.35% 0.087%
3500 1566.0 2.38922×108 48.1 2.39175×108 2.38255×108 0.38% 0.106%
4500 2678.9 4.66045×108 56.4 4.66482×108 4.64807×108 0.36% 0.094%
5500 3034.1 5.68190×108 61.9 5.68788×108 5.66545×108 0.39% 0.105%

6.3 Robust Arc-Risk HNDP (R2)

For the Robust Arc-Risk HNDP, it is satisfactory to use CPLEX to solve small and medium size

networks. For large networks, we use the proposed Lagrangian heuristic method. An example of the

search process for the Barcelona network with 500 OD pairs is shown in Figure 5. The dashed line shows

how the lower bound improves during the sub-gradient search process. We can also obtain an upper

bound for each lower bound solution, as shown by the solid line. The best upper and lower bounds are

shown by the large dots. Figure 5 shows the process of how we can obtain improved upper and lower

bounds using the Lagrangian heuristic method and achieve a good solution.

In order to see the efficiency of the Lagrangian algorithm, we test the algorithm on various sizes

of OD pairs with uncertainty level Γ = 800 on the Barcelona network to solve the Min Risk problem

using the higher performance computer with 32GB memory. We assume that 40% of all links—which

are randomly chosen in experiments—are subject to uncertainty and the possible risk level can deviate

100% from the nominal risk level, i.e. dij = rij . The Lagrangian heuristic method will stop if the lower

and upper bounds are within a 0.1% gap or cannot improve for 10 consecutive steps. We record the
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(c) Γ = 30 (d) Γ = 45

Figure 6: Network solutions for different Γ values for Robust Arc-Risk HNDP (R2)

results in Table 4. GapA is defined as the gap between upper and lower bounds, while GapB is defined

as the gap between the Lagrangian heuristic method solution (Upper Bound) and the CPLEX solution.

From the table, we can see that the Lagrangian heuristic method can obtain good solutions. Moreover,

the Lagrangian heuristic method can run on any ordinary computer while CPLEX requires a computer

with large memory. Thus the Lagrangian heuristic method can obtain efficient solutions and can be a

good approach especially if time and computer memory are limited.

Next we show results of the nominal and different robust solutions. The solutions are obtained by the

heuristic framework using CPLEX to solve the Min Risk problem. We assume 40% of all links are subject

to uncertainty and the uncertainty upper bound dij is randomly generated using a uniform distribution

between 0 to 2rij for all (i, j) ∈ A. We test different Γ values on the Ravenna data considering

transporting gasoline and the Barcelona network with 100 OD number pairs. A visualization of the

Ravenna solutions with Γ = 0 (nominal), 15, 30, 45 is provided in Figure 6. We can see by considering

different numbers of links that are subject to uncertainty, Γ, we obtain different network solutions.

In order to test the effectiveness of robust solutions, we run a simulation to measure the risk for

solutions with different Γ values for both networks. We generate 10,000 samples with risk values as

rij + uijdij where uij is uniformly distributed in the interval [0, 1]. The budget of uncertainty for

generating the samples is 45 and 1,000 for Ravenna and Barcelona networks respectively. The same

28



statistics with the Robust Arc-Shipment-Risk HNDP (R1) are recorded in Table 5. The theoretical

performance of robust solutions compared to nominal solution is calculated in Table 6. The time of

solving each robust solution is also recorded.

By looking at the MOR Gap column in Table 5, the MOR values for the robust solutions have

both higher and lower risk than that of the nominal one. A possible reason is that the robust solutions

are minimizing the worst case risk and the nominal solution can perform relatively well under some

simulated scenarios. However, for the WCR, the robust solutions perform at least as well as the nominal

solutions and mostly result in risk reduction. For the Ravenna network the highest WCR reduction

is 3.73% and for the Barcelona network, the WCR reduction can be as high as 6.34%. The MWCR

has similar results for the Barcelona network by observing the MWCR Gap column. For the Ravenna

network, the MWCR risk reduction is limited and has only high risk reduction with Γ = 40, 45, 50.

For some cases, there is even a risk increase. This could be due to the limited number of high risk

uncertainty cases generated from the samples.

Similar to the Robust Arc-Shipment-Risk HNDP (R1) case, we find a significant reduction of the

standard deviation (highest risk reduction of 19.53% for the Ravenna network and 34.01% for the

Barcelona network). The standard deviation (SD) measures the risk distribution variability under

uncertainty. With smaller SD, the robust solutions can have a lower possibility of having higher risk

values even with relatively higher mean risk values. We plot the overall risk distributions with Γ =

0 (nominal), 15, 30, 45 for the Ravenna network in Figure 7 as well as the tail distribution (highest 5%

risk values) for clarity of the worst case scenario. We can see for the nominal solution, it has a higher

probability of obtaining lower risk values. However it also has a higher chance of having higher risk

values than the robust solution. Additionally, by looking at the tail distributions of all solutions, the

robust solutions have lower worst case risk and the results are consistent with that of Table 5.

After the analysis of results in Table 5, we now look at the theoretical worst case risk from Table 6.

The robust TWCR is the objective value of the robust Arc-Risk HNDP model with budget of uncertainty

Γ. The nominal TWCR is obtained by summing up the highest Γ number of arc uncertainty values

(
∑
s∈S nsdijsx

0
ijs) and the nominal HNDP objective risk value (

∑
s∈S

∑
(i,j)∈A nsrijsx

0
ijs) where x0

ijs

is the nominal solution. We observe that the risk reduction of the robust solutions is consistent. The

highest risk reduction in the test cases is 4.07% for the Ravenna network and 6.32% for the Barcelona

network.

29



Table 5: Statistics of nominal and robust solutions for Robust Arc-Risk HNDP (R2)

Dataset MOR SD MWCR WCR MOR Gap SD Gap MWCR Gap WCR Gap

Ravenna

0 8.5739×104 3096.6 9.2956×104 9.9441×104 NA NA NA NA
5 8.5739×104 3096.6 9.2956×104 9.9441×104 0.00% 0.00% 0.00% 0.00%

10 8.7080×104 2491.9 9.2937×104 9.6437×104 1.56% -19.53% -0.02% -3.02%
15 8.7080×104 2491.9 9.2937×104 9.6437×104 1.56% -19.53% -0.02% -3.02%
20 8.7080×104 2491.9 9.2937×104 9.6437×104 1.56% -19.53% -0.02% -3.02%
25 8.7080×104 2491.9 9.2937×104 9.6437×104 1.56% -19.53% -0.02% -3.02%
30 8.7382×104 2493.1 9.3244×104 9.6945×104 1.92% -19.49% 0.31% -2.51%
35 8.7170×104 2699.0 9.3518×104 9.7531×104 1.67% -12.84% 0.60% -1.92%
40 8.4989×104 2620.4 9.1111×104 9.5730×104 -0.88% -15.38% -1.99% -3.73%
45 8.5040×104 2599.9 9.1111×104 9.6665×104 -0.82% -16.04% -1.98% -2.79%
50 8.5040×104 2599.9 9.1111×104 9.6665×104 -0.82% -16.04% -1.98% -2.79%

Barcelona

0 1.22884×107 49685.1 1.23627×107 1.23822×107 NA NA NA NA
25 1.22884×107 49685.1 1.23627×107 1.23822×107 0.00% 0.00% 0.00% 0.00%
50 1.22884×107 49685.1 1.23627×107 1.23822×107 0.00% 0.00% 0.00% 0.00%
75 1.19424×107 32788.5 1.19913×107 1.20033×107 -2.82% -34.01% -3.00% -3.06%

100 1.21379×107 41031.2 1.21977×107 1.22091×107 -1.22% -17.42% -1.33% -1.40%
125 1.17506×107 33416.7 1.17994×107 1.18096×107 -4.38% -32.74% -4.56% -4.62%
150 1.20604×107 43366.8 1.21225×107 1.21344×107 -1.85% -12.72% -1.94% -2.00%
175 1.16019×107 35728.1 1.16515×107 1.16612×107 -5.59% -28.09% -5.75% -5.82%
200 1.15276×107 39078.8 1.15851×107 1.15976×107 -6.19% -21.35% -6.29% -6.34%
225 1.16143×107 36511.4 1.16645×107 1.16730×107 -5.49% -26.51% -5.65% -5.73%
250 1.16143×107 36511.4 1.16645×107 1.16730×107 -5.49% -26.51% -5.65% -5.73%

Table 6: Theoretical worst case comparison and solution time for Robust Arc-Risk HNDP (R2)

Dataset Γ Nominal TWCR Robust TWCR Gap Time(s)

Ravenna

5 9.24334×104 9.24334×104 0.00% 33.5
10 1.00017×105 9.66095×104 -3.41% 35.7
15 1.02334×105 9.84450×104 -3.80% 33.0
20 1.03339×105 9.94038×104 -3.81% 34.1
25 1.03754×105 9.95311×104 -4.07% 31.0
30 1.04006×105 1.00907×105 -2.98% 29.5
35 1.04166×105 1.01656×105 -2.41% 30.5
40 1.04248×105 1.00425×105 -3.67% 30.1
45 1.04290×105 1.00202×105 -3.92% 31.4
50 1.04298×105 1.00224×105 -3.91% 27.0

Barcelona

25 1.05992×107 1.05992×107 0.00% 10262
50 1.13054×107 1.13054×107 0.00% 6142
75 1.17215×107 1.16296×107 -0.78% 6740

100 1.19793×107 1.19612×107 -0.15% 2862
125 1.21676×107 1.17514×107 -3.42% 7020
150 1.22856×107 1.21035×107 -1.48% 4161
175 1.23537×107 1.16620×107 -5.60% 2284
200 1.23813×107 1.15989×107 -6.32% 719
225 1.23850×107 1.16738×107 -5.74% 1195
250 1.23850×107 1.16738×107 -5.74% 1127
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Figure 7: Performance comparison of solutions generated with different Γ values for Robust Arc-Risk
HNDP (R2) on the Ravenna network
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7 Concluding Remarks

We consider the hazardous materials network design problem (HNDP). In this paper, we present two

formulations for the HNDP considering edge risk uncertainty using the robust optimization method

with a cardinality uncertainty set. The two robust versions are Robust Arc-Shipment-Risk HNDP and

Robust Arc-Risk HNDP. We solve these two problems by modifying a heuristic method. Utilizing the

K-shortest path algorithm and adding a feasibility check, we are able to obtain stable solutions, as

defined in the HNDP literature. For large networks, we also propose a golden section search approach

and a Lagrangian heuristic to solve the Min Risk problem for Robust Arc-Shipment-Risk and Robust

Arc-Risk HNDP separately. The efficiency of the proposed algorithms are tested on large networks.

Moreover, in order to test the effectiveness of the robust formulations, we test the solutions on a real

network (Ravenna). In comparison with the nominal solution, the robust solutions results are superior

particularly in high risk uncertainty scenarios and the worst case risk scenario. Robust solutions also

provide smaller variability.

There are a few directions for extending this research. One direction is to control the number of links

to be closed for hazmat traffic. Closing links costs the government for administration and monitoring.

Therefore it would be desirable to minimize the number of links to close. To block a path, it could

be possible for the government to close a few key links instead of closing all links in the path. One

could obtain the same solution as in the current heuristic method with fewer closed links while requiring

greater computational effort.

Another possible direction is to consider other uncertainty risk measures. A popular risk measure

is the expected risk which can be computed as the multiplication of hazmat accident probability and

consequence. If we consider uncertainty in both of them, we would need to consider a more complicated

robust optimization formulation. Kwon et al. (2013) consider the robust shortest path problem with

two uncertain multiplicative cost coefficients. We can incorporate this method into the hazmat network

design problem.
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Appendices

A Proof of Projection Method

The procedure introduced in Section 5.2.3 obtains µ as the projection of µ onto {µ : 0 6 µij 6 1 ∀(i, j) ∈

Ak,Γ−
∑

(i,j)∈Ak
µij > 0}.

Proof. The projection of µ onto {µ : 0 6 µij 6 1 ∀(i, j) ∈ Ak,Γ−
∑

(i,j)∈Ak
µij > 0} can be formulated

as:

min
∑

(i,j)∈Ak

1

2
(µij − µij)2 (36)

subject to

∑
(i,j)∈Ak

µij 6 Γ : λ

µij 6 1 ∀(i, j) ∈ Ak : vij

µij > 0 ∀(i, j) ∈ Ak : ρij

The Karush-Kuhn-Tucker (KKT) conditions for problem (36) are

µij − µij + λ+ vij − ρij = 0 (37)

λ

( ∑
(i,j)∈Ak

µij − Γ

)
= 0 (38)

vij(µij − 1) = 0 (39)

ρijµij = 0 (40)

λ, vij , ρij > 0 (41)∑
(i,j)∈Ak

µij 6 Γ (42)

µij 6 1 (43)

µij > 0 (44)

Problem (36) is strictly convex over a nonempty bounded region, so there must exist multipliers λ,

vij and ρij that satisfy the KKT conditions. We show that we can find a solution to the above KKT

conditions by following the projection procedure in Section 5.2.3.
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1. For any λ, we set

µij = max{0,min{1, µij − λ}} (45)

vij = max{0, µij − λ− 1}

ρij = max{0,−(µij − λ)}

for each (i, j) ∈ Ak. We consider the following three cases:

• When µij − λ > 1, we have µij = 1, ρij = 0, and vij = µij − λ− 1.

• When 0 6 µij − λ < 1, we have µij = µij − λ, ρij = 0, and vij = 0.

• When µij − λ < 0, we have µij = 0, ρij = −(µij − λ), and vij = 0.

The above µij , ρij , and vij satisfy conditions (37), (39), (40), (41), (43), and (44) for any given

λ. Remaining conditions are (38), (42), and the nonnegativity of λ.

2. When λ = 0, if the resulting µij = max{0,min{1, µij}} satisfies (42), then we are done as described

in Step 0 of the projection procedure. If not, we can show that we can obtain λ > 0 such that

(38) and (42) hold, by following Step 1 of the projection procedure. That is, we can find λ > 0

such that ∑
(i,j)∈Ak

µij =
∑

(i,j)∈Ak

max{0,min{1, µij − λ}} = Γ. (46)

Equation (46) can be rewritten as

∑
(i,j)∈Ak

µij =
∑

{(i,j)∈Ak:µij−16λ<µij}

(µij−λ)+
∑

{(i,j)∈Ak:λ<µij−1}

(1)+
∑

{(i,j)∈Ak:λ>µij}

(0) = Γ. (47)

In equation (47), µij and µij − 1 are critical values. Thus we can find the value of λ by searching

the interval of these values as used in Step 1.

This completes the proof.
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