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Abstract

We consider a Periodic Load-dependent Capacitated Vehicle Routing Problem (PLCVRP)

encountered by healthcare centers and medical waste collection companies for the design of a

weekly inventory routing schedule to transport medical wastes to treatment sites. In addition to

minimization of transportation risk, occupational risk related to temporary storage of hazardous

wastes at the healthcare centers is considered. The transport risk on each arc is dependent on

the weight of hazardous medical waste on the vehicle when it traverses that arc. We devise a

decomposition based heuristic algorithm to solve this problem. We analyze the characteristics

of the PLCVRP’s solutions with respect to four different criteria: (i) transport and occupational

risk, (ii) transport risk, (iii) occupational risk, and (iv) transportation cost. Solving different

versions of PLCVRP reveals that minimizing both transport and occupational risk on the net-

work can aid decision makers to develop a better routing schedule in terms of the imposed risk

of hazardous medical waste. Experimental results confirm the efficiency of our heuristic. We

present a case study to illustrate solution attributes obtained by our solution methodology. The

case study is based on medical waste management in Dolj, Romania.

Keywords: medical waste collection; hazardous materials transportation; vehicle routing;

decomposition-based heuristic

1 Introduction

Collection and transport of medical waste to treatment centers is a critical operational problem

that local authorities face in all cities. Of the total waste generated at hospitals, about 85% is

general waste and 15% is hazardous material that can be toxic, infectious, or radioactive (World

Health Organization, 2015). The majority of medical waste generators are laboratories, mortuaries,

blood banks, research centers, hospitals, and nursing homes.

Medical waste contains potentially dangerous microorganisms that may infect medical center

patients, staff, public, and the environment. Therefore, medical waste storage at healthcare centers
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Figure 1: Risk of medical waste management

and the transportation of these potentially harmful materials to treatment centers, are two mutually

affected risky tasks (presented in Figure 1). The former one entails the occupational risk related

to the storage and handling of hazardous medical waste while the latter one includes the public

risk associated with hazardous materials transportation. The medical waste collection business

involves servicing customers, depending on the customer demand and environmental regulations.

Environmental rules mandate daily treatment of infectious medical waste if it is kept at room

temperature, and weekly treatment if is kept at a temperature less than 5 ◦C (Shih and Lin, 1999).

Considering this regulation, the medical waste management system has to be properly designed

and capable of completing the process within a week. Therefore, a good waste management system

not only depends on the treatment process, but also, on how to collect infectious waste from

dispersely-located medical centers.

Collection tasks of logistics companies are usually modeled to account for minimization of the

transportation costs of servicing customers in the framework of vehicle routing problems (VRPs).

Four of the most well-studied extensions of VRPs related to medical waste collection are (i) the

capacitated vehicle routing problems (CVRPs), where vehicle’s capacity is limited (Toth and Vigo,

2002); (ii) the load-dependent vehicle routing problems (LVRPs), where the transportation costs

depend on the vehicle’s load while traveling on its assigned route (see, e.g., Kara et al., 2008); (iii)

periodic vehicle routing problems (PVRPs), where a set of routes is obtained for a specified time

period (see, e.g., Shih and Lin, 1999); and (iv) a green inventory routing problem where pollution

cost is included for travel along the assigned route (see, e.g., Cheng et al., 2017).

Routing models for medical waste collection have to include the important practical constraints

of both the service provider and customers. First, a comprehensive load-dependent transportation

risk has to be defined, which depends on the amount of hazardous waste on the vehicle while
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giving service to the customers. Second, a vehicle capacity restriction must be considered for

sharing of pick-up operations. Third, storage capacity limitations at healthcare centers have to

be modeled. Due to limitations on medical waste storage capacity at medical centers and service

requests depending on the size of the medical institutions, a schedule for weekly services is needed.

For instance, some large hospitals may need daily services, while small clinics may require service

once a week. However, in some cases even small medical centers with limited storage capacity

might need a collecting service two or three times a week (Shih and Lin, 2003).

In this paper, we introduce a periodic load-dependent capacitated vehicle routing problem

(PLCVRP) for medical waste collection, which:

1. incorporates minimization of both occupational risk at healthcare centers and transportation

risk;

2. captures the limitations on the medical waste storage capacity at medical centers, the vehicle

capacity, and the maximum allowable route length;

3. considers leaving some medical centers unserved in one or more time-periods;

4. considers the inventory dynamics of medical wastes; and

5. ensures providing service for all medical centers at least once during the time horizon.

The PLCVRP problem we consider is an inventory-routing problem (IRP) with load-dependent

link travel cost, arising in medical-waste collection applications. From a technical perspective the

challenge lies in combining the IRP with the load-dependent capacitated VRP (LCVRP), both

computationally challenging problems. An IRP considers both the inventory holding cost and

the transportation cost in a multi-day planning horizon, and chooses customers to visit on each

day considering the impact on inventory dynamics. In contrast, LCVRP in the current literature

considers only a single day for customers visited (e.g. Fukasawa et al., 2015). Our PLCVRP problem

is a multi-period problem, for which we encounter a new variant of LCVRP as a single-period sub-

problem of the whole PLCVRP. This characteristics of PLCVRP requires innovative computational

approaches. As we explain in Section 2, existing solution methodologies applied for multi period

vehicle routing problems, cannot be applied to the proposed model in this paper without drastic

modifications. The main reason is, in majority of similar researches, the problem was solved in

two phases; first, finding shortest paths and second, assigning these paths to time periods. But in

PLCVRP, some medical centers can remain unserved in a time period and this assumption makes

solutions of future periods highly dependent on current period, therefore, solving our problem in

two phases is impractical. As a result, we propose a new efficient algorithm to solve PLCVRP.

We develop a decomposition based heuristic approach that incorporates column-generation. The

efficiency of our heuristic approach is empirically verified on numerical instances of PLCVRP. A

set of small-sized instances for an arc-based formulation of PLCVRP is solved exactly using an

optimization software, CPLEX, to assess the efficiency of our heuristic algorithm. Then, a set of
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large instances are solved to investigate the efficiency of the heuristic decomposition method. Also,

a case study is proposed to incorporate the medical waste collection in Dolj, Romania.

This paper is organized as follow: In Section 2, a review of the related literature is presented.

In Section 3, we describe the problem and introduce its key notation, parameters and decision

variables. Section 4 describes our solution methodology. Experimental results and a case study are

proposed in Sections 5 and 6, respectively. Conclusions are given in Section 7.

2 Literature Review

We can classify the existing literature based on our problem’s characteristics into two sections:

Inventory Routing Problems (IRPs), and Load-dependent Vehicle Routing Problems.

2.1 Inventory Routing Problems for Medical Waste Collection

The IRP considers collection (or delivery) of a product from (or to) different customers in a specified

time horizon (Bertazzi et al., 2008). IRPs generally minimize routing and inventory costs. For an

excellent survey on routing problems, see Dror (2000). A medical waste collection problem can

be viewed as a routing problem which determines minimum-cost routes on a network. Studies of

VRPs for medical waste collection include Shih and Chang (2001), Nuortio et al. (2006), and Baati

et al. (2014).

Shih and Lin (1999) propose a periodic vehicle routing problem to pickup medical waste from

disperse hospitals. A two-phased approach composed of a standard vehicle routing problem and

a mixed-integer programming method is proposed to find and assign routes to specific days of the

week. Shih and Lin (2003) introduce a model to minimize transportation risk, cost, and balance

of workers and vehicles transporting hazardous waste. They applied a dynamic programming

method and integer linear programming approach to capture the three main mentioned objectives.

Markov et al. (2020) consider an IRP for waste collection considering stochastic demands. Timajchi

et al. (2019) study an IRP for hazardous pharmaceutical items considering en-route accident risk.

Malladi and Sowlati (2018) provide a recent review of the IRP literature focusing on sustainability

aspects, including transportation of hazardous materials and medical wastes. We refer readers to

the references therein for more related IRP problems.

Relevant to our problem, Nolz et al. (2014) propose an inventory routing problem to design a

collection service for medical waste. Two solution approaches are applied to optimize the visiting

schedule and vehicle routing. What distinguishes our work from earlier models for medical waste

collection is the consideration of transportation risk that is a function of the load of hazardous

waste being carried by the vehicle along with storage risk for hazardous waste at hospitals in one

integrated framework that allows multiple days for waste collection. Unlike most of inventory

routing problems, a medical center can remain unvisited at the end of each time period and this

characteristic of our problem makes existing solution methodologies impractical. As mentioned

earlier in this section, one possible approach to solve PLCVRP could be first, to find all feasible
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shortest paths and then assign these routes to time periods (days of the week). But, by relaxing

the assumption of visiting all medical centers in each period, PLCVRP turns into a challenging

problem to solve. Our remedy to tackle this challenge is to decompose PLCVRP into multiple

LCVRPs and apply a customized column generation approach to solve each LCVRP. A penalty

function is designed in our decomposition-based heuristic approach so that the selection of medical

centers to pick up on a particular period is guided towards overall feasibility and better objective

value. These conditions mirror closely the conditions that are likely to be encountered in practice.

2.2 Load-dependent Vehicle Routing Problems

The common objective in VRPs is to minimize the vehicles’ total travel distance, but this objective

can be improved by adding some terms related to vehicle load. Kara et al. (2007) propose a

cumulative VRP for minimizing the energy consumption where the flow on the links changes along

the tour. When the vehicle has the pick-up service, the load of the vehicle is an increasing piecewise

function, and a decreasing piecewise function for the delivery service. Therefore, the vehicle’s load

accumulates or diminishes along the way. This type of VRP captures the vehicle’s load dependency

in the optimization of transportation risk or transportation cost. The most common application of

LVRP is in fuel consumption minimization. Fuel consumption models commonly focus on vehicle,

traffic, and environmental effects. Increase in vehicle load boosts the engine demand power, which

results in a higher fuel consumption. Transportation costs are highly affected by vehicle payload,

thus, it can be a vital part of routing decisions (Demir et al., 2014). Kara et al. (2007) and Bektaş

and Laporte (2011) consider the effect of vehicle load on fuel consumption. Demir et al. (2011)

conclude that, the fuel consumption of a 1000 kilograms-loaded vehicle increases by 1 gallon per

100 kilometers traveling. Fukasawa et al. (2015) introduce a branch-cut-and-price algorithm to

minimize the energy consumption in the framework of a vehicle routing problem which was first

proposed by Kara et al. (2007). They show that a significant improvement can be achieved by their

algorithm over other methods. Another closely related piece of work is the green inventory routing

problem studied by Cheng et al. (2017) which incorporates pollution costs in the cost function. We

use principles from the LVRP models to develop our algorithms. The distinguishing feature of our

work is that we have a requirement that all customer demands have to be met at the end of the

time horizon. Due to this requirement, nonlinear terms appear in the constraints as well as in the

objective function (Constraints (5) and Objective (2) respectively), while nonlinear terms appear

only in the objective function in the model of Cheng et al. (2017).

3 Problem Description and Notation

Two parties have significant roles in a medical waste collection system: the company that provides

collection services and the healthcare centers that require transportation of medical waste to treat-

ment centers. In practice, a shipping company (contractor) usually agrees to provide collection

services for customers for a long term (e.g. one year) and establishes a periodic (e.g. weekly) col-
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lection schedule for medical waste pick-up. The collection service company has a limited number of

vehicles available to serve its customers. Vehicles start their travel from the depot at the beginning

of a time period (day) and return to unload collected waste at the depot at the end of the day.

A vehicles visits a medical center if it has enough capacity to collect all the waste stored in that

center. In other words, partial pick-up is not allowed.

It is not necessary for customers to be visited at the end of each day, but each customer must

be served on the last day of the periodic collection schedule, to guarantee that there is no medical

waste left at any medical center at the end of the planning horizon. This flexibility allows the carrier

to give service priority to the customers based on the vehicle capacity or based on the risk caused

by serving (or not serving) the customers. There is also a limitation on the total travel distance

corresponding to each route. In this paper, number of vehicles is specified large enough to guarantee

the feasibility of the problem. Another possible approach can be adding a fixed cost objective term

to the model and finding an optimal number of required vehicles considering associated cost.

Let G = (V ′,A) be a complete directed graph with V ′ = {0, 1, 2, ..., n} as a set of nodes. Node 0

denotes the depot and V = {1, 2, ..., n} denotes the set of medical centers. Let T ′ = {0, 1, 2, ..., T}
be the set of time periods including time 0, and T = {1, 2, ..., T} be the set of time periods excluding

period 0. Note that time period 0 is added to allow medical waste storage at the beginning of period

1. There are m identical vehicles available, each of which has capacity C. For every i ∈ V ′, let

∆qti (∆qti > 0 ∀i ∈ V) be the medical waste produced at center i during period t, and Qi be the

maximum medical waste storage at center i. We suppose that for the depot (i = 0), Q0 and ∆qt0
are equal to zero. For every link (i, j) ∈ A, let lij be the distance between node i and node j,

and ρij be the hazardous waste accident probability per unit length on link (i, j). For each link

(i, j) ∈ A, αij denotes the consequence of hazardous waste exposure to people and environment

for an accident happening on link (i, j) for each unit of medical waste. Let parameter θi be the

occupational risk associated with medical waste storage at medical center i, ∀i ∈ V for each unit

of storage. Let Rt be a set of all feasible paths in period t and let ctr be the total risk of traveling

on path r in period t. We note that a feasible path is one that covers every customer at most once

while not violating the vehicle’s capacity and travel time constraints at the end of the time period.

We let lr denote the total distance a vehicle travels on path r. Table 1 summarizes the notation.

Given the sets, the parameters, and the variables defined in Table 1, we can write the total risk

associated with path r in period t as

ctr =
∑
i∈V ′

∑
j∈V ′

ρijlijαijδ
r
ijy

t
i +

∑
i∈V

qtiθia
t
ir. (1)

4 Decomposition Based Heuristic Approach

We decompose the problem into a set of single period load-dependent capacitated vehicle routing

problems (LCVRP(t)), where LCVRP(t) corresponds to period t, and applies a column generation

method to solve LCVRP(t) for all t ∈ T . The applied column generation method divides each
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Table 1: Notation

Sets
V ′ Set of all nodes (medical centers and depot) on graph G
V Set of all nodes (medical centers) on graph G
A Set of links on complete graph G
Vr Set of nodes (medical centers) contained in path r
Ar Set of links contained in path r
T Set of time-periods: {1, 2, . . . , T}
T ′ Set of time-periods including time 0: {0, 1, 2, . . . , T}
Rt Set of all feasible paths in period t ∈ T

Parameters
C Maximum capacity of the vehicle
L Maximum allowable total travel distance for each vehicle in a time period
Qi Medical waste capacity of storage at medical center i
ρij Hazmat accident probability per unit length for vehicles traveling on link (i, j) ∈

A
lij Travel distance from medical center i to medical center j
αij Consequence of hazardous medical waste accident for happening on link (i, j) ∈ A

for each unit medical waste transported
θi Occupational risk of medical waste storage at medical center i for each unit

storage
∆qti Medical waste produced at medical center i during time period t
lr A vehicle’s total travel distance if traveling on path r
m Number of vehicles
atir Binary coefficient that takes value 1 if medical center i ∈ V belongs to path

r ∈ Rt in period t ∈ T ; 0 otherwise
δrij Binary coefficient that takes value 1 if medical center j ∈ V is visited after medical

center i ∈ V on path r; 0 otherwise

Variables
ctr Total risk of path r ∈ Rt in period t ∈ T
ztr Binary variable that takes value 1 if path r ∈ Rt is assigned to a vehicle in period

t ∈ T , else 0
yti Vehicle’s load after visiting medical center i ∈ V in period t ∈ T
qti Medical waste storage at medical center i ∈ V at the beginning of period t
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LCVRP(t) into two parts; a smaller LCVRP(t) with reduced number of collection route alter-

natives, and a pricing problem related to a graph composed of the customers as its nodes. The

reduced LCVRP(t) finds a design policy from the set of feasible alternatives already obtained by

the pricing problem. The pricing problem tries to generate new feasible columns that boost the

present objective of the LCVRP(t).

Our (heuristic) algorithm has four components: (i) the restricted master problem, (ii) the pricing

problem, (iii) the introduction and specification of a penalty function, and (iv) a supplementary

pricing problem. We now provide detailed explanations of these components.

4.1 The Restricted Master Problem (RMP)

The master problem (MP) in our study is an integer programming problem. zr denotes a binary

decision variable for a vehicle’s route choice. Here, a route is an order of medical centers visited by

a vehicle in a time period. The time period index is dropped in the notation previosuly introduced,

for ease of presentation. Variable zr is equal to 1 if route r is selected in the solution, and 0 other-

wise. The MP can find an optimal solution if R includes all the feasible routes and it is solved as

an integer program. We call our MP as a restricted master problem (RMP) because it uses only a

subset of minimum penalty feasible routes R ⊂ R when generating its solution. Furthermore, we

do not solve the RMP to integrality. Instead, we use an optimization solver (CPLEX) to solve the

LP relaxation of RMP. The dual variable obtained from solving the LP relaxation of the RMP are

used to formulate a RA pricing problem that generates additional which are capable of enhancing

the objective of the LP relaxation of the RMP. To present the RMP, we recall the notation from

Section 3 and introduce some new variables.

Notation:

R : Set of all feasible routes.

R : Set of feasible routes currently added to the problem.

cτr : Cost of route r.

air : 1 if customer i is visited on route r, 0 otherwise.

τ : The index corresponding to a period for which RMP is implemented

zr : Routing variable, 1 if the route r is chosen, 0 otherwise.

µi : Dual variable corresponding to constraint (3).

π : Dual variable corresponding to constraint (4).

γ : Dual variable corresponding to constraint (5).

RMP(τ):

minimize
∑
r∈R

cτrzr (2)

subject to
∑
r∈R

airzr ≤ 1 ∀i ∈ V (3)
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∑
r∈R

zr = m (4)

∑
i∈V

(
1−

∑
r∈R

airzr

)
qτi ≤ mC(T − τ + 1)−

∑
i∈V

T∑
t=τ+1

∆qti (5)

0 ≤ zr ≤ 1 ∀r ∈ R (6)

Note that the quantity qτi can be precomputed for each i ∈ V before solving RMP(τ).

The objective of the RMP(τ) is to minimize the total risk of the selected routes. When route

r is denoted by the ordered set of nodes Nr or the ordered set of links Ar, the total risk of route r

is cτr , defined as follows:

cτr =
∑

(i,j)∈Ar

crτij

=
∑

(i,j)∈Ar

[
ρijlijαijwir + θiq

τ
i

]

where wir is the waste load on the vehicle after visiting all customers on route r starting at the

depot and ending at customer i. Note that qτi is the medical waste storage at medical center i at

the beginning of period τ . Constraints (3) guarantee that each medical center is covered by at most

one route and constraint (4) implies that the total number of selected routes are equal to the total

number of available vehicles. Constraint (5) forces the total left-over medical waste at unserved

centers in period τ to be less than the extra capacity of vehicles in all remaining periods (t > τ).

Note that the aim of constraint (5) is to be able to find a feasible multi-period schedule. In theory,

it is possible that the right-hand-side of (5) is not tight enough, implying that no feasible solutions

exist in a future time period. Our numerical experiences, however, indicate that (5) works well in

practice. If no feasible solution is found in the future time periods, we can replace mCT in (5) by

εmCT with some constant ε ∈ (0, 1) and restart the process from time period 1.

To be able to serve all the customers at least once during the time horizon, we assume the total

generated medical waste at the healthcare centers in the final period, τ = T , is less than or equal

to the vehicle’s capacity. Also, we suppose that each medical center must be visited exactly once

in the final period. Thus, the corresponding RMP is formulated as RMP(T ).

RMP(T ):

minimize
∑
r∈R

cTr zr (7)

subject to
∑
r∈R

airzr = 1 ∀i ∈ V (8)∑
r∈R

zr = m (9)

0 ≤ zr ≤ 1 ∀r ∈ R (10)
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Dual variables µi, π, and γ for RMP(τ) are used in the pricing problem. We now explain the

pricing sub problem, which finds additional candidate routes.

4.2 The Pricing Sub Problem (PSP)

The PSP’s objective function is the reduced cost of the newly defined variables (routes) using the

values of the current set of dual variables from the LP relaxation of the RMP. In each iteration of

the column generation algorithm, we obtain the optimal value of the dual variables µi, π, and γ

by solving the RMP(τ) as a linear programming problem. Then, the corresponding PSP(τ) tries

to find an alternative route (column or variable) with negative reduced cost.

To ensure feasibility, a route generated by PSP must meet the following three requirements:

travel distance, vehicle capacity, and precedence relations. As it is desirable to visit each healthcare

center only once along a route, the alternative routes must be elementary. Therefore, the sub

problem for every time period, PSP(τ), is an Elementary Shortest Path Problem with Resource

Constraints (ESPPRC), which is proved to be strongly NP-hard by Dror (1994) and Cheung et al.

(1999). The network corresponding to each ESPPRC is composed of a set of nodes {0, 1, 2, .., n, n+

1}, where 0 is the source node and n+ 1 is the sink node (both source and sink nodes are denoted

as the depot). Links are defined between every two nodes, and their associated risks are obtained

using the current dual values of the RMP(τ) constraints. We need to modify the risk of links before

solving the PSP(τ). The risk corresponding to a vehicle carrying medical waste shipments when

traveling on link (i, j), is calculated using equation (11). We assume that all the vehicles are of the

same type. We let

crτij = ρijlijαijwir + θiq
τ
i (11)

Thus, the revised link risk ĉτij , corresponding to a vehicle traveling on link (i, j) in period τ < T is

as follows:

ĉrτij = crτij −
∑
r′∈R

µiair′δ
r
ij +

( ∑
r′∈R

air′q
τ
i δ
r
ij

)
γ (12)

Consequently, the revised total risk associated with alternative r, ĉτr , is obtained by subtracting

the dual variable π as follows:

ĉτr = cτr −
∑

(i,j)∈Ar

∑
r′∈R

µiair′δ
r
ij +

∑
(i,j)∈Ar

( ∑
r′∈R

air′q
τ
i δ
r
ij

)
γ − π (13)

with Ar being the set of links constituting route r. Note that µi, γ < 0, and π is free in sign; thus,

the revised path risk, ĉτr , can take any real value.

Interestingly, throughout our experiments, we find out that a very important factor to have a

quick and effective column generation approach is to solve the sub problem efficiently. An optimal

solution to ESPPRC yields the largest negative reduced cost elementary shortest path. To proceed
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with the column generation process it suffices, however, to to find any route which has a negative

reduced cost. Finding any route with a negative reduced cost is of course much less time consuming

than finding the route that has the maximum negative reduced cost. Motivated by this, we develop

on Nemani et al. (2010)’s proposed algorithm and suggest a new heuristic approach which solves

the ESPPRC by repeatedly solving a label setting algorithm for each time-period. In our problem,

the link risks ĉrτij are unrestricted in sign, however, the label setting algorithm enables us to obtain

elementary routes with negative reduced costs, even though the underlying graph may contain

negative cost cycles.

The label setting approach we apply to solve ESPPRC is presented in Algorithm 1. In this

algorithm the predecessor nodes on every partial route r are stored and any cycles are removed.

In a partial route r, the start location is the depot, but the finishing location can be any of the

healthcare centers (nodes). The revised link risks are updated repeatedly after solving the RMP(τ).

The main idea of this algorithm is to create a label, {u, Lu,Wu}, associated with every incomplete

route closing at node u. In each label, the first entry represents the last healthcare center (node) on

the partial route, the second entry indicates the travel distance Lu, and the third entry is the load

of the vehicle after visiting the last node u on the partial route r. Therefore, a label indicates the

consumption of the resources on each partial route. The label cost, calculated as Cost({u, Lu,Wu}),
is found by obtaining the sum of the revised risk for links on the incomplete route. Inputs for the

label setting algorithm are updated demands at healthcare centers, qτi , link lengths, lij , updated

link risks ĉrτij , depot, vehicle capacity, C, and maximum allowable route travel distance, L. The

output of the label setting algorithm is a set of elementary routes covering a set of healthcare

centers starting from depot, d(s), and returning back to depot. These routes comply with the

vehicle capacity and maximum route length constraints, and they have negative reduced costs.

The predecessor nodes relating to each partial route are stored in an Preds array to prevent

visiting nodes more than once in any extension of the partial route. The number of labels that can

be generated increases exponentially even for small-size problems. However, two procedures help the

algorithm to be implemented efficiently, (i) feasibility check, and (ii) dominance check. Algorithm 1

explains the steps of the feasibility, existence, dominance, and improvement checks. The feasibility

check removes the labels that cause one or more of these problems; travel distance violation, vehicle

capacity violation, and cycling. The dominance check excludes labels that break the dominance

rule. Finally, it is important to mention that a single iteration of the decomposition-based heuristic

involves T = |T | iterations of the column generation approach. Route alternatives generated by

PSPs during T iterations of the column generation implementation are stored in one unique set, R.

This route storage method improves the computational effort of the decomposition-based heuristic

algorithm.

4.3 Penalty Function Description

It is evident from Section 4 that we need to consider two important guiding principles in our

decomposition-based heuristic: (i) feasibility of solutions obtained for each time period in the
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Algorithm 1: Label setting algorithm for solving ESPPRC in time-period t for PSP(τ)

// Initialization

Obtain the updated link risks corresponding to the recent RMP solved;
Add label {d(s), 0, 0} to the set of unprocessed labels Ω and set cost({d(s), 0, 0})=0;
Create two sets, one for storing each route found, and the other one for saving the predecessor
nodes of each label;
u← d(s);

while u 6= d(e) do
Find the best label uu = {u, Lu,Wu} such that Lu = min{Lk : {k, Lk,Wk} ∈ Ω, k 6= d(e)};
if Lu ≤ L then

Find the set of instant neighbors of u,Γu;
for each v ∈ Γu do

// Feasibility Check

isFeasible ← false;
if Lu + luv ≤ L & Wu + qτu ≤ C & v 6∈ Preds[{u, Lu,Wu}] then

isFeasible ← true;
Lv ← Lu + luv;
Wv ←Wu + qτu;

end

// Existence Check

if Label {v, Lv,Wv} 6∈ Ω then
Cost({v, Lv,Wv})←∞;

end

// Improvement Check

isImproved ← false;
if Cost({u, Lu,Wu}) + ĉrτuv < Cost({v, Lv,Wv}) then

// Dominance Check

if @{k, Lk,Wk} ∈ Ω such that
k = v & Lk ≤ Lv & Wk ≤Wv & Cost({k, Lk,Wk}) < Cost({v, Lv,Wv}) then

Create label ({v, Lv,Wv}) and add it to the set of unprocessed labels, Ω;
Cost({v, Lv,Wv})← Cost({u, Lu,Wu}) + ĉrτuv;
Preds[{v, Lv,Wv}]← Preds[{u, Lu,Wu}] ∪ {u};
isImproved ← true;

end

end

if isFeasible & isImproved & v = d(e) & Cost({v, Lv,Wv}) −π < 0 then
Add the unique path from d(s) to d(e) to the set of routes;

end

end

end
Remove label {u, Lu,Wu} from the set Ω;

end
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complete framework of the problem, and (ii) potential improvement in the objective value found

by our heuristic algorithm. Since we decompose our problem into T different LCVRPs, the set of

solutions of these T sub problems found by the column generation approach must taken together

construct a feasible solution for the original problem, which we label as PLCVRP. Constraint (5)

in the RMP formulation helps to guide the feasibility of the collective achieve LCVRP solutions

to achieve the PLCVRP solution. The second guiding principle helps the decomposition-based

algorithm find optimal or near optimal solutions. To guide us towards this goal we assign a penalty

for leaving a customer unvisited in the first period. Although this penalty is defined based on how

healthcare centers are covered in the first period, its definition captures the increase in total risk in

all the T time periods. To present the formulation of the penalty function, we define the following

additional notation.

Parameters:

ztr : 1 if route r is selected in the solution corresponding to period t, 0 otherwise.

φrti : Partial cost (transport risk) of transporting the medical waste at center i to the next center

on route r for the first time in period t. This quantity can be computed as follows:

φrti =
∑

(i,j)∈Ar

ρijlijαijδ
r
ijq

t
i .

We define the risk penalty corresponding to healthcare center i, Pit, if it is left unserved until

the end of time period t as follows:

Pit =
T∑

ω=t+1


ω−1∏
t′=1

(
1−

∑
r∈Rt′

airz
t′
r

)×
( ∑
r∈Rω

airz
ω
r

)
×
(

(ω − 1)qtiθi +
∑
r∈Rω

φrωi airz
ω
r

) (14)

for each i ∈ V and t = 1, 2, .., T − 1. Note that ω and t′ are dummy indices for denoting time

periods. In order to calculate these penalty functions, at first, we need to solve the PLCVRP using

the aforementioned column generation method without incorporating a penalty function. This step

can be considered as initialization to find a solution or a routing schedule as zr = {zjr : j ∈ T },
which is not necessarily an optimal solution for PLCVRP. Then, the penalty function Pit is defined

as the sum of occupational and transport risk corresponding to leaving medical center i unserved

till the end of period t considering the routing schedule, zr. We add these penalty functions to the

objective of RMP (τ) at the beginning of the decomposition-based algorithm. Thus, minimizing

the total penalty can help the algorithm to select a suitable set of healthcare centers to visit in each

time period τ < T , and consequently, improve the routing schedules of future periods. Finally, we

replace the RMP(τ)’s objective function (2) with the following formula:

∑
r∈R

cτrzr +
∑
i∈V

T−1∑
t=τ

biPit (15)

Note that bi are weight factors for the penalty function values which are randomly generated from
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Bernoulli distribution with parameter p = 0.5. These weight factors play a significant role in

prioritizing customers to be covered. While one can estimate bi by surveying expert opinions,

we suggest randomly generate these factors so that the proposed decomposition-based heuristic

algorithm (Algorithm 2) can generate a new solution each time it is run. We compare solutions

obtained by running the algorithm multiple times to attain a good quality solution.

Algorithm 2: Decomposition based heuristic algorithm for solving PLCVRP

Data: Number of medical centers, distance between medical centers, depot, number of vehicles,
maximum route length, vehicle capacity, number of time periods, and storage capacity at
medical centers

Result: Schedule for medical waste collection during the time horizon
Acquire the input data;

τ ← 1; NI ← 0; PNIi ← 0 ∀i ∈ V;

while NI ≤ maximum number of iterations do
Generate a primary set of routes for the RMP(τ);

while τ ≤ T do
Update the medical waste storage at each center;
Construct RMP(τ);

Add PNIit : i ∈ V, t = τ, ..., T − 1 to the objective function of RMP(τ) as in (15);
do

Add new promising columns to the RMP(τ);
Solve the RMP(τ) applying the primary set of routes;
Update the RMP(τ)’s objective value and the lower bound;
Find the constraints’ dual values for the RMP(τ);
Calculate the link risks applying the dual values;
Solve PSP(τ) with calculated risks;

while ReducedCostr < 0 for any new route r;
Solve RMP(τ) with binarity constraints;
τ ← τ + 1;

end

NI ← NI + 1;
τ ← 1;

Update PNIiτ ∀i ∈ V, τ = 1, ...T − 1;

end

4.4 The Framework of the Decomposition-based Algorithm

The decomposition based algorithm, applied for solving the PLCVRP, is described in Algorithm 2.

Notation NI and PNIiτ are denoted as the number of iterations, and penalty function corresponding

to healthcare center i if it is left unserved at the end of period τ in iteration NI, respectively. The

heuristic approach invokes the column generation method T times for every τ ∈ T , denoted as

CG(τ). Each CG(τ) is composed of one RMP(τ) and one PSP(τ). Note that the initial solution

which is needed to construct the RMPs can be defined as |V| single-visit routes. A vehicle traveling

on a single-visit route, starts from the depot and visits a heathcare center, then goes back to the

depot. However, since we assume that every customer must be visited at least once in the time
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horizon, a complete route is added to the initial set of solutions to ensure the feasibility of the

LCVRP. A vehicle traveling on a complete route starts from the depot, visits all the customers,

and then goes back to the depot. Recalling equation (14), an initial feasible solution for PLCVRP is

also required for defining the penalty functions. We can find a good initial solution for PLCVRP by

solving the CG(τ) for τ ∈ T considering Piτ = 0,∀i ∈ V, τ = 1, ...T − 1. The solutions to PLCVRP

at various stages can be used to revise the penalty functions. When PSP(τ) does generate no more

route, we solve RMP(τ) as an integer program after replacing (6) by binarity conditions to obtain

a solution.

In order to update the medical waste storage at healthcare centers, we should add the left-over

(or un-served) waste of the previous time period at each center to its current period’s medical

waste. To satisfy this updating procedure, we compute

qti =

(
1−

∑
r∈Rt

airz
t−1
r

)
qt−1i + ∆qti ∀t ∈ T (16)

where (1 −
∑

r∈Rt
airz

t−1
r ) indicates whether the healthcare center i is visited in period t − 1 or

not. We emphasize that all the route alternatives generated during one cycle of the decomposition

based algorithm are saved in set R. After implementing CG(τ) for τ ∈ T , the infeasible routes with

respect to the updated demand will be removed from set R. The remaining routes in R will be

added to the set of route alternatives in the next period, Rτ+1, before implementation of CG(τ+1).

This process continues until τ = T − 1. This simple procedure of saving route alternatives helps

improve the computational effort of our heuristic approach. The stopping criterion of our algorithm

is based on a specified number of iterations for PLCVRP.

5 Computational Analysis

The goals of our computational analysis are to: (i) to investigate the quality of the heuristic

approach for solving the PLCVRP, and (ii) to analyze the solutions provided by imposing different

resource limitations. We test our algorithm on a set of network instances, with chosen number of

identical vehicles, vehicle capacity (C) and maximum travel length (L). The customer demands are

randomly generated from a Uniform distribution (U(4, 40)) for all time periods. We apply a typical

weighted-sum method to develop a single objective composed of the normalized occupational risk

objective and the normalized transport risk objective with equal weights; for more details see Kim

and de Weck (2005). Our heuristic algorithm was implemented in Java using CPLEX 12.6.1 on a

2.40 GHz PC with 32.0 GB memory. Whenever the CPLEX MIP solver was used for comparison

purposes, the value of the integer tolerance parameter was set to 10−3. We describe the data set

we applied in our analysis followed by an explanation of our observations.
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Table 2: Test Instances

Test |A| |V| C(kg) |K| L(miles)

1 20 5 1500 1 100
2 73 10 1500 2 100
3 77 15 1800 2 150
4 154 25 2000 3 200

5.1 Computational Performance of Decomposition Based Algorithm

We consider different test instances to carry out our numerical experiments and investigate our

goals. VRPs usually have been solved for complete graphs, but we consider incomplete graphs for

some of the test problems. The reason behind this assumption is that there is a maximum route

length limitation in the PLCVRP. Thus, we take advantage of this travel distance constraint, and

eliminate the links from the graph if their lengths are more than the maximum allowable travel

distance. The computational effort of CPLEX to solve the PLCVRP improves if we consider the

underlying graph with the same number of nodes and fewer number of links.

To verify the viability of the decomposition based approach, we compare solutions obtained

by the heuristic algorithm with the solutions obtained from the exact algorithm. Comparisons on

real-life instances are intractable due to the high complexity of the underlying problem. So, we

created small and medium size examples. Note that |K| represents the number of vehicles. These

instances have similar characteristics of the real networks with |V| number of nodes (healthcare

centers), and |A| number of links. We generated 10 test instances with a 3-day planning horizon.

Note that we consider ρij = θi = 10−6 ∀(i, j) ∈ V in all our experiments based on the available

data on hazardous materials transportation in the literature (Taslimi et al., 2017).

We developed an arc based MIP formulation for PLCVRP for the sole purpose of obtaining

bounds in small problem instances using the CPLEX solver on this MIP formulation. Details of

the arc based MIP formulation are omitted for the sake of brevity. CPLEX generated optimal

integer solutions—without subtours—for instances with 5 to 25 number of customers, while there

were optimality gaps for the larger instances. Table 3 demonstrates the results for instances with 5

to 25 medical centers shown in Table 2. Due to the presence of a randomness factor in the penalty

function, we solved the heuristic approach 30 times for every instance of Table 3. In Table 4, the

Optimality Gap is defined by comparing the best integer and best bound found by CPLEX within

24 hours. The optimality gap denoted by Gap* in Table 4 shows the difference between the best

bound found by CPLEX within 24 hours and the objective value found by the heuristic algorithm.

To better present the efficiency of our heuristic approach, we report the minimum, mean, and

maximum optimality gaps obtained for each test instance. The minimum optimality gap varies from

0% to 3.15% and shows the impact of applying randomness in selecting customers in our heuristic

algorithm. The mean gap varies from 0% to 6.06%, and shows the effectiveness of the heuristic.

CPLEX run time exponentially grows with the number of healthcare centers and the number of time
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Table 3: Computational Performance of the Proposed Heuristic Algorithm

Exact Heuristic Exact vs. Heuristic

Test Risk Run Time Risk Run Time Min Gap Mean Gap Max Gap

1 502.9 0 sec 502.9 0 sec 0% 0% 0%
2 2461.2 11 min 33 sec 2508.0 23 sec 1.87% 5.98% 7.41%
3 9401.7 19 hr 17 min 9826.9 18 min 21 sec 4.25% 5.24% 5.87%
4 6270.4 24 hr 10 min 6474.1 9 min 12 sec 3.15% 6.06% 9.57%

Table 4: Computational Performance of the Proposed Heuristic Algorithm for Large-sized Instances

CPLEX Heuristic

Best Best Optimality Run Objective Run
Instance |A| |V| C |K| Integer Bound Gap Time Value Gap* Time

5 290 40 180 10 221.6 200.5 9.50% 24 hr 210.3 4.66% 4 min, 21 sec
6 290 40 150 8 245.8 209.5 14.75% 24 hr 224.7 6.76% 2 min, 15 sec
7 290 40 200 6 254.7 206.4 18.94% 24 hr 234.9 12.13% 4 hr, 5 min
8 344 50 180 7 326.7 269.2 17.60% 24 hr 315.2 14.59% 3 hr, 8 min
9 344 50 150 8 274.2 24 hr 319.5 14.17% 6 hr, 5 min

10 344 50 160 10 272.6 24 hr 283.8 3.94% 4 hr, 15 min

periods. Although the problem becomes more complicated by increasing the number of healthcare

centers, Table 3 shows that the run time of our heuristic for all test problems is significantly less

than those of the exact method. For example, when there are 25 healthcare centers to be served,

the solution can be obtained by the heuristic algorithm within 9 minutes and 12 seconds, where

as the exact method (CPLEX) requires 24 hours and 10 minutes to obtain the solution. Thus,

the decomposition-based heuristic approach is capable of finding high quality solutions in notably

shorter run time. To be able to improve the optimality gap obtained by CPLEX for large size

instances, we applied the solution found by our heuristic algorithm as an MIP-Start in CPLEX.

Although providing CPLEX with a good feasible initial solution helped to improve its starting best

integer, the lower bound improvement became worse.

In Table 4, we present the results for 6 large-sized instances with 40 and 50 number of med-

ical centers to better judge the efficiency of each solution method. Evidently, the exact method

(CPLEX) is intractable for large size problem instances. The branch and bound algorithm is inef-

ficient in reducing the optimality gap after a certain amount of time because, the size of the tree

and number of nodes grow exponentially in PLCVRP. The bottleneck in the results obtained by

CPLEX is due to the lack of tangible improvement in the lower bound. Table 4 shows the results

found by CPLEX after 24 hours running the program for every instance. Comparison of the final

solution obtained by heuristic algorithm with its corresponding best bound and best integer found

by CPLEX, demonstrates the efficiency of our proposed heuristic approach. Comparison of two

columns, Optimality Gap and Gap* in Table 4, indicates that the solutions obtained by heuristic

algorithm strikingly reduce the optimality gap. Moreover, the decomposition based algorithm is
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Table 5: Results Obtained by the Decomposition Based Heuristic for Different Parameter Setting

Instance |K| Vehicle Capacity Max Route Length Total Risk Run-time

11-a 2 C L 113.5 5 min 30 sec
11-b 2 C 1

2L 114.8 2 min 25 sec
11-c 4 C 1

2L 93.3 4 min 46 sec
11-d 4 1

2C
1
2L 95.2 1 min 15 sec

able to find the near-optimal solutions or probably optimal solutions in an acceptable time interval.

As one can see from Table 4, computational time of the heuristic approach is highly dependent on

the size of the graph and the value of parameters.

5.2 Analysis of Experiments with Different Resource Limitations

We now show how the number of available vehicles, vehicle capacity, and maximum allowable route

length affect the routing decision in the context of the PLCVRP. We choose an instance with 15

healthcare centers, 77 links, and a 3-day planning horizon from the instance pool. We see from

Table 5 that four different combinations of resource availability are considered. The solutions

demonstrate the minimum total risk obtained after implementing 10 iterations of the heuristic

algorithm for each of the test instances. The comparison of instance 11-a and 11-b reveals that if

we set a tighter limit on the maximum allowable distance a vehicle can travel, the total risk on the

network will be increased. This likely happens due to the decrease in flexibility in visiting farther

healthcare centers which have less amount of hazardous medical waste.

Moreover, the comparison of instance 11-b with instances 11-c and 11-d indicates that increase

in the number of available identical vehicles can result in a decrease of total risk. The solution

obtained for instance 3 provides valuable managerial information. If we suppose that each vehicle’s

travel distance during a time-period is at most equal to L, then, changing L to L/2 is equivalent

to doubling the total number of available vehicles. Alternatively, we can assume that the drivers

work 2 shifts with maximum allowable travel distance of L/2. This strategy leads to a remarkable

reduction in total risk of medical waste collection for instance 3.

6 An Illustrative Case Study: Dolj, Romania

We now illustrate our method on a case study that determines weekly routing schedules for medical

waste collection in the county of Dolj, Romania. The locations of 10 hospitals (healthcare centers)

and the treatment center are as specified on the map in Figure 2. The locations are shown by

colored pins and their corresponding unit numbers as presented in Table 6. In our case study,

we use the real data set previously presented by Bulucea et al. (2008) for the assessment of the

biomedical waste situation in the hospitals of Dolj. The case study focuses on applying our model

and its solution methodology to medical waste (hazardous and non-hazardous) pickup for the 10
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Figure 2: Hospitals’ locations in Dolj, Romania

hospitals of Dolj County. Our focus is on the portion of the waste stream termed hazardous such as,

pathological waste, chemical waste, genotoxic waste, and radioactive waste. Our findings indicate

that PLCVRP provides a different set of route alternatives which result in a significant reduction

in risk for medical waste transportation.

6.1 The Data Set

Table 6 shows the survey results of the average daily medical waste generated and waste handling

corresponding to a month of observation. Since we were able to find the exact location only for

10 out of 11 hospitals using Google Maps, we only use 10 hospitals in our case study. We chose a

medical waste treatment center in Dolj as the depot for our PLCVRP (Basel Convention, 2011). The

shortest path between any pair of nodes represent the corresponding link on the complete graph,

which consisted of 11 nodes (10 hospitals and depot). Using street address as of nodes, shortest

path lengths were obtained using google map (See Appendix A). We defined a weekly schedule

with 5 working days (or periods) from Monday to Friday. The daily medical waste accumulated

at each hospital is randomly generated from a uniform distribution with the mean equal to the

average daily amount of medical waste presented in Table 6. The portion of generated medical

waste at each hospital that is hazardous waste is found by dividing the hazardous waste by the

total non-hazardous and hazardous generated medical waste. In order to make the one-time pick-up

possible for all the vehicles, we assume that the maximum storage capacity at hospitals is equal to

the vehicle’s capacity. Moreover, the maximum allowable travel distance on a route for a vehicle is
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Table 6: Average Daily Hazardous Medical Waste Generated in Hospitals of Dolj District

No. Hazardous Waste (kg/24 h)

1 443.00
2 71.50
3 336.00
4 32.95
5 53.00
6 26.50
7 4.50
8 10.00
9 8.90

10 7.77

considered to be 300 miles. The case study involves routing two identical medical waste collection

vehicles in 5 days. For our testing, we assume that the consequence of a hazardous material

accident is proportional to the average population density in the county of Dolj (230/square mile),

and generate reasonable estimates of the parameters, including ρij , and θi.

6.2 Results

The decomposition based heuristic is used to solve the PLCVRP. As in Section 5, we apply Java

and CPLEX 12.6.1 on a 2.4 GHz computer to implement our algorithm. We investigate the char-

acteristics of the PLCVRP’s solutions with respect to four different criteria: (i) transport and

occupational risk, (ii) transport risk, (iii) occupational risk, and (iv) transportation cost. Tables

7 to 10 summarize the implications of these four alternative objectives. In Table 7, the medical

waste collection routes corresponding to vehicles in each day are represented. Each of the four

objectives has a different routing schedule during the planning horizon. Our goal of considering the

last objective, transportation cost, is to indicate how the route schedules would change in terms of

defining different objective functions for PLCVRP. Transportation cost in this study is described

as follows: ∑
i∈V ′

∑
j∈V ′

fwijlij (17)

where f is the fuel cost per kilogram per mile and wij denotes the vehicle’s load in kg on link (i, j).

Similar to the model of Kara et al. (2008), the transportation cost is a function of vehicle’s load,

which is assumed to be linear for simplicity. As we can see from Table 9, when the objective of

PLCVRP is occupational risk, all the medical centers should be served in every single day of a week.

This implies that medical centers have no tendency to store the medical wastes even for a single

period. Another interesting observation is increase in the daily number of unvisited medical centers

when the objective is the transport risk. Since our planning horizon is finite, we force the PLCVRP

20



Table 7: Implications of different routing schemes

Objective of PLCVRP Vehicle No. Monday Tuesday Wednesday Thursday Friday

Transport Risk 1 (0,10,7,2,1,0) (0,9,4,1,0) (0,9,4,1,0) (0,10,7,4,2,1,0) (0,10,6,9,4,1,0)
& Occupational Risk 2 (0,6,9,3,0) (0,10,7,2,0) (0,10,3,2,0) (0,9,6,5,3,0) (0,5,7,8,2,3,0)

Transport Risk 1 (0,7,9,2,1,0) (0,4,1,0) (0,10,2,3,0) (0,6,9,7,4,2,3,0) (0,9,5,6,4,2,3,0)
2 (0,10,4,0) (0,9,7,3,2,0) (0,6,4,1,0) (0,10,5,1,0) (0,10,7,8,1,0)

Occupational Risk 1 (0,1,4,8,0) (0,1,4,8,0) (0,4,3,8,0) (0,1,3,8,0) (0,1,3,8,0)
2 (0,2,3,7,6,5,9,10,0) (0,2,3,7,5,6,9,10,0) (0,2,1,7,6,5,9,10,0) (0,2,4,7,5,6,9,10,0) (0,2,4,7,5,6,9,10,0)

Transportation Cost 1 (0,9,7,1,0) (0,9,4,0) (0,8,4,0) (0,7,10,1,0) (0,8,10,7,4,1,3,0)
2 (0,10,2,3,0) (0,8,3,2,1,0) (0,7,1,2,3,0) (0,8,5,4,2,3,0) (0,5,6,9,2,0)

Table 8: Vehicles’ load (travel distance) for two routing schemes

Objective of PLCVRP Vehicle No. Monday Tuesday Wednesday Thursday Friday

Transport Risk 1 776 (178) 1744 (141) 1326 (141) 1470 (195) 1798 (287)
& Occupational Risk 2 616 (181) 882 (175) 1092 (164) 1334 (198) 904 (276)

Transportation Cost 1 652 (129) 692 (133) 610 (90) 1474 (173) 1732 (270)
2 581 (164) 1652 (84) 1764 (65) 1323 (263) 1462 (199)

to find the route schedules such that all the medical centers in the last day of time horizon are

visited. This assumption results in having more work load on the last day of the week. To address

this issue we solve the PLCVRP for a longer planning horizon and extract our desired solution

for a shorter time horizon. Since PLCVRP imposes a storage limit on the amount of accumulated

medical waste at hospitals, the solution obtained for a longer time horizon necessitates serving all

the customers after some time periods.

From Table 8, one can conclude that the solutions impose a good work balance on each vehicle,

such that, any of two drivers who has to pick up more amount of medical waste from hospitals

travels a shorter distance compared to the other vehicle. In this situation, the drivers of two vehicles

might be able to finish their work in an equal time-interval during a time period. Figures 3, 6, and

7 in Appendix B show the weekly route schedules obtained by PLCVRP for Monday, Wednesday,

and Friday.

A valuable observation regarding Table 10 is that by solving the version of PLCVRP that aims

to minimize both transport and occupational risk on the network we can aid decision makers to

develop a better routing schedule in terms of the imposed risk of hazardous medical waste. In order

to obtain the risk values presented in Table 10, a summation of transport risk and occupational

risk corresponding to each PLCVRP’s solution is calculated. A comparison of the solution found

by minimizing the transportation cost with the solution obtained by minimizing the total risk

(transport risk and occupational risk) demonstrates a 26.25% reduction in risk value. Moreover, the

run time in Table 10 shows that the PLCVRP is computationally more difficult to solve compared

with the single-objective PLCVRP. Although the routing schedule with the minimum total risk is

not necessarily a schedule with minimum transportation cost, the remarkable reduction in total risk
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Table 9: Unvisited medical centers for three routing schemes

Objective of PLCVRP Monday Tuesday Wednesday Thursday Friday

Transport Risk & Occupational Risk 4,5,8 3,5,6,8 5,6,7,8 8

Transport Risk 3,5,6,8 5,6,7,8 5,6,7,8,9 8

Occupational Risk

Transportation Cost 4,5,6,8 5,6,7,10 5,6,9,10 6,9

Table 10: Risk values for all routing schemes

Objective of PLCVRP Risk Value Run Time

Transport Risk 101.71 2 min 20 sec
Occupational Risk 4.42 2 min 25 sec
Transport Risk & Occupational Risk 110.92 5 min 12 sec
Transportation Cost 150.12 5 min 17 sec

can convince decision makers to implement the obtained schedule. Although, solving the PLCVRP

expends more efforts and entails complicated analysis, the route schedule and the risk value look

to be plausible according to our observations.

7 Conclusion and Future Research

We introduced a periodic load-dependent capacitated vehicle routing problem (PLCVRP) to find

the least risk routing schedule for medical waste collection. We proposed a decomposition based

heuristic approach to solve the PLCVRP, where each decomposed sub-problem itself is solved by

a column generation approach. Computational results using the decomposition based heuristic

confirmed its efficiency and tractability. We applied our PLCVRP and the heuristic approach to a

case study to verify the importance of this study in real applications. We consider our proposed

model and algorithm a step towards solving other types of multi-period inventory routing problems.

To improve the solution quality and computation time, we can consider an exact algorithm for

solving each decomposed sub-problem. Each sub-problem is a load-dependent capacitated vehicle

routing problem (LCVRP), for which (Fukasawa et al., 2015) developed a branch-cut-and-price

algorithm. Considering such an exact solution approach within the proposed time decomposition

framework with penalty functions will be a valuable future research direction.

A suggested refinement of our model is to consider stochasticity in medical waste generation,

because changes in demand may result in a different optimal solution. The load dependency

assumption in PLCVRP can probably spread out the application of our model in other areas

of transportation such as, hazardous materials transportation and green transportation. Future
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research suggestions include collection of real data from healthcare centers and medical waste

shipping companies. Future work can also consider multi-criteria decision making techniques and

Pareto optimal solutions to find ideal routing schedules with respect to minimization of both risk

and cost.
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Appendices

A Locations of 10 hospitals and a treatment center in the city of

Dolj, Romania

Unit No. Unit Name Location

0 Treatment Center S.C. SIGMAFLEX S.R.L. DJ, Craiova, str.Brazda Novac, BL. 7

1 Emergency Clinical Hospital of Craiova Spitalul Clinic Judetean de Urgenta Strada Tabaci 1 Craiova 200642 Romania

2 Municipal Clinical Hospital of Craiova Spitalul Clinic Municipal Filantropia Strada Filantropiei 1 Craiova 200143 Romania

3 Infectious Diseases Clinical Hospital of Craiova Hitmed Strada Stefan cel Mare 23 Craiova 200129 Romania

4 Lungphysiology Hospital of Leamna Spitalul de Pneumofiziologie Leamna de Sus 207129 Romania

5 Municipal Hospital of Calafat Spitalul Municipal Calafat Strada Traian 5 Calafat 205200 Romania

6 Psychiatry Hospital of Poiana Mare Spitalul de psihiatrie DJ553 Poiana Mare 207470 Romania

7 Urban Hospital of Segarcea Spitalul orasenesc Strada Dealului Segarcea Romania

8 Urban Hospital of Filiasi Filiasi City Hospital Bulevardul Racoteanu 216 Filiasi 205300 Romania

9 Urban Hospital of Bailesti Spital Strada Depozitelor Bailesti Romania

10 Hospital of Dabuleni Spitalul Orasenesc Asezamintele Brancovenesti Dabuleni DN54A Dabuleni Romania

B Detailed route-schedules in the map in Figures 3–7
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Unit 10 
Vehicle’s load: 78 
Unit’s hazmat load: 7.8  
Travel distance: 80  

Unit 7 
Vehicle’s load: 96 
Unit’s hazmat load: 5  
Travel distance: 142  

Unit 2 
Vehicle’s load: 276 
Unit’s hazmat load: 32.4 
Travel distance: 171  Unit 1 

Vehicle’s load: 776 
Unit’s hazmat load: 183 
Travel distance: 174  

Unit 6 
Vehicle’s load: 159 
Unit’s hazmat load: 37.2  
Travel distance: 87  

Unit 9 
Vehicle’s load: 293 
Unit’s hazmat load:7.7   
Travel distance: 118  

Unit 3 
Vehicle’s load: 616 
Unit’s hazmat load:313.3 
Travel distance: 177  

(a) Routes with minimum total risk

Unit 7 
Vehicle’s load: 152 
Unit’s hazmat load: 5  
Travel distance: 98 

Unit 1 
Vehicle’s load: 652 
Unit’s hazmat load: 183.3  
Travel distance: 125  

Unit 9 
Vehicle’s load: 134 
Unit’s hazmat load: 7.8  
Travel distance: 60  

Unit 3 
Vehicle’s load: 158 
Unit’s hazmat load: 313.6  
Travel distance: 159 

Unit 10 
Vehicle’s load: 78 
Unit’s hazmat load: 7.8  
Travel distance: 80 

Unit 2 
Vehicle’s load: 581 
Unit’s hazmat load: 32.5  
Travel distance: 160 

(b) Routes with minimum cost

Figure 3: Route schedule for medical waste collection on Monday in Dolj, Romania.
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Unit 1 
Vehicle’s load: 1744 
Unit’s hazmat load: 385.8  
Travel distance: 137 

Unit 4 
Vehicle’s load: 692 
Unit’s hazmat load: 32.5  
Travel distance: 127  

Unit 9 
Vehicle’s load: 100 
Unit’s hazmat load: 7.8  
Travel distance: 60  

Unit 2 
Vehicle’s load: 882 
Unit’s hazmat load: 54.5  
Travel distance: 171 

Unit 7 
Vehicle’s load: 580 
Unit’s hazmat load: 63.8  
Travel distance: 142 

Unit 10 
Vehicle’s load: 350 
Unit’s hazmat load: 35.4  
Travel distance: 80 

(a) Routes with minimum total risk

Unit 2 
Vehicle’s load: 600 
Unit’s hazmat load: 54.5  
Travel distance: 77 

Unit 4 
Vehicle’s load: 792 
Unit’s hazmat load: 82.4  
Travel distance: 127 

Unit 8 
Vehicle’s load: 143 
Unit’s hazmat load: 119.1  
Travel distance: 39 

Unit 1 
Vehicle’s load: 1652 
Unit’s hazmat load: 385.8  
Travel distance: 80 

Unit 9 
Vehicle’s load: 100 
Unit’s hazmat load: 5.8  
Travel distance: 60 

Unit 3 
Vehicle’s load: 298 
Unit’s hazmat load: 150.5  
Travel distance: 76 

(b) Routes with minimum cost

Figure 4: Route schedule for medical waste collection on Tuesday in Dolj, Romania.
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Unit 2 
Vehicle’s load: 1092 
Unit’s hazmat load: 49,8  
Travel distance: 160 

Unit 3 
Vehicle’s load: 816 
Unit’s hazmat load: 679.7  
Travel distance: 159 

Unit 10 
Vehicle’s load: 116 
Unit’s hazmat load: 11.7  
Travel distance: 80 

Unit 4 
Vehicle’s load: 1326 
Unit’s hazmat load: 256.7  
Travel distance: 137 

Unit 4 
Vehicle’s load: 460 
Unit’s hazmat load: 54.8  
Travel distance: 127 

Unit 9 
Vehicle’s load: 166 
Unit’s hazmat load: 9.7  
Travel distance: 60 

(a) Routes with minimum total risk

Unit 2 
Vehicle’s load: 1219 
Unit’s hazmat load: 49.8  
Travel distance: 60 

Unit 1 
Vehicle’s load: 943 
Unit’s hazmat load: 256.7  
Travel distance: 57 

Unit 7 
Vehicle’s load: 243 
Unit’s hazmat load: 67.5  
Travel distance: 30 

Unit 4 
Vehicle’s load: 610 
Unit’s hazmat load: 11.7  
Travel distance: 84 

Unit 8 
Vehicle’s load: 150 
Unit’s hazmat load: 11.7  
Travel distance: 39 

Unit 3 
Vehicle’s load: 1764 
Unit’s hazmat load: 529.2  
Travel distance: 61 

(b) Routes with minimum cost

Figure 5: Route schedule for medical waste collection on Wednesday in Dolj, Romania.
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Unit 5 
Vehicle’s load: 1008 
Unit’s hazmat load: 460.1  
Travel distance: 107 

Unit 9 
Vehicle’s load: 183 
Unit’s hazmat load: 10.7  
Travel distance: 60 

Unit 2 
Vehicle’s load: 570 
Unit’s hazmat load: 34.8  
Travel distance: 188 

Unit 3 
Vehicle’s load: 1334 
Unit’s hazmat load: 307.8  
Travel distance: 194 

Unit 4 
Vehicle’s load: 377 
Unit’s hazmat load: 30.4  
Travel distance: 178 

Unit 7 
Vehicle’s load: 121 
Unit’s hazmat load: 8.6  
Travel distance: 142 

Unit 10 
Vehicle’s load: 90 
Unit’s hazmat load: 9.1  
Travel distance: 80 

Unit 1 
Vehicle’s load: 1470 
Unit’s hazmat load: 330  
Travel distance: 191 

Unit 6 
Vehicle’s load: 461 
Unit’s hazmat load: 67.3  
Travel distance: 91 

(a) Routes with minimum total risk

Unit 5 
Vehicle’s load: 557 
Unit’s hazmat load: 460.1  
Travel distance: 163 

Unit 8 
Vehicle’s load: 10 
Unit’s hazmat load: 8.3  
Travel distance: 39 

Unit 2 
Vehicle’s load: 1006 
Unit’s hazmat load: 34.8  
Travel distance: 258 

Unit 1 
Vehicle’s load: 1474 
Unit’s hazmat load: 330  
Travel distance: 169 

Unit 4 
Vehicle’s load: 813 
Unit’s hazmat load: 30.5  
Travel distance: 248 

Unit 7 
Vehicle’s load: 18 
Unit’s hazmat load: 15  
Travel distance: 30 

Unit 10 
Vehicle’s load: 574 
Unit’s hazmat load: 56.3  
Travel distance: 92 

Unit 3 
Vehicle’s load: 1323 
Unit’s hazmat load: 307.8  
Travel distance: 259 

(b) Routes with minimum cost

Figure 6: Route schedule for medical waste collection on Thursday in Dolj, Romania.
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Unit 5 
Vehicle’s load: 36 
Unit’s hazmat load: 30.2  
Travel distance: 89 

Unit 8 
Vehicle’s load: 379 
Unit’s hazmat load: 26.7  
Travel distance: 235 

Unit 9 
Vehicle’s load: 302 
Unit’s hazmat load: 169  
Travel distance: 206 

Unit 1 
Vehicle’s load: 1798 
Unit’s hazmat load: 440  
Travel distance: 283 

Unit 4 
Vehicle’s load: 598 
Unit’s hazmat load: 35.2  
Travel distance: 273 

Unit 7 
Vehicle’s load: 58 
Unit’s hazmat load: 6.1  
Travel distance: 170 

Unit 10 
Vehicle’s load: 49 
Unit’s hazmat load: 4.9  
Travel distance: 80 

Unit 6 
Vehicle’s load: 99 
Unit’s hazmat load: 11.7  
Travel distance: 175 

Unit 2 
Vehicle’s load: 757 
Unit’s hazmat load: 68.3  
Travel distance: 271 

Unit 3 
Vehicle’s load: 904 
Unit’s hazmat load: 142.7  
Travel distance: 272 

(a) Routes with minimum total risk

Unit 5 
Vehicle’s load: 36 
Unit’s hazmat load: 30.2  
Travel distance: 89 

Unit 8 
Vehicle’s load: 18 
Unit’s hazmat load: 15  
Travel distance: 39 

Unit 9 
Vehicle’s load: 1162 
Unit’s hazmat load: 32.4  
Travel distance: 136 

Unit 1 
Vehicle’s load: 1585 
Unit’s hazmat load: 440  
Travel distance: 263 

Unit 4 
Vehicle’s load: 385 
Unit’s hazmat load: 35.2  
Travel distance: 253 

Unit 7 
Vehicle’s load: 89 
Unit’s hazmat load: 6.1  
Travel distance: 217 

Unit 10 
Vehicle’s load: 67 
Unit’s hazmat load: 4.9  
Travel distance: 155 

Unit 6 
Vehicle’s load: 610 
Unit’s hazmat load: 116.4  
Travel distance: 105 

Unit 2 
Vehicle’s load: 1462 
Unit’s hazmat load: 68.3  
Travel distance: 195 

Unit 3 
Vehicle’s load: 1732 
Unit’s hazmat load: 142.7  
Travel distance: 266 

(b) Routes with minimum cost

Figure 7: Route schedule for medical waste collection on Friday in Dolj, Romania.
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