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Abstract

We develop a multi-period capacitated flow refueling location problem for electric vehicles

(EVs) as the EV market responds to the charging infrastructure. The optimization model will

help us determine the optimal location of level 3 chargers as well as the number of charging

modules at each station over multiple time periods. Our model can also be applied to fast-filling

gaseous alternative fuel vehicles under similar assumptions. We define a number of demand

dynamics, including flow demand growth as a function of charging opportunities on path as well

as natural demand growth independent of charging infrastructure. We also present an alternative

objective function of maximizing electric vehicle demand in addition to maximizing flow coverage.

A case study based on a road network around Washington, D.C., New York City, and Boston is

presented to provide numerical experiments related to demand dynamics, showing the potential

problems in multi-period planning.

Keywords: electric vehicles; facility location; flow refueling location problem; multi-period

planning; vehicle market demand dynamics; alternative fuel vehicles

1 Introduction

Recently, alternative fuel vehicles (AFV) are gaining attention worldwide due to growing concerns

of environmental problems. Different types of fuel including electricity, natural gas and hydrogen

try to take place of petroleum to reduce the greenhouse and other emissions. However, the refueling

facility network for AFVs is not as mature as that of conventional gas stations and is not widely

distributed. The deficiency of charging stations has been mentioned as one of the barriers that

prevent AFVs from becoming more popular in several studies (Melaina, 2003; Kuby and Lim, 2005,

2007; Melaina and Bremson, 2008; Shukla et al., 2011; Chung and Kwon, 2015). A better network of

charging service would improve the use of electric vehicles (EV), and more EV users would promote
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the construction of infrastructure. Another barrier for promoting AFVs is the limited vehicle range

(Shukla et al., 2011; Wang and Lin, 2009; Wang and Wang, 2010; Lim and Kuby, 2010; Capar and

Kuby, 2012; Romm, 2006; Chung and Kwon, 2015). While the coming generation of luxury EVs

should have ranges much higher than 160 km, most of the EVs currently have a range of 60 km

to 160 km with full battery. Thus, the current EV range may not be sufficient for long distance

intercity trips. Due to these limits, building a charging network and choosing the right locations for

chargers is helpful to popularize the use of EVs and solve the environmental problems caused by

conventional vehicles.

These facts motivate the need of the study on optimal locations for refueling or charging stations

in networks with different sizes. Thus, several models for optimal location of alternative-fuel stations

are developed to solve this problem. Two popular models are the p-median and flow-refueling

models. The p-median model locates a set of facilities to cover all the demands at the nodes of

the network while minimizing the total traveled distance from each demand node to the facilities.

Nicholas and Ogden (2006) worked on the applications in AFVs with p-median models. Similarly,

the p-center location model is a minimax problem that locates p facilities to minimize the maximum

distance from any demand node to its closest facility (Hakimi, 1964, 1965; Minieka, 1970; Suzuki

and Drezner, 1996; Drezner, 1984). Also, the set cover model minimizes the number or cost of

facilities needed to cover all demand nodes within a specific distance (Toregas et al., 1971). In

addition, there are diverse models with different assumptions that the travel demands occur at

facilities on paths, including convenient stores, gasoline stations and fast-food restaurants. The

flow-capturing location model (FCLM) locates p facilities to capture the origin-destination flow,

and travel demands are served by facilities located at nodes on the paths (Hodgson, 1990; Berman

et al., 1992). Later, flow-refueling location problem (FRLM) enhance the model by cover the flow

on a path with a combination of facilities, instead of one facility in FCLM, based on the assumption

of the limited range of AFVs.

In this paper, we focus on modeling for EVs and charging stations. Our model aims to find

optimal solution for the construction planning of level 3 or fast charging stations along highways,

and we assume home charging has little effect on the planning decisions. For level 1 or level 2

charging stations, the full-charging time greatly depends on the remaining battery level of the

vehicle and the station location is affected by the starting battery level. In addition, vehicles rarely

recharge at level 1 or level 2 charging stations mid-route since the charging time is too long. Thus

our model fits less well for slow charging facilities due to our current assumptions. (See Section

3.1) We, however, note that this model is general and applicable for other types of AFV refueling

network planning. The capacity constraint in our model is based on the fact that limited EVs can

be served in unit time. Capacity constraint can also be extended to refueling facilities for single-fuel

vehicles that use liquid or gaseous fuels, such as H2 and CNG, since the amount of fuel available

at each facility is limited. Our model applies well to those AFVs that refueled quickly in about

the same amount of time regardless of tank level, given people rarely refuel those AFVs at home.

Our extension is based on FRLM while considering facility capacity and infrastructure planning
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time. First, facility capacity, or charging times of EVs, should be included in the model. Different

from conventional vehicles or other AFVs, EVs could take 2-8 hours to be fully charged on Level 1

or 2 charging stations. Even on Level 3 charging stations, drivers may have to wait for 20 to 30

minutes to charge their vehicles. Thus, the number of vehicles that can be served at one charging

facility in unit time is limited, which could be considered as the capacity of the facilities. Also,

the “uncapacitated” assumption in FRLM is based on the limited number of early users of AFVs,

and one facility might satisfy all of the demand. With the increasing market share of EVs, it’s less

realistic to serve all of travel demands with one facility in the near future. Second, we consider the

multi-period model since it usually takes a long time to plan and build a charging network with

sufficient facilities. The facility location decision involves many factors, including investment and

policy, and these factors might vary from time to time. In addition, the infrastructure should be

compatible to the number of AFV users so the planner is more likely to finish the whole charging

network in several time stages. Thus, a strategic multi-period infrastructure plan is more helpful to

the decision maker.

We incorporate EV demand dynamics to multi-period capacitated flow refueling station planning,

realizing the importance of charging availability in EV demand. Charging network (or charging

availability) affects EV demand and the growth of the demand affects planning decisions. By

incorporating demand dynamics in multi-period planning, we capture the effects of station siting

decisions on future demand and this allows us to observe this interaction between demand and

supply. In addition, we would also like to see how planning decisions will be reacting to different

demand dynamics, as well as different objectives of station siting.

We introduce different travel demands (total vehicle flow and EV flow). The number of all

vehicles, including conventional vehicle and AFVs, going from a location (origin) to another location

(destination) in the network is referred to as the total vehicle flow of the OD pair, while the

corresponding number of electric vehicles are referred as the EV flow. The proportion of electric

vehicles in total vehicles is denoted as the EV market share. The amount of EV flow is naturally

the EV demand, and market share is directly observed from these two demands. The concept of

demand dynamics is to provide different scenarios on how vehicle demand changes with time and

user’s decisions.

The remainder of this paper is organized as follows. In Section 2, we review the arc-cover-path

cover formulation of FRLM, as well as the related research. In Section 3, we describe our problem

and provide the formulation of our multi-period capacity model as well as the demand dynamics of

EV. In Section 4, we present our heuristic method to solve the model, and utilize line search method

to improve our computational efficiency. In Section 5, we present extensive computational results

for the highway network for the region between Washington DC and Boston. Diverse scenarios with

different demand dynamics and objectives are tested to evaluate model performance, and to provide

help for policy makers. Numerical results of the influence of time periods in multi-period planning

are also provided. Section 6 concludes the paper by listing the suggestions to policy makers and by

providing directions for future research.
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2 Literature Review

Hodgson (1990) and Berman et al. (1992) developed the flow-capturing location model (FCLM), a

flow-intercepting model to help locate retail facilities such as convenient stores, banking machines

and billboards. Different from traditional node-based models that express demand as a weight at

nodes, FCLM considered the traffic flow between OD pairs and locate p facilities to maximize the

traffic flow “captured.” In FCLM, the flow is captured if a facility is built on the shortest path

between its origin and its destination. These models are path-based models as they relate traffic

flow demand with the path and “capture” them with the facilities along the path.

Kuby and Lim (2005) later extended FCLM to the flow-refueling location model (FRLM) to

identify locations of AFV refueling facilities while considering the limited traveling range of AFVs.

Different from FCLM, the vehicle in the traffic flow could refuel at several facilities if needed. If the

vehicle could reach its destination and go back to its origin along the shortest path without using

up fuel, the traffic flow between the OD pair was considered refueled. Since all flows had to be

covered regardless of demand, they used only a node-to-node distance matrix as their input without

information of OD demand. FRLM was also a path-based model, and several facilities might be

required to refuel a flow. This required a pre-generation of valid facility combinations on each path,

and the model could be hard to solve in large networks.

New formulations and extensions were developed to improve efficiency, reliability or flexibility.

Upchurch et al. (2009) included facility capacity considerations and reduced the number of constraints

in their capacity-FRLM (CFRLM) by eliminating the intermediate role of the combination variable.

With consideration of the remaining fuel of each vehicle at each node of all paths, Wang and

Lin (2009) introduced a new formulation of FRLM following the concept of set covering while

pre-generation of facility combinations was not required. They used only distance matrix as their

input, which then considered network topology without information of OD demand. Wang and

Wang (2010) extended Wang and Lin (2009)’s model to consider nodal demands, and they provided a

dual objective model by adding an objective function to maximize the flow coverage. Wang and Lin

(2013) provided a capacitated extension based on Wang and Lin (2009)’s model considering multiple

type of charging stations, constrained facility budget and vehicle routing behavior. Lim and Kuby

(2010) proposed heuristic algorithms to solve larger problems as they showed the pre-processing

stage of FRLM is quite time-consuming. Capar and Kuby (2012) presented a new MIP formulation

which did not require generating facility combinations and could be applied in larger networks.

While their model needed more variables and constraints, Capar and Kuby (2012) introduced a new

formulation of FRLM with high efficiency and flexibility with a network expansion method. In their

model, the process of generating valid facility combinations was no longer needed, which greatly

reduced the time to solve either set-covering or maximum coverage problem in large scale networks.

By constructing an expanded network, MirHassani and Ebrazi (2012) provided a new formulation

of FRLM with both set-covering form and maximum coverage form without pre-generation process

requirement. In set-covering form, their model would ensure all demand are covered with lowest

cost. In maximum coverage form, their model would maximize the total flow coverage with fixed
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Table 1: Notation for AC-PC (1)–(4)

N Set for all the nodes in the network
Q Set of OD pairs
q the index for OD pairs (and the path between them)
p Number of facilities to be located
aj,k a directional arc from node j to node k
Aq Set of directional arcs on path q, sorted from origin to destination

and back to origin
Kq
jk Set of candidate nodes that can refuel aj,k in Aq

fq Volume of traffic flow on path q
yq Binary variable, equals to unity if the flow on path q is covered
zi Binary variable, equlas to unity if a station is built at site i

number of facilities.

Later, Capar et al. (2013) provided an arc cover-path cover model (AC-PC) as a new formulation

of FRLM, based on the idea of covering each arc from all paths. They introduced a new candidate

set in their new formulation so that they could improve computational efficiency significantly by

skipping the pre-generation process. With the notation in Table 1, the formulation of AC-PC model

is as follows:

max
∑
q∈Q

fqyq (1)

subject to: ∑
i∈Kq

jk

zi ≥ yq ∀q ∈ Q, ajk ∈ Aq (2)

∑
i

zi = p (3)

yq, zi ∈ {0, 1} ∀q ∈ Q, i ∈ N (4)

The AC-PC model located p facilities to maximize the total traffic flow refueled. The key constraint

(2) makes sure that each arc on the path can be refueled at one of the open facilities, and the flow

on the path is refueled if all the arcs on the path are travelable. In this formulation, each arc on the

path provides one constraint, and all the arcs on the same path together decide if the flow on the

path is refueled. Thus, the pre-generation of facility combinations is eliminated, and the candidate

set Kq
jk, becomes the key of the model.

In the following part, we will explain how to generate the candidate set. Suppose we have a

path with n nodes. The first node is the origin and the n-th node is the destination. For each arc,

we will generate one candidate set. Check all the nodes on the path with the following rules.

For arc from node j to node k (j < k), the i-th node on the path is in the candidate set:

1. If i ≤ j and the distance between i and k, denoted as d(i, k), is within vehicle range.
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Table 2: Notation for CFRLM (5)

Q Set of OD pairs
q the index for OD pairs (and the path between them)
fq Volume of traffic flow on path q
k Index of potential facility location
K Set of all potential facility locations
h Index of combinations of facilities
bqh Equal to 1 if facility combination h can refuel pathq,

otherwise equal to 0
yqh Proportion of fq being refueled by facility combination h
eq the fraction of round trips on average that requires refuel-

ing
gqhk Average number of times for a vehicle on path q to stop

and refuel at facility k in combination h
c Number of vehicle stops that can be refueled by each

module
xk Number of modules at location k

2. If i ≥ k and d(1, i) +D(1, k) is within vehicle range.

For arc from k to j (j < k), the i-th node on the path is in the candidate set:

1. If i ≤ j and d(i, n) + d(j, n) is within vehicle range.

2. If i ≥ k and d(j, i) is within vehicle range.

In addition to the original FRLM, we are also interested in the facility capacity as well as the

multi-period planning. Motivated by the increasing number of AFVs that may appear in the future,

Upchurch et al. (2009) provided a new formulation of FRLM with consideration of facility capacity,

namely Capacitated FRLM (CFRLM), trying to handle the increasing demand in a more realistic

way. In their CFRLM formulation, capacity was defined in interchangeable modular units, and the

amount of flow travel through the facility was limited, indicated by a linear variable. A capacity

constraint, based on those in capacitated fixed-charge location problems (Sa, 1969; Davis and Ray,

1969), was added in the model. With the notation in Table 2, the capacity constraint can be written

as follows: ∑
q∈Q

∑
h|bqh=1

eqgqhkfqyqh ≤ cxk ∀k ∈ K (5)

where the left hand side sums the use of the facilities and combinations of facilities for each flow,

and the right hand side is the total facility capacity built. A similar idea is implemented in our

model, making sure that the flow passing through the charging station does not exceed its capacity.

As we focus on building Level 3 stations, the “fuel” of our stations is electricity transmitted by wire

and our main limit is the charging time for electric vehicles. In other words, each facility can only
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serve a limited number of vehicles in unit time, which is our definition of facility capacity. Therefore,

the capacity constraint in our model is the limit on the number of vehicles being able to pass the

recharging station in a certain amount of time.

To make the charging network more realistic, Chung and Kwon (2015) focused on multi-period

infrastructure planning. Their paper mentioned that the authority responsible for the construction

of the charging network might not invest due to the limited number of early triers of electric vehicles,

and thus could not attract potential consumers. However, a strategic infrastructure plan might

help guarantee the future of electric vehicles for buyers and alleviate the economic pressure for the

authority. Motivated by the need of multi-period planning, Chung and Kwon (2015) provided a

multi-period optimization method by extending FRLM, a Forward myopic (F-myopic) method and

a Backward myopic (B-myopic) method. The ideas are similar in this paper that multi-period model

tries to optimize the whole plan for all time periods, while myopic methods only solve a single-period

model for each time period successively. Comparing to myopic methods, the multi-period optimum

(M-opt) model is more computational resource consuming in large networks. In most cases, B-myopic

method is able to provide an acceptable result, though this could be affected by the distribution of

travel demand.

Recently, Arslan and Karaşan (2016) extend the FRLM by considering charging stations for

multiple types of plug-in hybrid electric vehicles with different ranges while minimizing the total

cost of transportation under the existing cost structure between gasoline and electricity. In addition

to the conventional models based on FRLM, Strehler et al. (2017) present a constrained shortest

path problem for the routing of electric and hybrid vehicles with convertible resources and charging

stations while Liao et al. (2016) solve similar routing based problem considering both vehicle loading

capacities and charging stations. Hof et al. (2017) focus on the electric vehicle routing problems

(E-VRPs) to solve the battery swap station location-routing problem with capacitated electric

vehicles, and Montoya et al. (2017) extend the E-VRP models to consider nonlinear charging

functions. Different from choosing the optimal location for fixed charging stations, Chen et al.

(2016) develop a new user equilibrium model to optimize the deployment plan of charging lanes.

Multiple types of charging stations as well as wireless charging technology are also considered in Liu

and Wang (2017), and they provide optimal location of multiple types of BEV recharging facilities

while minimizing the public social cost. Xu et al. (2017b) develop a mixed logit model to study

the influence of BEV users’ choice of charging mode and location to find optimal public charging

station locations as well as strategy for power peak-load shifting. Some other recent studies also

focus on strategic or operational decision-makings to popularize BEVs considering touring, fleet

deployment, network equilibrium problem, shared mobility and etc (Nie et al., 2016; Fetene et al.,

2016; Liao et al., 2016; Boyacı et al., 2017; Xu et al., 2017a).

Despite the advances made in the adoption of EVs, the demand dynamics and growth have been

largely ignored in the literature related to FRLM and other station siting problems. On the other

hand, refueling/recharging station infrastructure (also often referred as charging network) has been

consistently identified as a key factor in AFV purchase decisions along with factors such as cost,
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range, environmental benefit, etc. (Brownstone et al., 1996; Ewing and Sarigöllü, 2000; Dagsvik

et al., 2002; Hidrue et al., 2011; Ahn et al., 2008; Liu and Greene, 2012). Some simulation studies

also confirmed that both demand dynamics and placement of refueling stations were key factors

of overcoming the “chicken-and-egg” problem of AFV demand and infrastructure and for these

AFVs to successfully survive in the market. Agent based models has been developed to simulate

the behaviors of hydrogen fuel suppliers and vehicle owners. Stephan and Sullivan (2004) applied

this model in a square urban area to test a hydrogen-based personal transportation system as well

as the initial placement of stations. They made two behavior assumptions, and tested them with

this model. Drivers were more likely to buy a hydrogen vehicle with higher refueling opportunity

on their trips, while hydrogen fuel suppliers would add more hydrogen pumps if there are more

hydrogen vehicles on the trip. Schwoon (2007) made similar assumptions that consumers were more

likely to buy a fuel cell vehicle if they experienced more hydrogen refueling opportunities on trips of

long distance. In their work, they integrated the agent-based model and geographic information

system as a tool to test the potential success of several initial hydrogen outlets distributions in the

German trunk road system. They concluded that drivers’ worry factor on refueling opportunities

can determine the optimal initial distribution of refueling stations, and the initial placement was

the key factor of AFVs’ surviving.

In this paper, we incorporate demand dynamics to the multi-period capacitated flow-refueling

location model. We define introduce a term, the fraction of EVs on each Origin-Destination travel

demand, within the FRLM. Then a number of demand dynamics are defined quantify the dynamics

of EV travel demand and charging availability. We develop a heuristic method utilizing line search

method to solve the model in large scale networks.

3 The Model

3.1 Multi-Period Planning Problem Description

We consider the multi-period flow refueling location problem with capacity constraints and demand

dynamics. Our problem aims to identify charging locations and the numbers of charging modules

to build in each time period, so that the total flow covered in all time periods is maximized. The

station locations decide where vehicles can be charged, and more modules are able to provide service

for more vehicles at the same time. Single time period capacitated AC-PC model is a special case

of our general multi-period model.

The assumptions of the proposed model are similar to the common assumptions in the models of

FRLM and its variations (Hodgson, 1990; Kuby and Lim, 2005; Zeng et al., 2010; Capar and Kuby,

2012; Capar et al., 2013). In this paper, the interpretation of the concept of capacity is defined

for EVs. For fast refueling stations with different fuel, the facility capacity can be related to the

size of the underground tank, the frequency of delivery, the number of pumps or other relevant

limits depending on different technologies. For instance, some stations produce their own H2, then

the capacity could be the daily amount of H2 that the electrolyzer or steam methane reformer can
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generate. Since different technologies have various limitations, we can apply different definition on

the capacity variable c such as fixed value or flexible functions when applying our model to various

types of AFVs. For EVs, chargers are usually connected to the grid, and they have no fuel tank

limit such as petroleum or hydrogen. On the other hand, EVs take longer to be charged compared

to refueling fuel-type vehicles. Thus, the number of vehicles that can be served by each charger in

unit time is limited. This is the serving capacity for each EV charger. In addition, we assume our

infrastructure decisions will affect the EV demand, resulting in the user’s decision and EV market

share on each path, which will reversely affect planning decisions in future. We make the following

assumptions:

1. The traffic flows through the shortest path and drivers stop to recharge along the way;

2. The total demand between OD pairs are given;

3. Drivers will charge the battery to full level as they need, and they know the location of

charging stations;

4. Only nodes of the network are considered as locations of recharging stations;

5. Vehicles have constant driving ranges;

6. Battery level declines linearly with distance traveled;

7. Vehicles start with at least half-full battery;

8. Only passenger automobile vehicles are considered, motor cycles or trucks are not included;

9. Charging a vehicle to full battery level takes the constant amount of time;

10. Only the market share of the total traffic flow on each path is considered in the model;

11. The EV market share in the current time period is related to the network flow coverage and

the EV market share in the previous time period;

Also, a traffic flow is considered as served if an EV can start from origin, travel to destination, and

come back to origin without running out of battery. In this paper, we assume that level 1 and level

2 slow charging is not done since we are considering long-distance and highway-only network. The

starting battery level is related to recharging station locations, being full with station at origin or

being the remaining electricity power from the last recharging on the same path. For the above

assumption 7, it could be more realistic to assume vehicles start the trip with full-battery level

considering home charging for EVs. EVs such as the Nissan Leaf with smaller batteries are usually

fully charged in hours while new EV models with larger battery might not be fully charged overnight

at home. Thus, we are not assuming full-battery level for now to be consistent with the assumptions

of AC-PC model (Capar et al., 2013) where AFVs start the trips with at least half tank of fuel. In

addition, some travelers might start the trip from home just after finishing another trip, leaving
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insufficient time for EVs to be fully charged. Also, the origin of the trips might not be home in real

case studies, such as highway entrances in our case study; other AFVs using H2 and CNG which

are generally not filled at home also support our assumption 7; thus we assume that the vehicles

starts with at least half full battery without losing generality. For the above assumption 9, the

remaining power in the battery will not affect the time of recharging battery to full level in order to

simplify the problem. In other words, filling a vehicles tank or battery uses a constant (average)

increment of station capacity. In reality, time needed to charge electric vehicle to full battery is

related to the remaining energy in battery as well as the charging rate of facility in most cases.

However, the assumption is reasonable for fast-charging of EVs, such as Tesla superchargers and the

coming European luxury competitors, since recharging takes about the same amount of time. Our

assumption 9 is also suited for single-fuel vehicles that use liquid or gaseous fuels given refueling

events are finished quickly in about the same amount of time regardless of tank level. However, the

varying charging time would make the problem more complicated. Thus, we make the assumption

of constant charging time so that the capacity of facility can be simplified to the number of charging

times, which is consistent with CFRLM from Upchurch et al. (2009). This less realistic assumption

is a simplification in the initial model, and more realistic assumptions could be applied in future

work. With our current assumptions, our model is also well suited for single-fuel vehicles that use

liquid or gaseous fuels in addition to the fast-charging EVs with large battery in our case study.

3.2 Demand Dynamics of EV

We incorporate the EV demand in the multi-period planning problem with demand dynamics. In

multi-period planning, the number of stations and modules (charging network and opportunity)

will influence the demand in future time periods. Despite the evidence that charging opportu-

nities (charging network) will influence EV purchase decision and therefore overall market share

(Brownstone et al., 1996; Ewing and Sarigöllü, 2000; Dagsvik et al., 2002; Hidrue et al., 2011; Ahn

et al., 2008; Liu and Greene, 2012), there has been little understanding how these market share

will translate to EV travel demand share instead. That is, it is unclear how early EV adopters will

utilize their vehicles, represented by travel demand, which is represented with flow on path, fq in

FRLM literature. We present a number of demand dynamics between charging availability and EV

share of travel demand; the EV share of travel demand for path q at time t is defined as stq. The

overall market share will be an average value, 1
|Q|
∑

q∈Q s
t
q.

Now, we assume that the EV market share on each path in the current time period is related to

the previous time period’s EV market share, EV flow coverage on the path in the previous time

period as well as natural market growth. Thus, we use a flexible function ∆(·) to simulate different

demand dynamics in the following equation of EV market share. Flow coverage will be EV flow

coverage in the following sections if there are no specific explanations.

stq = ∆(ε, st−1q , yt−1q , ŷt−1) (6)
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Here, we use stq to denote the EV market share on path q in the tth time period, the variable ε to

denote the constant natural growth of market share, and initial EV market share for each path

s0q is given. We use variable yt−1q to denote the EV flow coverage on path q in t− 1th time period

and variable ŷt−1 to denote the average flow coverage in the whole network in the t − 1th time

period. Here, yt−1q is a continuous variable on [0, 1] denoting the percentage proportion of the EV

flow demand covered.

We define the relationship of EV market share between time periods as follows:

stq = (1 + w1ε+ w2(y
t−1
q − ŷt−1))st−1q (7)

Here, the constant wi, i ∈ {1, 2} are the coefficient for different variables, denoting the weight

for the general charging opportunity and path specific charging opportunity with summation of 1.

On the right side of equal sign, we have the natural growth of market share ε as one of the major

factors that affect the current EV market share stq(general charging opportunity). For this part, all

the paths in the network will be equally changed as we assume the natural growth of market share

in the whole network is the same. The other major factor would be the path flow coverage difference

in the previous time period yt−1q − ŷt−1(path specific charging opportunity). We assume that higher

coverage in the path will stimulate EV market share growth, while lower coverage in the path will

cause the potential decrease in EV market share. We define our market share with the assumption

of people’s decision of buying EVs will be mainly related to the infrastructures on the shortest

path of their origin and destination. This assumption helps simplify our problem while travelers

might travel between multiple O-D pairs with the same vehicle. However, people’s purchasing

decisions might be related to other facts according to previous studies. Hong and Kuby (2016)

assume that drivers living in a given zone will not purchase an AFV until the refueling infrastructure

can successfully satisfy a certain threshold percentage of their travel demand. Also, household with

multiple vehicles could make different choices on purchasing EVs (Tamor and Milačić, 2015; Hidrue

et al., 2011). Zheng et al. (2012) also mention that HOV lane and parking space access are available

to EV users in several states in the US in order to promote EV purchase. With our assumption, the

EV market share growth will be different on each path, relating with the flow coverage on that path.

With different weight constants, we could provide different demand dynamics scenarios. Thus, the

decisions on the location of stations as well as the number of modules installed will affect the future

market share on each path indirectly. We summarize demand dynamics of two scenarios as follows.

Scenario 1. General charging opportunity. Higher weight of w1. Natural market growth is the

major factor in demand dynamic, and users’ decision is less affected by flow coverage.

Scenario 2. Path specific charging opportunity. Higher weight of w2. Flow on each path is the

major factor in demand dynamic, and users’ decision is mainly affected by flow coverage.

Several other demand dynamics that are less realistic than our definition of the changing of EV

market share are also listed.
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Alternative 1: stq = ε+ st−1q

Alternative 2: stq = w1ε+ w2s
t−1
q + w3y

t−1
q + w4ŷ

t−1 + w5

Alternative 3: stq = w1s
t−1
q ε+ w2y

t−1
q + w3ŷ

t−1
q + w4

In Alternative 1, this is the basic case where the EV market share increases by a constant

independent of infrastructure or market share in earlier time periods. The second alternative assume

a linear relationship between all factors that will affect the market share with different weights,

providing an enhanced scenario of Alternative 1. Since the unit of market share, natural growth

and flow coverage are different and we have limited information about the correlation of these

variables, the summation we have in Alternative 2 could provide us with less realistic results in

numerical experiments due to poor choices of weight coefficients. Similarly for alternative 3, we need

more accurate estimations of weight coefficients to have realistic results while we can set weight

coefficients as percentage value in our definition in (7) due to its special form. With equation (7),

we set the EV market share in the earlier time period as the basic value, natural growth and flow

coverage will affect the basic value as factors in percentage. Then, we can easily apply different

values in factor weights w1, w2 satisfying the constraint w1 + w2 = 1 to observe the performance of

different market scenarios. The results of numerical experiments are shown in the later sections.

3.3 Formulation of the Multi-period Capacitated AC-PC Model

The Multi-period Capacitated AC-PC model (MCACPC) extends the AC-PC model of Capar et al.

(2013), and additionally considers the capacity limit of stations, the multi-period planning and

demand dynamics. We impose constraints of the total number of charged vehicles at each charging

station by the number of modules while maximizing the total flow coverage, and the EV flow is

related to market share in each time period. In later sections, an objective function of maximizing

the market share in the next time period is also discussed.

Using the notation given in Table 3, we provide the following formulation:

max
∑
t∈T

∑
q∈Q

stqf
0
q y

t
q (8)

subject to: ∑
i∈Kq

jk

zti ≥ ytq ∀q ∈ Q, ajk ∈ Aq, t ∈ T (9)

∑
q∈Q

eqgqis
t
qf

0
q y

t
q ≤ cxti +M(1− zti) ∀i ∈ N, t ∈ T (10)

stq = (1 + w1ε+ w2(y
t−1
q − ŷt−1))st−1q ∀q ∈ Q, t ∈ T (11)

xti ≤Mzti ∀i ∈ N, t ∈ T (12)∑
i∈N

(αiz
t
i + βix

t
i) ≤ Bt ∀t ∈ T (13)
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Table 3: Notation for the Multi-period Capacitated AC-PC (8)–(18)

T Set for all time periods
N Set for all the nodes in the network
Q Set for all the paths in the network
Aq Set for all adjacent arcs on path q
Kq
jk Set of candidate nodes for arc from j to k on path q

f0q Initial demand of path q

s0q Initial EV market share of path q

eq Constant used to adjust the short trips within vehicle
range

gqi Number of charging times on path q at node i
c Capacity of each module
M Constant large enough
αi Cost of building a station at site i
βi Cost of building one module at site i
Bt Cumulative budget available till the t-th time period
ε Natural growth of EV market share
ytq Linear variable, the flow coverage rate on path q in the

t-th time period
ŷt Linear variable, the average flow coverage rate in the

network in the t-th time period
zti Binary variable, whether a station is built at site i in the

t-th time period
xti Integer variable, the number of modules built at site i in

the t-th time period
stq Linear variable, market share of EV on path q in the t-th

time period

zti ≤ zt+1
i ∀i ∈ N, t ∈ T (14)

xti ≤ xt+1
i ∀i ∈ N, t ∈ T (15)

0 ≤ ytq ≤ 1 ∀q ∈ Q, t ∈ T (16)

zti ∈ {0, 1} ∀i ∈ N, t ∈ T (17)

xti ∈ {nonnegative integers} ∀i ∈ N, t ∈ T (18)

The objective function (8) is to maximize the total flow covered in all time periods. Constraint

(9) is similar as the original AC-PC model, which makes sure that the locations we choose covers

the path. Constraint (10) is the main constraint for capacity on each station. Here, we define eq as

1

max(1, d range
roundtrip distancec)

to denote the fraction of round trips that require charging on average in path q, and d·c means

rounding to the nearest integer. We take value of gqi as 2 if node i is not the origin or destination
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of path q, meaning the vehicle must stop at the station to charge in both directions, as 1 if node i is

the origin or destination of path q since the vehicle will stop to charge in either one direction and as

0 if node i is not on path q. We use c to denote the capacity of each module. These definitions

of coefficients are consistent with the definitions in CFRLM from Upchurch et al. (2009). For

constraint (10), the RHS limit the station capacity by its module number while LHS stands for the

average total number of vehicle stops that may take place in the location. Suppose there is not a

station built in location i in time period t, we would easily have zti = 0 as well as xti = 0. Then

RHS of constraint (10) would be the large constant M , meaning that the amount of flow passing

through this node i is not limited and no vehicle will stop to recharge at this location. On the other

hand, suppose we do have an open station zti = 1 and a number of modules xti > 0, the amount of

flow passing through this node i will be limited by the RHS of the constraint with value cxti which

is the capacity of the open facility. In addition, our constraint (10) is different from the constraint

(5) in CFRLM which does not include the big M. Although the idea that the flow passing through

a node with no open facility will not be limited are the same for two constraints, the constraint

(5) in CFRLM has different definitions of coefficient gqhk since the variable value is pre-decided for

each path q, each combination h and each location k. For a location k with no open facility, we

will have gqhk = 0 for k not in combination h that can refuel path q and yqh is not limited even

though we have xk = 0 on the RHS. Thus, the constraint (5) holds for the condition when flow

can pass through a node on the path with no open facility freely. For our constraint (10) without

combination information, we might have location i with no open facility on path q where gqi > 0

and zi = 0, xi = 0. Thus, we need M(1− zi) to make sure that the flow on path q is not limited by

the zero capacity on RHS since no vehicle need to charge at this location. Constraint (11) is based

on the idea of demand dynamics, relating the present market share to the flow coverage and market

share in the past. We adapt different weight coefficients w1, w2 to show the diverse scenarios of

demand dynamics. Constraint (12) makes sure that modules would only be built at locations that

are identified as stations. Constraint (13) limit the budge based on station and module construction

cost. Here, the constant αi denotes the cost of building a charging station at location i and the

constant βi denotes the cost of installing one unit of module at location i, then constraint (13) will

make sure the total cost of building stations and installing modules will be within the budget for

the current time period. Constraints (14) and (15) make sure that all the stations or modules built

in earlier time periods still exist in the later time periods.

We can also substitute the objective function with

max
∑
t∈T

∑
q∈Q

stqf
0
q (19)

to maximize the total EV market share in the network for all time periods.

The proposed formulation of Multi-Period Capacitated AC-PC model will try to solve the

problem for all time periods, giving us an optimal solution. Even if it may not reach the maximum

flow coverage in each single time period, the total flow coverage would be maximized.
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4 Solution Methods

The Multi-period Capacitated AC-PC model becomes significantly more complicated than the

original AC-PC model since it includes nonlinear objective function and nonlinear constraints. For

small networks, it can be solved directly with MINLP solver, for example Bonmin (2016) solver in

short amount of time. For larger networks, the computation time increases exponentially in the

CPLEX solver to close the gap between upper bounds and lower bounds even for single-period

capacitated problems, and obtaining an optimal solution is rarely possible. To balance the solution

quality and computational time, we present a heuristic method to solve the problem: the Forward

Method. This myopic method will return a single time period solution based on the optimal solution

of the previous time period in each iteration, which does not guarantee a global optimal solution to

our original MCACPC problem.

We can sketch the heuristic method as follows:

1. Solve the Single-period Capacitated AC-PC model for the current time period (planning time

period).

2. Decide the charging station locations and the number of modules to be placed in each station

for the current time period.

3. Move to the next time period, and update the Single-period Capacitated AC-PC model for

the current time period based on the charging station location and module number from the

previous time period.

4. Repeat this process until the last time period.

The Forward Method starts the computation from the first planning time period, and the

number of chargers and modules increases with time period updating. This would be similar to

infrastructure planning in reality.

4.1 The Forward Method

In the Forward Method, we first solve a Single-period Capacitated AC-PC model for the first time

period and obtain the location of charging stations as well as the number of modules built in each

site. In the next time period, we will make sure that the number of modules at all sites are larger

than those of the earlier time period. We will repeat this process until we obtain a final optimal

solution in the last time period.

At the beginning of time period t, we know the value of the location variables zt−1 ,the number

of modules variables xt−1 as well as st−1 from the previous time period t−1. Easily, we can calculate

the sq for the current time period t with equation (7). For the initial time period, we let z0 = 0 and

x0 = 0, or any existing charging locations and number of existing modules. For time period t, we
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have the available budget Bt. For each time period t, we solve the following problem:

max
x,y,z

∑
q∈Q

sqf
0
q yq (20)

subject to: ∑
i∈Kq

jk

zi ≥ yq ∀q ∈ Q, ajk ∈ Aq (21)

∑
q∈Q

eqgqisqf
0
q yq ≤ cxi +M(1− zi) ∀i ∈ N (22)

xi ≤Mzi ∀i ∈ N (23)∑
i∈N

(αizi + βixi) ≤ Bt (24)

zi ≥ zt−1i ∀i ∈ N (25)

xi ≥ xt−1i ∀i ∈ N (26)

0 ≤ yq ≤ 1 ∀q ∈ Q (27)

zi ∈ {0, 1} ∀i ∈ N (28)

xi ∈ {nonnegative integers} ∀i ∈ N (29)

Then we call the solutions zt and xt, and proceed to the next time period until the final time period.

As we can see, this is a model for a specific time period. The difference between models in

different time periods lies in constraints (25) and (26) to ensure that previously installed charging

stations and modules are continued to be used.

4.1.1 Two-Phase Approach in Each Time Period

Solving a Single-period capacitated AC-PC model (20)–(29) in the Forward Method can still be

time-consuming if the network scale is large. We propose a two-phase approach to help improve

computational time for solving the single-period capacitated AC-PC model (20)–(29).

Our two phase heuristic method is developed based on the decomposition of the original MCACPC

model. The main idea is to separate the decision-making of location z and number of modules x for

each time period t. The first step is to solve an AC-PC problem to find the location of stations in

order to maximize the total flow coverage in time period t. Given the locations of stations from Step

1, the second step determines the number of modules to be built in each station so as to maximize

the total flow coverage.

Since we cannot determine the optimal number of stations to be built in each time period a priori,

we enumerate all possible cases of the number of stations, denoted by pt for time period t. The smallest

possible value of pt is
∑

i∈N z
t−1
i , and the largest possible value of pt is min

(⌊
Bt

mini∈N (αi+βi)

⌋
, |N |

)
,

where bxc means the largest integer value that is no greater than x and |X| means the number of
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elements in set X. For the cases when the number of pt values to examine is large, we will later

discuss how to avoid the full enumeration in Section 4.2.

For each value of p within the range of pt, we solve two problems: the first-phase problem to

determine z and the second-phase problem to determine x. Given the location decision vector zt−1,

the first-phase problem determines locations of charging stations.

(Phase 1 model)

max
z,y

∑
q∈Q

sqf
0
q yq (30)

subject to ∑
i∈Kq

jk

zi ≥ yq ∀q ∈ Q, ajk ∈ Aq (31)

∑
i∈N

zi = p (32)

zi ≥ zt−1i ∀i ∈ N (33)

yq ∈ {0, 1} ∀q ∈ Q (34)

zi ∈ {0, 1} ∀i ∈ N (35)

Note that the above problem is an instance of the AC-PC problem proposed by Capar et al. (2013).

Let zt(p) denote the solution obtained for the given pt. Given the location solution zt(p) and the

number of existing chargers xt−1, we solve the following second phase problem:

(Phase 2 model)

φt(p) = max
x,y

∑
q∈Q

sqf
0
q yq (36)

subject to ∑
i∈Kq

jk

zti(p) ≥ yq ∀q ∈ Q, ajk ∈ Aq (37)

∑
q∈Q

eqgqisqf
0
q z

t
i(p)yq ≤ cxi ∀i ∈ N (38)

xi ≤Mzti(p) ∀i ∈ N (39)∑
i∈N

(αiz
t
i(p) + βixi) ≤ Bt (40)

xi ≥ xt−1i ∀i ∈ N (41)

0 ≤ yq ≤ 1 ∀q ∈ Q (42)

xi ∈ {nonnegative integers} ∀i ∈ N, t ∈ T (43)

Then we use vector xt to denote the solution obtained. Note that the big M in (39) may be replaced

by Bt−αi
βi

, which is the smallest constant that serves the purpose of constraint (39).
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After we compute φt(p), i.e. the optimal objective function value of the second-phase problem,

for each p from
∑

i∈N z
t−1
i to min

(⌊
Bt

mini∈N (αi+βi)

⌋
, |N |

)
, we choose the largest φt(p) and let the

corresponding p value be pt. Finally, we obtain the corresponding zt and xt vectors as optimal

solutions to the time period t problem in the Forward Method (20)–(29).

4.1.2 Revising the Second-Phase Model

During our experiments, we found that optimization solvers like CPLEX tend to install unnecessary

modules while solving the second-phase model (36)–(43) (as we explained in the simple example in

Appendix A). To break the tie among alternative optimal solutions as we would like, we suggest to

replace the objective function in (36) as follows:

(Revised Phase 2 model)

max
x,y

∑
q∈Q

sqf
0
q yq − γ

∑
i∈N

xi (44)

subject to (37)–(43) (45)

where γ is a small positive constant. We will still use
∑

q∈Q sqf
0
q yq as the value of φt(p) at the

optimality.

The constant γ needs to be carefully chosen. We propose the γ value as in the following lemma:

Lemma 1. Suppose p is a fixed positive integer and zt(p) is an optimal solution to the first-phase

problem (30)–(35). Let (x, y) and (x̂, ŷ) be solutions to the second-phase problem (36)–(43) and

the revised second-phase problem (44)–(45), respectively. If we choose

γ =
η

100

β

Γ

∑
q∈Q

sqf
0
q , (46)

where

Γ = Bt −
∑
i∈N

αiz
t
i(p) and β = min

i∈N
βi,

then we have ∑
q∈Q

sqf
0
q yq −

∑
q∈Q

sqf
0
q ŷq ≤

η

100

∑
q∈Q

sqf
0
q . (47)

That is, the loss of flow coverage in the revised second-phase problem is bounded by η% of the total

flow.

Proof. See Appendix B.

Choosing a smaller value of η results in a smaller loss of possible flow coverage in the revised

second-phase problem, which provides a better choice of charger locations and module number.
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4.1.3 Summary of the Forward Method

We summarize the Forward Method as follows:

Step 0. Initialization. Let z0 and x0 be zero vectors. Set t = 1.

Step 1. Searching pt. For each value of p from
∑

i∈N z
t−1
i to min

(⌊
Bt

mini∈N (αi+βi)

⌋
, |N |

)
, do the

following:

Step 1(a). Solving the First-phase Problem. Given zt−1, st−1q and p, solve (30)–(35), and call

the solution zt(p).

Step 1(b). Solving the Second-phase Problem. Given zt(p), xt−1 and st−1q , solve (44)–(45),

and call the solution xt(p) and yt(p). Let φt(p) =
∑

q∈Q sqf
0
q y

t
q(p).

Step 2. Determining pt. Among all φt(p) values computed, we take the largest value and let

xt = xt(p), yt = yt(p), zt = zt(p), and pt = p for the corresponding p value.

Step 3. Updating stq. With the yt = yt(p) computed in the current time period and the st−1q from

the last time period, update the stq value with equation (7).

Step 4. Termination. If t = |T |, stop; otherwise, update t← t+ 1 and go to Step 1.

Since the market share stq is related to st−1q and flow coverage in the last time period, we can

successfully apply the Forward Method on our original model with demand dynamics. However, the

backward method will not work as it requires pre-generation of EV market share in the final time

period without knowing the EV demand in the earlier time periods.

4.2 Line Search Method

While the two-phase approach can reduce the computational time for solving the single time-period

problems, we still need to enumerate all possible p values. This can be computationally inefficient for

large-scale problems. A possible solution is to use a line search method such as the Golden Section

search (Kiefer, 1953). Although it is not proved to be quasi-convex, our numerical experiments

indicate that φt(p) is nearly quasi-convex. While a line search method is generally guaranteed to

converge to an optimal solution for strictly quasi-convex functions (Bazaraa et al., 2013), we propose

to use a line search method for searching p that maximizes φt(p) for each time period p.

The original Golden Section method can only be applied on continuous functions. We slightly

modify the Golden Section method to find the optimal p value that needs to be integers, and hence

discrete. We also allow a full enumeration within the final interval of pre-set length l to reduce

changes of finding a sub-optimal solution.

Initialization Step Choose an allowable final length of uncertainty l > 0, l is integer. Let a1 and

b1 be the smallest and largest possible values of p, respectively. Let λ1 = ba1+(1−α)(b1−a1)c
and µ1 = ba1 + α(b1 − a1)c, where α = 0.618. Evaluate φt(λ1) and φt(µ1), let k = 1, and go

to Main Step.
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Main Steps 1. If bk − ak ≤ l, stop; the optimal solution is either ak or bk with the greater φt

function value. Otherwise, if φt(λk) ≤ φt(µk), go to Step 2; and if φt(λk) > φt(µk), go to

Step 3.

2. Let ak+1 = λk and bk+1 = bk. Furthermore, let λk+1 = µk, and let µk+1 = bak+1 +

α(bk+1 − ak+1)c. Evaluate φt(µk+1) and go to Step 4.

3. Let ak+1 = ak and bk+1 = µk. Furthermore, let µk+1 = λk, and let λk+1 = bak+1 + (1−
α)(bk+1 − ak+1)c. Evaluate φt(λk+1) and go to Step 4.

4. Replace k by k + 1 and go to Step1.

Final Step Perform a full enumeration in the final interval with uncertainty of length l to find an

optimal solution.
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Figure 1: An example comparing line search method and the original enumeration method

Figure 1 provides the results from the line search method. We apply the line search method

to quickly locate the peak positions, and then use a full enumeration to find the exact peak value.

This process can reduce the computational time significantly. For the example in Figure 1, a full

enumeration for all three time periods requires checking 113 cases while line search method only

considers 23 cases for the multi-period planning, thus greatly reducing the computation time.

As the line search method does not guarantee an optimal solution for φt(p), the above line search

method indeed obtains sub-optimal solutions in some cases. Our numerical experiments indicate

that the gap between the full enumeration result and the line search result is usually within 5 to 10

percent. While we lose the optimality in searching p, we certainly gain reduction in the computation

time, which is 113 fully enumerated cases to 24 searches in the example presented in Figure 1.

5 Case Study

In the following section, we utilize the Sioux-Falls test network (LeBlanc et al., 1975; Li et al., 2016)

to compare the computational performance of different solution methods of multi-period capacitated
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AC-PC model. Later, we provide numerical results based on US Northeastern network to analyze

the trend of EV market share as well as charging availability under different demand dynamics

scenarios.

5.1 Sioux Falls Network

We apply the multi-period capacitated model on the Sioux Falls Network, which is a popular test

network for transportation analysis. See Figure 2.
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Figure 2: Sioux Falls network

The Sioux Falls network has 24 nodes and 38 undirected arcs (76 directed arcs). Node index

is labeled in the circle of each node, and the link length is labeled near the arc with unit of miles.

Charging stations can be built in any of the 24 nodes while several nodes are chosen as OD pairs

as scenarios of different problem size. We assume that the EV market share of all paths for the

first time period is 10% and the natural growth rate is set as 20%. For example, market share

will increase to 12% in the second time period. And the demand dynamics coefficients are set as

w1 = 0.05 and w2 = 0.95 to emphasis user’s decision. The construction cost for each EV charging

station in a new location is $45K and each module for the station would cost $22.5K (Agenbroad

and Holland, 2014). Here, we use 1K to denote 1000. Each module can serve 48 vehicles as capacity.

21



The budget in different time periods considering different number of OD pairs are listed in Table 4,

making sure the flow coverage in the network is neither too low or too high. The range of vehicles

are set as 100 miles. The flow demand between OD pairs are randomly generated.

Budget t = 1 t = 2 t = 3

N = 4 200 250 300

N = 8 600 750 900

N = 12 1,000 1,250 1,500

N = 16 500 1,500 2,500

N = 20 500 1,500 2,500

N = 24 500 1,500 2,500

Table 4: Sioux Falls network budget in unit of $1K

T = 2

Number of MINLP Forward Solution MINLP Forward

OD pairs solution solution gap CPU time CPU time

N = 4 14.61 14.61 0.00% 302.37 3.90

N = 8 834.10 781.28 6.33% 102.83 3.86

N = 12 1270.90* 1270.90 0.00% 3610.92 4.78

N = 16 1345.79* 1377.31 2.34% 7222.78 8.36

N = 20 1432.19* 1397.87 2.40% 7210.71 4.39

N = 24 1439.67* 1399.47 2.79% 10824.19 12.73

*Not solved to optimality

Table 5: Computational results for two time periods. CPU times are in seconds.

T = 3

Number of MINLP Forward Solution MINLP Forward

OD pairs solution solution gap CPU time CPU time

N = 4 34.42 34.42 0.00% 318.00 3.58

N = 8 1561.07 1401.28 10.24% 114.95 3.88

N = 12 2295.94* 2279.27 0.73% 3612.95 4.01

N = 16 NA 3234.58 NA 7222.78 4.50

N = 20 NA 3340.77 NA 7441.61 6.08

N = 24 NA 3351.65 NA 11364.14 11.89

*Not solved to optimality

Table 6: Computational results for three time periods. CPU times are in seconds.

We apply the MCACPC model with various infrastructure planning time periods, and implement

our model in the Julia language using the JuMP package (Lubin and Dunning, 2015). To solve
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the mixed integer nonlinear programming (MINLP) problem in (8)–(18) we used the Bonmin

(2016) solver. We used CPLEX to solve MIP subproblems in Forward Method. The computational

performance is shown in Table 5 and 6 for two time periods and three time periods cases. We run

the MINLP solver to solve different cases with various number of OD pairs, and feasible solution

labeled with (∗) is provided when optimal solution is not found within given computational time.

We use NA to denote the cases where the MINLP solver failed to provide feasible solution within

given computational time. We limit the computational time for the MINLP solver for N = 12 case

to 3600s, N = 16 or 20 cases to 7200s and N = 24 case to 10800s considering the problem size. The

total CPU times are slightly larger than those limits, because pre-processing and optimization model

generation times are included. The solution gap is calculated by the difference between the solution

of two methods divided by the MINLP solution. As we can see in the computational results, the

difference between the MINLP solver solutions and the Forward Method solutions is quite small and

the maximum gap between two solutions is around 10%. However, we can see the computational

time for Forward method is far less than that of MINLP solver. For some cases where we have

more OD pairs and time periods, the MINLP solver could not even find a feasible solution within

hours. We could infer that Forward method performs well while balancing the solution quality and

computational time, and the advantages of Forward method would be more obvious when dealing

with larger networks consisting of more OD pairs where MINLP solver would failed to provide

solutions due to problem size. Numerical results based on larger random networks are shown in

Appendix C.

5.2 DC-NY-BOS Network

We apply the multi-period capacitated model on the US Northeast region, covering Washington DC,

New York and Boston (DC-NY-BOS Network). See Figure 3. The network, created with QGIS

(2015), is based on US primary road shapefile from Tigerline (2015) as well as the highway network

on Bing Maps (2015). We obtain a network with 317 nodes and 510 undirected arcs (1020 directed

arcs), and these nodes are potential sites for us to build charging stations and modules. The 123 red

nodes are OD nodes, and the corresponding zones are the demand source for each OD node. We

collect the total population in each zone, and these are the population weight for each corresponding

OD node for each zone. We also generate the demand matrix based on a gravity spatial interaction

model (Fotheringham and OKelly 1989):

ODij = cPiPj/d
2
ij

where ODij is the total flow demand fq from site i to site j (q is the index of the path from i to

j), c is a scale constant, Pi, Pj are the population at site i, j, and dij is the distance between OD

pairs. Thus, we are able to get a demand matrix with total traffic flow on each OD pair. Only paths

longer than the vehicle range are considered in the case study.

We make several assumptions in this case study of DC-NY-BOS Network:

23



Figure 3: DC-NY-BOS Network

1. All links are two-directional freeways;

2. The length of each time period is one year;

3. EV demand in all paths increases naturally with a fixed rate by each time period;

4. Only tier-3 charging (DC) stations are considered;

5. Each module takes 30 minutes to charge one EV to full battery and it will serve one EV at a

time;

6. All EVs have a range of 80 miles.

We solve the multi-period capacitated model with three infrastructure planning time periods applying

the Forward Method, and implement our model in Julia (Lubin and Dunning, 2015) with CPLEX

solver. As we are building the charging network for EVs, we only consider the EV market share of

the total traffic flow. We assume that the EV market share of all paths for the first time period is

1.4% and the market share will increase by 0.3 % per time period (Yang, 2014). However, we have

not included demand dynamics and we only consider the trivial natural growth of the market here.

The construction cost for each EV charging station in a new location is $45K and each module for

the station would cost $22.5K (Agenbroad and Holland, 2014). The three-time period planning

budget is $2500K for the first, $5000K for the second and $7500K for the last time period. The

capacity constant c is 48 given assumption 4.
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5.2.1 Demand Dynamics in Three Time Periods

In the following case study, we test two scenarios of demand dynamics based on the Forward method.

The first scenario, related to general charging opportunities, assumes that natural growth of the EV

demand would have a major impact on the EV market share in the network, taking w1 = 0.95, w2 =

0.05 in equation (7). The second scenario with different coefficients w1 = 0.05, w2 = 0.95, which is

sensitive to path specific, assumes the major impact is from the EV flow coverage on each path. We

use subscript to denote the result of time period i ∈ {1, 2, 3}.
We can have a more detailed view of the distribution of stations and modules on the link coverage

graph with the former model results under diverse demand dynamics. From the total flow covered

and EV market share for each path, we can calculate the total EV flow as well as the covered EV

flow going through each link. We use different colors to show the rate of coverage in the network,

and squares of different size to show the number of modules. We also present the 123 OD nodes in

our network with 317 nodes.

We define the total flow covered (TFC) on link i:

TFCi =
∑
q∈Q

sqfqyqδ
i
q (48)

then easily have the flow coverage rate (FCR) on link i:

FCRi =

∑
q∈Q sqfqyqδ

i
q∑

q∈Q sqfqδ
i
q

(49)

where the set Q contains all of the paths, and δiq = 1 if node i is on the path q and δiq = 0 otherwise.

We can see most of the flow focus on a primary corridor connecting DC, New York and Boston,

and some branches extend to nearby areas in Figure 4.

Here, Figure 5 provide the results of two different scenarios based on three construction time

periods with the Forward Method. Arcs with deeper color has higher flow coverage rate, while

larger square on nodes denote more modules at that location. Each figure shows the flow coverage

rate on each path in the current time period, and we use t to denote the t-th time period. We can

observe a major difference between two scenarios in the covered area of the whole network in Figure

5. In scenario 1, most of the stations and modules distribute on the primary corridor of the network

while some stations with smaller number of modules are located in suburban area, covering more

area of the network. However, almost all stations and modules are built to satisfy the need on the

primary corridor and very limited flow on the other parts of the network is covered in scenario 2.

Considering the property of two scenarios, it is not difficult to conclude that we have a more average

growth of EV demand in scenario 1, which leads to a network with more covered area. On the other

hand, the facilities tend to focus on satisfying area with higher demands in scenario 2, which leads

to a network with only primary corridor well covered.

However, when we focus on the total flow covered in the network for both scenarios as shown in
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OD nodes

Figure 4: Initial total flow on each link

Figure 6, we can see that most of the covered flow are along the primary corridor, and the flow in

other area are much less. The difference between two scenarios are less obvious than that in FCR

figures.

We also visualize the average market share on each link i which is similar to FCR in Figure 7,

in order to show the different properties of two scenarios.

In Figure 7, we visualize the market share difference in the third time period and the second

time period ∆sq = s3q − s2q in the network. Blue links show positive difference indicating the EV

market share grows, and red links show negative difference indicating the market share decreases.

As we can see, the EV market share in the network shows an average growth in scenario 1, while

only the primary corridor has positive growth and the market share in other parts of the network is

decreasing in scenario 2. Thus, we can conclude that demand dynamics in scenario 2 can surely

provide a higher coverage rate of 91% in the whole network comparing that of 78% in scenario 1,

while it is not helping EV users in urban area and we will see the potential disadvantage in later

experiments.

5.2.2 Potential Problems in Multi-Period Planning for Different Demand Dynamics

The purpose of multi-planning of charging network is to provide fundamental facilities for EV users,

in order to attract more EV users and improve EV market share. However, as we can see in scenario

2, the coverage rate for the network is higher while the market share decreases in most part of

the network. The decreasing of the market share reduces the flow in the network, which leads to
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(a) Scenario 1, link FCR, t = 1
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(b) Scenario 2, link FCR, t = 1
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(c) Scenario 1, link FCR, t = 2
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(d) Scenario 2, link FCR, t = 2

Stations (capacity denoted by size)
Link FCR

 0.00 - 0.20 
 0.20 - 0.40 
 0.40 - 0.60 
 0.60 - 0.80 
 0.80 - 1.00 
OD nodes

(e) Scenario 1, Average link FCR=78%, t = 3
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(f) Scenario 2, Average link FCR=91%, t = 3

Figure 5: Flow coverage rate on DC-NY-BOS network in each time period

higher coverage rate and lower covered flow in scenario 2. Even though the total EV market share

is increasing, this fact is conflict with the purpose of attracting EV users and improve EV market

share, which could be a potential problem for the charging network.
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(a) Scenario 1, link TFC, t = 3
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(b) Scenario 2, link TFC, t = 3

Figure 6: Total flow covered on DC-NY-BOS network
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(a) Scenario 1, Market share, t = 3
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(b) Scenario 2, Market share, t = 3

Figure 7: Market share on DC-NY-BOS network

In order to avoid this situation of higher coverage and lower total flow, one of the possible solutions

is to change the objective function from maximizing the flow covered to maximizing the market

share in the next time period. Thus, we can modify the objective to max
∑

q∈Q s
t
qf

0
q in Forward

Method. Since the demand dynamics equation (7) in the form of stq = (1+w1ε+w2(yt−1q − ŷt−1))st−1q

was used in our original problem, the objective function would become constant while solving the

problem with Forward Method. While by changing the equation to stq = (1 +w1ε+w2(ytq − ŷt))st−1q ,

we can maximize the EV market share in the next time period, and yt would appear as a variable

instead of a constant from the last period in the Forward Method. The result are shown in Table 7.

In this table, we show the summation of EV flow on all paths in the network as Total EV flow, the

summation of covered EV flow on all paths in the network as Covered EV flow and the average

proportion of all covered flow in the total flow as Coverage rate. We use msd to denote the EV

market share difference between the last time period and the first time period.
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Table 7: Numerical results for different objectives

Objective function Max covered flow Max market share

Scenario, Time period Scenario 1, t = 3 Scenario 2, t = 3 Scenario 1, t = 3 Scenario 2, t = 3

Total EV flow 190669.89 183179.42 193917.01 240154.09
Covered EV flow 149314.73 167111.69 119641.51 171905.01
Coverage rate 0.7831 0.9123 0.617 0.7158
Average msd 0.00583 0.00229 0.00583 0.00316
Max msd 0.006771 0.02002 0.007304 0.03418
Min msd 0.0051 −0.00887 0.005612 −0.00235

As we can see in Table 7, we observe much higher total EV flow in the network while maximizing

the EV market share flow. However, the cost is the total coverage rate, which decrease by around

10%. Also, we can see that results based on scenario 1 provides a higher average market share, while

the total number of EV is smaller than that in scenario 2. With this new objective, it is possible for

us to construct a charging network that satisfy the need of either coverage rate or total EV flow

better. With different objective functions, our model is flexible to diverse needs of policy makers.

Here are the flow coverage rate figures in Figure 8 and the market share figures in Figure 9 for

both scenarios with modified objective function in the 3rd time period.

Stations (capacity denoted by size)
Link FCR

 0.00 - 0.20 
 0.20 - 0.40 
 0.40 - 0.60 
 0.60 - 0.80 
 0.80 - 1.00 
OD nodes

(a) Scenario 1, link FCR

Stations (capacity denoted by size)
Link FCR

 0.00 - 0.20 
 0.20 - 0.40 
 0.40 - 0.60 
 0.60 - 0.80 
 0.80 - 1.00 
OD nodes

(b) Scenario 2, link FCR

Figure 8: Flow coverage rate based on Max market share on DC-NY-BOS network

We can still observe significant differences on the flow coverage in two scenarios, which is similar

as the phenomena in Figures 5e and 5f. As we can see in Figures 8a and 8b, more stations are built

in different locations in scenario 1 while more modules are installed in fewer locations in scenario

2. In addition, the market share growth in both scenarios in Figure 9 is less than that in Figure

7 since our objective is to maximize the total EV flow. We can observe more obvious difference

of market share growth for different objectives in scenario 2. According to the definition of our

demand dynamics,

stq = (1 + w1ε+ w2(y
t−1
q − ŷt−1))st−1q
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(b) Scenario 2, Market share difference

Figure 9: Market share changing based on Max market share on DC-NY-BOS network

the EV market share stq on paths with higher flow coverage (yt−1q − ŷt−1 ≥ 0) will keep increasing in

future time periods, while the EV market share stq on paths with lower flow coverage or uncovered

(yt−1q − ŷt−1 ≤ 0) will keep decreasing in future time periods. Thus, we can see the distribution of

stations and modules as well as EV market share are quite different for two scenarios since each

scenario has different coefficients for diverse factors. This will lead to the fact that installing more

modules on existing stations will increase EV market share, and the growing EV flow needs more

modules to satisfy the demand. Thus, less new stations will be built and less area are covered in

the whole network.

5.2.3 Numerical Results based on Longer Time Periods

The former experiments are based on 3 time periods to simplify the process of computing, while we

also present the results for longer time periods.

The following results are based on the existing two scenarios as well as the two objectives for 8

time periods, and the natural growth would be 0.3% for each time period while the budget increases

equally from $500K to $7500K. We use maximizing EV flow covered to denote the case where we

maximize the total flow covered in the objective function, while maximizing EV flow denotes the

case where we maximize the total flow in the network.

In Figure 10a, we observe decreasing after time period 5, which is quite different from the

3-time-period result with increasing coverage rate. By checking the total flow in Figure 10b, we see

the exponential growth of EV flow for scenario 2 while the budget grows in a linear way. Then, the

investment of charging facilities cannot satisfy the fast growing demand, which causes the coverage

of the network to decrease in longer time periods. Since the total flow grows slowly at first, the

coverage rate of the network will keep increasing in earlier time periods. We can also observe the

trade-off between coverage rate and total flow in Figure 10 since MaxCover has higher coverage rate

and lower total flow while MaxDemand has higher total flow and lower coverage rate.

In Figure 11, we can observe decreasing in scenario 2 dynamics after a sharp increase of coverage
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Figure 10: Numerical results based on 8 time periods

rate, while there is little increase in the total flow. Also, we can observe much higher total EV flow

if we aim to maximize the EV market share instead of the flow coverage.
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Figure 11: Comparing coverage rate and total EV flow in all scenarios

We also provide numerical results on the number of modules in each potential location of the

network for all time periods in Figure 12, where we can observe the actual different solutions for

our diverse demand dynamics and objective function scenarios. Locations with significantly more

modules is shown in scenario 2, while more stations with fewer number of modules can be observed

in scenario 1. Also, the solutions for different model objectives with same demand dynamics are

quite similar. In scenario 1, user’s decision would have less effect on EV market share, and EV

market share will mainly increase by the natural growth rate. In scenario 2, more modules helps

improve EV market share and the increasing EV flow requires more modules at the same location,

which results in less stations in the network. This is consistent with the conclusion of our 3 time

period model results that less area are covered in scenario 2.

6 Conclusion and Future Research

Previous studies have focused on the initial infrastructure planning while EVs and charging stations

has appeared on the market for several years. Station capacity helps to provide more realistic

results, and multi-period planning should also be considered as it follows the regular pattern of

31



0

10

20

30

40

50

60

70

80

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

2
0

4

2
1

1

2
1

8

2
2

5

2
3

2

2
3

9

2
4

6

2
5

3

2
6

0

2
6

7

2
7

4

2
8

1

2
8

8

2
9

5

3
0

2

3
0

9

3
1

6

M
o

d
u

le
 n

u
m

b
er

Location in the network

Number of modules in network

T=8 T=7 T=6 T=5 T=4 T=3 T=2 T=1

(a) Scenario 1, maximizing EV flow covered
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(b) Scenario 2, maximizing EV flow covered
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(c) Scenario 1, while maximizing EV flow
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(d) Scenario 2, while maximizing EV flow

Figure 12: Numerical results on module number in network in each time period

facility construction in real life. According to our case study, demand dynamics, serving as the

interaction between network users and network planners, would have much impact on the distribution

of charging stations as the EV market keep growing in future time periods. Thus, new models

considering the growth of EV market and existing charging facilities would be useful to provide

more realistic planning results.

In this paper, we have studied the multi-period planning of the charger location problem for

EVs with considerations of facility capacity and demand dynamics. We provide a new formulation

of flow refueling location problem, which will help us determine the locations of chargers as well

as the number of charging modules at each station over multiple time periods. Based on the idea

of covering each arc on the path, the new formulation maximizes the total flow covered with the

flow going through each node being limited. As the new formulation is computationally difficult

to solve for optimal results for large networks, we present a heuristic method to solve the model.

In addition, we use a line search method to improve computational time for the heuristic method.

We also provide a flexible equation to test diverse dynamic scenarios that simulate the growing of

EV market share in reality, which helps reveal the potential problems in our multi-period planning

model.

A case study based on Sioux Falls Network is introduced to test the computational performance

of our heuristic method, and another case study based on the Washington D.C. to Boston (DC-NY-

BOS) network is performed to provide numerical results on different demand dynamic scenarios and

model objectives. Link coverage and market share growth of the network are visualized to indicate

the infrastructure planning decision discrepancy as well as potential disadvantage, and the flexible

objective function could also affect planning decisions. Observations in longer time period are also

shown for both demand scenarios and model objectives.

Based on the results of our case study, we are able to present the following suggestions for policy
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makers.

1. Multi-period planning model tends to satisfy the need of centralized high demand area if EV

market share is closely related to facility construction, while more area in the network will be

covered if EV demand growth is independent of facility construction.

2. Focusing on the total flow coverage of the network could result in low EV market share in

most area of the network under specific demand dynamics in reality, which is less friendly to

some EV users.

3. The trade-off between EV demand growth and network flow coverage can be adjusted with

different planning objective.

4. The charging availability might decrease after long time period in current planning model

with path specific sensitive demand, due to the insufficient budget comparing to the rapidly

increasing EV demand.

5. Planning decisions could be greatly affected by the diverse demand dynamics, while planning

objective is less important.

This paper provides an ample potential for further study. Our facility capacity is defined as the

number of vehicles that could be served in unit time. New assumptions concerning the charging

strategy could be included to provide a more realistic model, including stochastic charging time and

queuing time at each charging station.

Demand forecast could be a direction of the future research. We are assuming the EV market

share will follow simple rules for the whole network. More realistic demand forecast methods

considering driver’s decision and network property might help provide more accurate planning

models.
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Ewing, G., E. Sarigöllü. 2000. Assessing consumer preferences for clean-fuel vehicles: A discrete

choice experiment. Journal of Public Policy & Marketing 19(1) 106–118.

Fetene, G. M., G. Hirte, S. Kaplan, C. G. Prato, S. Tscharaktschiew. 2016. The economics of

workplace charging. Transportation Research Part B: Methodological 88 93–118.

Hakimi, S. L. 1964. Optimum locations of switching centers and the absolute centers and medians

of a graph. Operations Research 12(3) 450–459.

34

https://www.bing.com/maps/
https://projects.coin-or.org/Bonmin
https://projects.coin-or.org/Bonmin


Hakimi, S. L. 1965. Optimum distribution of switching centers in a communication network and

some related graph theoretic problems. Operations Research 13(3) 462–475.

Hidrue, M. K., G. R. Parsons, W. Kempton, M. P. Gardner. 2011. Willingness to pay for electric

vehicles and their attributes. Resource and Energy Economics 33(3) 686–705.

Hodgson, M. J. 1990. A flow-capturing location-allocation model. Geographical Analysis 22(3)

270–279.

Hof, J., M. Schneider, D. Goeke. 2017. Solving the battery swap station location-routing problem

with capacitated electric vehicles using an avns algorithm for vehicle-routing problems with

intermediate stops. Transportation Research Part B: Methodological 97 102–112.

Hong, S., M. Kuby. 2016. A threshold covering flow-based location model to build a critical mass of

alternative-fuel stations. Journal of Transport Geography 56 128–137.

Kiefer, J. 1953. Sequential minimax search for a maximum. Proceedings of the American Mathematical

Society 4(3) 502–506.

Kuby, M., S. Lim. 2005. The flow-refueling location problem for alternative-fuel vehicles. Socio-

Economic Planning Sciences 39(2) 125–145.

Kuby, M., S. Lim. 2007. Location of alternative-fuel stations using the flow-refueling location model

and dispersion of candidate sites on arcs. Networks and Spatial Economics 7(2) 129–152.

LeBlanc, L. J., E. K. Morlok, W. P. Pierskalla. 1975. An efficient approach to solving the road

network equilibrium traffic assignment problem. Transportation Research 9(5) 309–318.

Li, S., Y. Huang, S. J. Mason. 2016. A multi-period optimization model for the deployment of

public electric vehicle charging stations on network. Transportation Research Part C: Emerging

Technologies 65 128–143.

Liao, C.-S., S.-H. Lu, Z.-J. M. Shen. 2016. The electric vehicle touring problem. Transportation

Research Part B: Methodological 86 163–180.

Lim, S., M. Kuby. 2010. Heuristic algorithms for siting alternative-fuel stations using the flow-

refueling location model. European Journal of Operational Research 204(1) 51–61.

Liu, C., D. L. Greene. 2012. Consumer vehicle choice model documentation. Tech. rep., Oak Ridge

National Laboratory (ORNL), Oak Ridge, TN (United States).

Liu, H., D. Z. Wang. 2017. Locating multiple types of charging facilities for battery electric vehicles.

Transportation Research Part B: Methodological .

Lubin, M., I. Dunning. 2015. Computing in Operations Research Using Julia. INFORMS Journal

on Computing 27(2) 238–248. doi: 10.1287/ijoc.2014.0623. URL http://dx.doi.org/10.1287/

ijoc.2014.0623.

35

http://dx.doi.org/10.1287/ijoc.2014.0623
http://dx.doi.org/10.1287/ijoc.2014.0623


Melaina, M., J. Bremson. 2008. Refueling availability for alternative fuel vehicle markets: sufficient

urban station coverage. Energy Policy 36(8) 3233–3241.

Melaina, M. W. 2003. Initiating hydrogen infrastructures: preliminary analysis of a sufficient number

of initial hydrogen stations in the us. International Journal of Hydrogen Energy 28(7) 743–755.

Minieka, E. 1970. The m-center problem. SIAM Review 12(1) 138–139.

MirHassani, S., R. Ebrazi. 2012. A flexible reformulation of the refueling station location problem.

Transportation Science 47(4) 617–628.
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Appendix

A Simple example on alternative solution in the revised second-

phase model

Let us consider a simple example here. Suppose we have a 4-node network as follows in Figure 13

where arc length is labeled near each link. Suppose we have vehicle range as 10, station construction

A

B C D

10

10 10

Figure 13: Simple network example

cost as 40, module construction cost as 20, the amount of EV flow from node B to node A is 5 and

the amount of EV flow from node B to node D is 5. If the capacity of each module is 5 and the

budget for the first time period is 80, we can easily reach the conclusion that the optimal solution is

to build at node B and at least one module is needed to satisfy the demand from B to A. In order

to satisfy the EV flow from B to D, we need another charging station at node C in addition to

the open facility at node B. However, we do not have enough budget for a new station and new

modules at node C and one module is enough to consider the flow from B to A. Suppose we have

budget of 120 for the second time period, it should be enough to satisfy all demands in the network

since we can install two stations and one module for each station. While we have budget of 80 in

the first time period, we can choose to install one module or two modules at location B and the

optimal objective function for the current time period will be the same. If we choose to install two

stations at node B, we would not have enough budget to install modules at new station at node C

since we only have additional budget of 40. Thus, we can see alternative optimal solutions in the

previous time period do affect optimal objective function value in the following time periods. In

order to eliminate this suboptimal condition, we should only install necessary modules to satisfy the

demand and save the budget of unnecessary modules for future use.

B Proof

Proof of Lemma 1. From (40), we have∑
i∈N

βixi ≤ Bt −
∑
i∈N

αiz
t
i(p).
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Let β = mini∈N βi. Then, we have

∑
i∈N

xi ≤
Bt −

∑
i∈N αiz

t
i(p)

β

Since
∑

i∈N x̂i ≥ 0, we obtain

∑
i∈N

xi −
∑
i∈N

x̂i ≤
Bt −

∑
i∈N αiz

t
i(p)

β
(50)

By definition, we know that ∑
q∈Q

sqf
0
q yq ≥

∑
q∈Q

sqf
0
q ŷq

and ∑
q∈Q

sqf
0
q yq − γ

∑
i∈N

xi ≤
∑
q∈Q

sqf
0
q ŷq − γ

∑
i∈N

x̂i.

Combining these two inequalities, we obtain

0 ≤
∑
q∈Q

sqf
0
q yq −

∑
q∈Q

sqf
0
q ŷq ≤ γ

(∑
i∈N

xi −
∑
i∈N

x̂i

)
≤ γ

Bt −
∑

i∈N αiz
t
i(p)

β

where we used (50). With the choice of γ in (46), we obtain∑
q∈Q

sqf
0
q yq −

∑
q∈Q

sqf
0
q ŷq ≤

η

100

∑
q∈Q

sqf
0
q ,

which completes the proof.

C Computational results based on random networks

We present the computational results based on random networks in order to test our method with

larger size problems. We generate random networks with similar method as that provided by Capar

et al. (2013). We randomly generate n nodes in a [0, 1000]2 coordinate system, and the distance

between each node is defined as the Euclidean distance. We connect all nodes with the minimum

spanning tree, and add n shortest edges in addition to the MST. Then we choose m nodes out of n

as the OD nodes. We also randomly generate the population of each OD node, and use the gravity

model to estimate the total flow between an OD pair. We present the results in Table 8.

Note that the actual solving time ranges significantly depending on the capacity, path flow as

well as budget settings. We install large number of stations and modules to reach appropriate

flow coverage (around 40% to 90%) since parameter estimation is difficult. The computational

time can be greatly reduced if more detailed number of stations and modules are given during the

construction planning.

39



Table 8: Numerical results for random networks

Forward method (CPU time in seconds)

Number of nodes 200

Number of OD nodes 30 60 120

CPU solving time 26.40 125.47 5953.96

Number of stations built 43 30 42

Number of modules built 133 273 562

Number of nodes 500

Number of OD nodes 30 60 120

CPU solving time 114.71 1857.72 392818.78

Number of stations built 80 82 230

Number of modules built 173 504 1764

Number of nodes 1000

Number of OD nodes 30 60 120

CPU solving time 5641.94 40629.46 >432000∗

Number of stations built 235 183 NA

Number of modules built 861 967 NA

*Terminated due to long computational time
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