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Abstract

Multi-day activity-travel patterns help create potential vehicle usage profiles that contain

vehicle operations and battery status under different scenarios with varying location-based

charging opportunities, based on travel needs and charging availability/behaviors. Utilizing

a multi-day data sampling method, analyses of scenarios are designed to provide insights on

bounds of potential BEV market under different charging opportunities, including level 2 activity

charging and level 3 trip charging. Single-day data results tend to overestimate travelers’ BEV

feasibility assuming that multi-day sample data provides accurate estimations. Facility utilization

can be improved without affecting travelers’ charging demand under correct pricing scheme for

most cost-sensitive users. Smart grid charging strategy can greatly reduce the total number

of operating chargers during the same time in a day, and BEV users’ charging behaviors have

minor impact on this improvement. Our numerical results indicate that an appropriate number

of chargers installed in shopping and leisure locations should be more profitable and have higher

charger utilization rate since those chargers help cover BEV users’ trips.
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1 Introduction and Background

Battery Electric Vehicles (BEVs) fully convert gasoline-based mobility to electricity-based mobility.

For BEVs, the biggest challenge is whether a traveler’s intended activity-travel choices (represented

as activity-travel patterns) can be served by a BEV since BEVs have a shorter range and longer

charging time. Although the coming generation of luxury BEVs such as the newest Tesla models

has ranges much higher than 200 miles, most of BEVs on the market can drive around 80 miles to

150 miles with a full battery (Evrater, 2018). Thus, a traveler with travel needs over 100 miles may

hardly be served by a BEV without charging during the day, and long-distance trips between cities

are difficult to accomplish. Even for long-range BEVs, charging can be an issue. Travel activities

on the next day will not be served successfully when long-range vehicles with low battery levels

are not fully charged overnight due to slow charging speed at home. On the other hand, travelers

may be able to fulfill their trip plans if charging opportunities are sufficiently available within the

time frame of their travel activities. Thus, parking and charging infrastructures are critical to BEV

users since their vehicles can be recharged when people are doing activities like working or shopping.

Another challenge is the charging infastructure and power supply from increased charging demand.

In a broader scope, BEVs may lead to benefit all ratepayers by reducing fixed costs while charged

appropriately. However, a problem can arise during peak hours when BEVs charge simultaneously

since it can lead to a heavy burden for the electrical grid.

Due to these reasons, an individual traveler’s activity-travel patterns serve as a crucial input for

assessing the feasibility, market potential, and promotion of BEVs. Full-day activity-travel patterns

allow us to create potential vehicle usage profiles, which include vehicle operations and battery

status under different charging scenarios based on travel needs and charging availability/behaviors.

Adequate information on travelers’ activities helps generate reliable charging profiles and insightful

results can be derived related to charging infrastructure requirements and power demand estimations.

Many studies try to estimate the possibilities of substituting an BEV for a given conventional

vehicle in households with single or multiple vehicles relying on one-day data. Several studies showed

that those results could be limited since people can have quite distinct travel activities (habitual

short trips or random long trips) on different days. Despite the commonly accepted claim based on

one-day survey data that 78% of the commuters will be satisfied with a 40 mile range BEV, only

9% of vehicles did not exceed daily travel distance less than 100 miles for one year period based

on multi-day GPS data (Pearre et al., 2011). Other studies also highlighted the need for using

multi-day data (Dong et al., 2014; Smith et al., 2011).

Since people’s travel patterns change substantially over time, multi-day data can provide more

information than single-day data and more useful insights can be derived (Pendyala and Pas, 2000;

Khan and Kockelman, 2012). Recent studies focus on BEV acceptance considering the multi-day

perspective of the problem. Khan and Kockelman (2012) considered the covered days in a year

as the estimation of BEV acceptance as well as the electrified miles as the estimation of PHEV

acceptance, and switches between different cases were analyzed in multi-vehicle households. Their

results suggested that BEVs with 100 miles of range should satisfy 50% of single-vehicle households
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and 80% of multiple-vehicle households. Tamor et al. (2013) defined a metric of BEV acceptance

for individual travelers of a given range based on the number of days per year that EVs cannot

fully replace conventional vehicles, and the cost of ownership was included to make the definition

of acceptance more realistic. Their trip chain frequency distribution represented a combination of

recurring habitual trips and random longer trips. Tamor and Milačić (2015) extended trip chain

frequency distribution by considering the correlations of the single-day travel distance-frequency

distributions for vehicles in the same household. They presented an analysis of prospective BEV

acceptance and found that EVs ranging of 60 miles could be acceptable to nearly 90% of two-car

households and cover one-third of all travels with similar acceptance assumptions in previous studies.

In general, these works suggest that the acceptance of BEV is most influenced by occasional very

long trips and most users may not be satisfied with a realistic BEV range of 100 miles unless other

convenient alternative transportation means are available.

In this study, we extend the analysis of BEV acceptance to include activity purpose information

so that we obtain more details on the usage of vehicles. Trip purpose is important information to

understand people’s travel behavior. This information indicates the destination/origin location of

travel activities, which are hard to reveal in GPS data. Thus, charging assumptions in GPS-data-

based studies are usually simple, including home charging and work charging. It is reasonable to

assume that charging infrastructures are also available in locations other than home and workplaces,

like shopping malls or even on highways. With multi-day travel data, more instructive charging

scenario based on different locations can be developed and analyzed to derive insights on people’s

preferences on BEVs.

While multi-day travel data is important for BEV related analysis, this data is usually not

available due to the expensive acquirement cost. There are different ways to reduce the cost of

using multi-day data in research studies. Stopher et al. (2008) showed that the sample size can be

significantly reduced to obtain meaningful results in multi-day surveys. Thus, multi-day data of

smaller sizes may be less expensive and thus accessible for study. Another way to reduce the cost of

using multi-day data is to generate multi-day samples based on single-day data, which involves a

trade-off between data accuracy and data cost. In this study, we apply a multi-day sampling method

from Zhang et al. (2018) and develop various parking-based charging scenarios. We compare the

performance of generated multi-day sample with single-day data based on numerical experiments in

later sections. Also, a scenario analysis is conducted to derive insights on feasibility of potential

BEV users under different conditions and to provide suggestions on charging infrastructure planning.

Grid charging strategies are also considered along with BEV users’ travel and charging behaviors

in charging infrastructure planning. Smart charging can allow electric cars to interface with the

electric grid, or smart grid (SG) with smart appliances, renewable energy resources as well as

energy-efficient resources. Grid operators constantly monitor and manage electricity demand, supply,

reserved backup capacity and the mix of electricity-generating technologies to ensure that everything

runs smoothly, indicating that applying grid energy supply strategies is physically possible since the

power supply in electricity grids is flexible (UCS, 2015).
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Multiple previous works focused on the interaction between BEV charging and grid energy

supply strategies. Shaukat et al. (2018) summarized the impact of BEVs charging on electricity

grids, including electricity load capacity, power quality as well as economic and environmental issues.

They also mentioned that the disordered charging of BEVs may increase the peak load demand while

the smart charging plan of BEVs helps maintain a balanced load capacity and avoid installation

of extra capacity. The economic and environmental impacts were studied based on a comparative

analysis of controlled charging strategy versus uncontrolled charging strategy, considering a plug-in

electric vehicle charging station located in a workplace parking garage (Tulpule et al., 2013).

Some other works advanced the study of BEVs’ interaction within smart grids in the technical

aspect and brought up the concept of vehicle-to-grid (V2G) technology (Lam et al., 2012; Richardson,

2013; Hota et al., 2014). The V2G technology is a promising solution for feeding the surplus energy

back to the smart grid during high peak demand period, and thus intelligently scheduling BEV

charging events is critical to maximizing the profit from BEVs (Shaukat et al., 2018). Sundstrom and

Binding (2010) designed an algorithm to minimize the cost of electricity while avoiding distribution

grid congestion and satisfying the individual vehicle owner’s requirements. They tested the proposed

algorithm in three different charging scenarios based on a simulated grid with only one type of

charging facility as well as assumed perfect BEV trip prediction. Later, Sundstrom and Binding

(2011) extended their previous work to handle voltage constraints and proposed a planning model

concerning the charging service provider as well as its communication with other power system

entities including the retailer and the distribution service operators. They aimed to force the

charging load to follow the fluctuations in the preferred grid power supply load whenever the

preferred limit tends to be exceeded. We also consider the grid charging strategies in this work,

assuming that the flexibility in the electricity power supply can be utilized to reduce the operation

cost for grid network operators to provide insights on the required supply capacity of charging

facilities.

Our major contributions lie in that applying multi-day data to extract people’s location-based

charging behaviors, studying how users’ charging cost concerns will affect their charging choices

as well as BEV feasibility as well as providing charging infrastructure planning insights based on

grid network charging strategies. In this study, we introduced our sampling method that generates

multi-day travel data and defined multiple scenarios involving charging settings, user and grid

charging strategies as well as BEV feasibility in Section 2. In Section 3, we conducted a series of

scenario analysis to derive insights on BEV feasibility assessment as well as parking-based charging

infrastructure planning. In Section 4, we present a summary of the paper as well as the conclusions

of scenario analysis.

2 Scenario definitions and other concepts

In the following section, we briefly review the definitions of activity-travel pattern sequences, state

of charge as well as the sampling method from Zhang et al. (2018). Later, we explain the detailed
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definition of various charging scenarios including BEV range, facility charging level and charging

cost assumptions. We also introduced two charging strategies for two types of users with different

pricing behaviors as well as multiple grid energy management strategies to how grid network supply

power to BEVs. With a summary of all charging settings, we further define BEV feasibility and

explain how it is different from the BEV market acceptance studied in previous literature.

2.1 Activity-Travel Pattern Sequence

An activity-travel pattern is a complex output of activity-travel decisions that contains the following

information: activity decisions (e.g. activity type, durations, etc.), travel decisions (e.g. travel

times, mode, accompanying persons, distances, etc.), and interacting activity/travel decisions (e.g.

departure time, activity start times, locations, etc.).

We use a uni-dimensional activity-travel sequence as the basic representation of the data. We

include ‘Home’, ‘Work’, ‘Shopping’, ‘Leisure’, ‘School’, ‘Personal Business’ and ‘Other’ as the

activity types, and the time spent on traveling would be ‘Trip’ activity type. These activity types

are identified based on the trip purposes from data, and abbreviated as H, W , S, L, C, P , O, and

T , which serve as elements in the activity-travel pattern sequence array.

Since we have daily travel data as well as trip purposes for each person, we know the activity

type and the time it happened. Each time slot of 6 min is labeled with one of the eight defined

activity types. Thus, we achieve a daily vector of activity-travel pattern with 240 elements of

activity types. Since activity types and participation duration include information on potential

charging opportunities and times, ‘Trips’, as well as their durations, are used to infer travel distance

that is critical for battery status.

2.2 State of charge definition

The state of charge (SOC) is the equivalent of a fuel gauge for the battery pack in a BEV, which we

consider as the remaining battery level in a BEV for one person in this work.

We denote the SOC of a person i at time t as SOCi(t). For a BEV with range R during traveling

activity, we assume the activity starting time is t1, ending time is t2 and the total trip distance is d.

We have the following SOC relationship for BEVs during traveling activities.

Traveling: SOCi(t) = SOCi(t1)−
t− t1
t2 − t1

d, t ∈ [t1, t2] (1)

On the other hand, BEV can stop and charge after traveling. Given charging rate as C, we have

the following SOC relationship for BEVs during charging activities.

Charging: SOCi(t) = min(SOCi(t1) + C(t− t1), R), t ∈ [t1, t2] (2)

According to this definition, BEV will stop charging at the end of an activity and the maximum

charging time will be t2 − t1, if the capacity is not reached. On the other hand, if the capacity is
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reached at the time of t before the activity ends, SOCi(t) will remain at the level of full range since

R will be smaller than SOCi(t1) + C(t− t1). For idle BEVs that are not charging, we can simply

apply C = 0. In reality, SOC level should always be positive for BEVs to operate, and estimated

SOC level below zero during a trip indicating that this travel activity cannot be finished under

current charging scenarios. In this work, we allow negative SOC level so that we can observe the

amount of time as well as the number of trips in a day that a person can be served by a BEV with

positive SOC level, which is important information to estimate users’ preferences for BEVs.

2.3 Sampling method

Suppose we have single-day activity-travel pattern sequence data for N persons as Psingle-day =

[S1, S2, ..., SN ]. We calculate the variability vn,n′ = L(Sn, Sn′) between all possible pairs of activity-

travel pattern sequences Sn and Sn′ ; thus generate the N × N variability matrix V . Then, this

variability matrix V is the input as the cost matrix for K-medoids algorithm for the clustering of

all activity-travel patterns. We can also choose initial points manually by the major activity type to

provide more accurate clustering results. Major activity type would be the type of activity that

a person spends the most time outside the home. Thus, we can divide all activity-travel pattern

vector Si into K different clusters, obtaining a K-clustered result matrix C. Since we only have one

day data (M = 1), our cluster result matrix C = (cn,1 : n = 1, ..., N) is actually a vector. Thus,

when we have cn,1 = k, we know the activity sequence Sn falls into the k-th cluster.

We can then generate a K ×K transition probability matrix Ψ with the given defined method

based on the activity-travel pattern clustering result K from multi-day activity-travel pattern data.

We will only include transition counts from the same person, and take a summation of counted

values from the whole population.

With the cumulative distribution of MIV for cluster k, we can randomly generate the intrapersonal

variability MIV(n) for each person n by the inverse of the cumulative distribution function (cdf). We

only need to generate M − 1 days of activity-travel pattern S̃n,m,m = 2, 3, ...,M , since we can use

the original single-day data as the first-day data in our M -day sample. Thus, we can construct an

M -day sample S̃n,m,m = 1, 2, 3, ...,M for each person n = 1, 2, ..., N . Since we have the clustering

results cn,1 for S̃n,1, we can generate all cn,m,m = 2, ...,M based on the transition probability Ψ and

the former day’s clustering result cn,m−1 for the same person. With the clustering results cn,m for

the multi-day sample and intrapersonal variability MIV(n) for a person n, we can generate a sample

pool from original data. Only activity-travel patterns that fall in the cn,m-th cluster with MIV

smaller than MIV(n) are allowed in the sample pool. We can also set an additional distance limit

based on the daily travel distance from original single-day data. We use f(·) and g(·) to evaluate

the maximum distance and minimum distance allowed in the sample pool. Then, we can randomly

choose a single-day activity-travel pattern as our sample S̃n,m for the n-th person on the m-th day.

After repeating this process for all people, we can convert an N -person-single-day dataset to an

N -person-M -day dataset of multi-day activity-travel patterns.

We summarize the sampling method as follows.
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Step 1. Preprocessing of raw data to get single-day activity-travel pattern sequences of all persons.

Step 2. UseK-medoids algorithm to cluster the activity-travel patterns, taking Levenshtein distance

matrix as input cost. Initial points could be chosen manually based on major activity type.

Step 3. Determine multi-day cluster results based on estimated transition probability as well as

the original single-day cluster result for each person.

Step 4. Determine MIV for each person based on a single-day data clustering result as well as the

corresponding MIV cdf or PIV cdf depending on the available data.

Step 5. Determine the sample pool for each person on each day based on the given MIV, clustering

results and corresponding MIV cdf.

Step 6. Additional limits could be applied to activity-travel patterns in the sample pool based on

the original single-day travel distance and constraint function of f(·) and g(·) for the maximum

and minimum travel distance, respectively.

Step 7. Randomly choose a single-day activity-travel pattern for each person on each day until our

multi-day dataset is fully constructed.

We also define a single-day trivial method that duplicates single-day’s travel activities for multi-days

to generate multi-day data. Thus, people’s trips will always be the same on each day. More details

can be referred to the work of Zhang et al. (2018).

2.4 Scenario definitions

In this work, we define various scenarios to compare people’s preferences for BEVs under different

charging/battery conditions, including the fastest DC level 3 charging in the current market. Our

definition of scenarios is based on multiple aspects including BEV range, charging speed and cost as

well as BEV user’s charging behaviors and strategies, considering both the specifications of current

BEVs on the market as well as facts from previous literature. The details are discussed in the

following sections.

2.4.1 BEV range & charging level assumptions

BEV range is the maximum distance that a BEV can travel with full battery without charging, and

we include three scenarios to consider the battery capacity of different BEV models in the current

market. Some BEV models that can charge on level 3 chargers are listed in the following Table 1

(EVgo, 2019). Given the list of current BEVs on the market in Table 1, we define three different

ranges covering most BEVs, and these ranges will be considered in our scenarios:

• 100 miles, 200 miles and 300 miles
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Table 1: BEVs with level 3 charging availability in the market

BEV Models Range Battery Estimated Charging Time

BMW i3 126 mi 42.2 kWh 352 V 7h (220V), 0.7h (440V)
Chevy Bolt 238 mi 60 kWh 350 V 9.3h (220V)
Chevy Spark 82 mi 19 kWh 400 V 20h (110V), 7h (220V)
Nissan LEAF 151 mi 40 kWh 35h (110V), 8h (220V), 0.75h (440V)
Ford Focus Electric 100 mi 33.5 kWh 20h (110V), 3.5h (220V), 0.5h (440V)
Hyundai Ioniq 124 mi 28 kWh 360 V 24h (110V), 4h (220V), 0.5h (440V)
Karma Revera 50 mi 20.8 kWh 347 V 10h (110V), 3h (220V), 0.42h (440V)
Kia Soul 111 mi 30 kWh 375 V 33h (110V), 5h (220V), 0.38h (440V)
Mitsubishi i-MiEV 62 mi 16 kWh 330 V 14h (110V), 7h (220V), 0.5h (440V)
Tesla Model S 285 mi 100 kWh 350 V 96.7h (110V), 10.72h (220V), 1.33h (440V)
Tesla X 250 mi 100 kWh 350 V 89h (110V), 10.72h (220V), 1.33h (440V)
Toyota Rav4 113 mi 41.8 kWh 386 V 44h (110V), 5h (220V)
Volkswagen e-Golf 125 mi 35.8 kWh 323 V 26h (110V), 3.7h (220V), 0.5h (440V)

In the US chargers are classified into different levels based on the charging power and speed

(Hardman et al., 2018). Level 1 chargers are usually around 110V with the power of 1-3kW and

are used for overnight home charging. Level 2 chargers are around 208-240V with power up to

43.5kW, and often installed at home, work or public places. DC level 3 chargers have the fastest

charging time with much higher power demands (currently 50-150kW) and costs. Traut et al. (2013)

mentioned that approximately 22% of all vehicles were parked close enough to an outlet sufficient to

recharge overnight. However, multiple questionnaire survey studies have shown that home charging

availability is the most influential factor in encouraging people to purchase PEVs (Bailey and Axsen,

2015; Dunckley and Tal, 2016; Hardman et al., 2018). Given the market share of electric vehicles in

the US is only around 2%, it reasonable to assume most BEV owners have access to home charging

facilities (Kane, 2018). There are multiple pieces of literature mentioned that around 50% to 80%

of the charging events occurred at home (Franke and Krems, 2013; Hardman et al., 2018; Hu et al.,

2019). We assume that home charging is available to all BEV users as level 1 or 2 charging facilities

in this work. People tend to use level 2 chargers at the end of a trip or the beginning of activities

given longer charging time. Although there are also level 3 chargers installed in public places in

addition to corridors, people tend to use level 3 chargers during longer trips like interstate travels

as a means to fulfill travel needs given less charging time and higher charging cost (Karner et al.,

2016). Thus, we apply the following different charging levels for our scenarios, considering both

charging infrastructure specifications as well as users’ charging preferences. Here, we assume that

public locations include shopping, school, and leisure where level 2 charging is available. In other

words, level 2 charging infrastructures are not available in activity locations of ‘Other’ and ‘Private

business.’ Comparing to other public places, locations of these activities are highly flexible and it is

less likely for people to have access to level 2 charging opportunities during those activities.
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Table 2: Charging level assumptions

Charging Level Typical location Power
(kWh)

Hours to charge
100 mi

Charge rate (mi/h)

Level 1 Home 1.2 25 4
Level 2 Home, Work, Public 7.5 4 25
Level 3 Corridor 50 0.6 166.67

2.4.2 Charging cost assumptions

In this work, we focus on studying the charging cost of level 1 and level 2 charging events to explore

the interactions between charging behaviors and charging costs. We do not involve the discussion

of level 3 charging costs in this work since level 3 charging events are quite different from level 1

and level 2 charging events. Level 3 charging is usually necessary for people to finish trips even if

they are much more expensive, and people can be more flexible while making charging decisions at

level 1 or 2 charging locations. Thus, the interaction between level 3 charging events and charging

behaviors should be discussed separately.

The cost of a charging event can be calculated based on the following equation:

c = P × t× r + c′ (3)

Here, we use c to denote the actual cost in a charging event; P to denote the power of various levels

of chargers; t to denote the actual charging time; r to denote electricity pricing rate and c′ to denote

other miscellaneous expenses. We assume multiple pricing rates for electricity are considered for

different scenarios, including flat rate and time-of-use (TOU) rate. Electricity price will not vary by

time at the flat rate while price depends on time at the TOU rate. We assume the electricity price

at home in flat rate is $0.13 per kWh while TOU rate is $0.13/kWh from 12am to 4PM, 9PM to

12AM; $0.38/kWh from 4pm to 9pm according to a special plan for BEV users in California (Edison,

2019). Workplace charging cost is estimated at $ 1.25/hour under level 2 charging according to

Williams and DeShazo (2014)’s work, and this is equivalent to $0.17/kWh as pricing rate (defined as

higher work rate). Miscellaneous expenses may include other charging costs in addition to electricity

costs. Users may need to pay a one-time service fee or a monthly membership fee to get access to

public chargers, and the charging service cost is usually assumed as $5 per charge (Francfort, 2015;

Hu et al., 2019). For other activities, we assume that there are not miscellaneous expenses.

We assume home charging can only be flat rate or TOU rate without miscellaneous expenses;

work charging can be free, flat rate or TOU rate without miscellaneous expenses; public charging

can be flat rate or TOU rate with/without miscellaneous expenses.
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2.4.3 User charging strategies and pricing behaviors

In this work, we assume that BEV users can use level 1 or 2 charging at home during night time, and

have access to other level 2 charging opportunities at workplaces, shopping places, etc (Hardman

et al., 2018). Philipsen et al. (2016) mentioned that gas stations were highly preferred as locations

for fast-charging infrastructure by both users and non-user of electric vehicles, and it is likely that

BEV users may stop and charge in the middle of a long trip. For level 3 charging, we assume BEV

users may stop and perform level 3 charging with additional time during longer trips. People can

stop and charge multiple times during long trips, as Sun et al. (2016) mentioned there exists an

increase in the proportion of stays for fast-charging when the trip duration is longer than one hour.

However it is less likely for BEVs to charge frequently before battery runs out, we assume 1.5-hour,

which is approximately 100 miles in travel distance on highways with a speed limit of 65 mph, is

the minimum time a BEV will travel before it needs another charge since highway speed limit can

be higher than 65 mph. Given the fact that level 3 charging time is not considered in our current

dataset, we simply assume that level 3 charging events will be inserted as an additional 30-min

travel activity without affecting the total travel time of long-distance trips. This is a less realistic

assumption, but people usually take breaks in service areas on highways in the middle of a long

trip of hours, and these breaks may not be reported in travel activity surveys. Considering the

breaking time, we believe this assumption will not greatly affect our current study results, and we

will investigate the rationality of this assumption later if related data is available.

According to Franke and Krems (2013)’s work, many users charged their BEV even with

substantial battery life remaining and some users charged at charge levels that were associated

with battery warnings. Sun et al. (2018) also mentioned that people may charge immediately after

arriving at home or charge at the cheapest time at home. Considering the psychological dynamics

underlying sustainable BEV battery charging behavior, we believe different people may choose

different charging strategies for different purposes. Some people may charge immediately at available

charging opportunities regardless of remaining SOC level, while some people only charge when there

is not sufficient battery to finish their trips.

Based on the former assumptions, we define the following two different charging strategies to

describe whether users stop and charge at an activity location as well as how long they want to

charge during each stop.

Maximum SOC strategy Immediate charging for as much as one can at level 1 or level 2 stations;

Level 3 charging during a trip when SOC level lower than 5%.

Minimum cost strategy Optimal charging based on trip planning to minimize cost while keeping

SOC level higher than 5%; when it is impossible to keep SOC level higher than 5%, users will

tend to keep higher (maybe negative) SOC level as much as possible.

Here, we make a less realistic assumption that users tend to keep a higher SOC level as much as

possible when the trip can not be satisfied by the current BEV range and may instead be covered
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by other means of transportations. Additional trips may be satisfied by BEVs with longer range

and we want to consider that since we have multiple BEV range scenarios.

Charging decisions are trivial in maximum SOC strategy since BEV users will always charge

immediately at available stations. BEV users’ decisions can be much more complicated in the real

world, since there are other factors, including charging cost, can affect their charging behaviors.

Thus, we define BEV users’ minimum cost strategy as an optimization problem trying to minimize

the total charging cost while satisfying travel demands. We define a binary variable xij , where

xij = 1 denotes charging event of type i happens during the j-th time interval (or time interval j);

otherwise xij = 0. Given this definition, we can use a linear variable tij to denote the amount of

time the BEV is actively charging in time interval i.

Given these variables, charging decisions for a BEV user in multiple days can be obtained based

on the following mathematical formulation:

min
∑

i∈Q, j∈T
riPitij +

∑
i∈Q, j∈T

c′ixij (4)

subject to:

xij = 0 ∀(i, j) /∈ Q̂ (5)∑
i∈P

xij ≤ 1 ∀j ∈ T (6)

tij ≤ τjxij ∀i ∈ P, j ∈ T (7)

λsj +
∑

i∈P,k≤j
ritik ≤ R ∀j ∈ T (8)

λej +
∑

i∈P,k≤j
ritik ≥ λl ∀j ∈ T (9)

In objective function (4), we use Q to denote the set of all activity types, T to denote all activity

time intervals for this person and Pi to denote the charging power at locations of activity type

i. Thus, the total cost of charging, including electricity cost riPitij and miscellaneous cost c′ixij

including public charging fixed cost as well as non-charging penalty cost, is minimized for this

person as the objective. In constraint (5), we ensure that BEV user may only charge at locations

of activity type i during time interval j when type i events happen within time interval j, and we

use Q̂ to denote the set containing all pairs of (i, j) where the person has activity type i during

time interval j. Constraint (6) ensures that BEV users can charge at only one activity location,

or otherwise do not charge, within each time interval. Given τj denoting the length or maximum

charging time in time interval j, constraint (7) ensures that BEV user will charge at the correct

activity location of type i during time interval j. Then, we use λsj and λej to denote the starting and

ending SOC level during time interval j, and we assume λl is the lowest SOC level that BEV user

can accept before recharging. Note that based on our former assumptions, we have λl = 0.05R as

5% of BEV range R. Based on these notations, constraint (8) ensures that charging will not exceed
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range limit, and constraint (9) ensures that BEV users will charge before they run out of battery.

However, the above problem may be infeasible when the travel demand of a given person can

not be satisfied by BEV with SOC level greater than λ. According to our minimum cost charging

assumption, BEV users will try to keep sufficient SOC level, and they have no choice but keep

charging in this case where some trips can not be satisfied. Thus, we modify the problem by

replacing constraint (9) as follows, and optimize by maximizing the lowest SOC level λ−. Different

from constant value of λl in original formulation, λ− is a linear variable less than BEV range R.

λej +
∑

i∈Q,k≤j
ritik ≥ ρ ∀j ∈ T (10)

People’s charging behaviors are complicated as electricity pricing will affect people’s willingness

to charge. Xiong et al. (2016) proposed a practical solution to leverage charging price considering

travel cost as well as queuing cost, and adjust BEV users’ charging behavior so that the efficiency of

charging networks can be improved. Their work involved a game-theoretic perspective constructing

the problem on a non-atomic congestion game played by BEV users, and Nash equilibrium was

adopted as the solution concept. A more recent work from Sun et al. (2018) explored choice

behaviors of 24-km-range PHEV users after arriving at home under a dynamic electricity pricing

scheme. Multiple charging strategies are presented with mixed logit models, and results suggested

that electricity prices significantly affect choices to charge at the cheapest time for all users in

addition to driving distance.

In this work, we consider two different types of user behaviors related to the effect of pricing:

Cost sensitive Users tend to minimize the cost of charging with minimum cost strategy

Cost insensitive Users tend to maximize the utilization of charging opportunities with maximum

SOC strategy

Here, we assume that there may be both types of people among all BEV users, and we set a ratio of

ρc ∈ [0, 1] as the proportion of cost insensitive population. Higher ρc values indicating that more

BEV users are sensitive to charging cost, and they tend to apply min-cost charging strategies to

control travel costs during daily activities. While an inelastic charging demand case under the

cost insensitive behavior seems reasonable by a non-sophisticated BEV driver with probably higher

income, some people may argue that cost sensitive behavior can be less common for travelers since it

may be time-expensive and requires planing ahead. First, it is common for people to avoid refueling

their vehicles in downtown areas before a trip to suburban areas since they know gas prices are

usually lower there, and the fact reveals the cost sensitive behaviors of travelers. In addition, the

planning itself may not be time-expensive since there may be smartphone apps (many apps including

google map can show gas prices now) to help people check real-time charging times and it will be

easier for people to find a charging station that is relatively cheaper in a specific area before they

run out of battery.
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2.4.4 Grid charging strategies

Different from the above users’ charging strategies, we also define multiple grid energy management

strategies or grid charging strategies to describe grid energy management or how grid network supply

power to BEVs that need to be charged during the planned time interval. BEV users’ charging

strategies describe how user’s charge BEVs during five-day period, identifying the amount of time

tij they want to spend on charging at location of activity i within a time interval j. Grid charging

strategies describe how chargers supply power to BEVs within each time interval, identifying the

power supply distribution along time so that enough power is provided within given time. For

example, BEV user may decide to charge from 1:00PM to 3:00PM while BEV can be fully charged

within 1 hour. Then, grid energy management helps to decide whether power is supplied from

1:00PM to 2:00PM or from 2:00PM to 3:00PM.

We use actual charging time to denote the amount of time that power is supplied from a grid

network and the SOC level is increasing before reaching full battery since power supply distribution

can vary depending on the actual charging time. In this work, we estimated the grid network

supply in the same activity locations as integer or real number of chargers working with full or

fractional power. For example, 0.5 work chargers with a charging power of 25 mi/h during an hour

is equivalent to a total charged SOC of 12.5mi in the same time, and the actual charging time is 0.5

hours. Based on these assumptions, we define four different gird charging strategies and summarize

as follows.

Immediate charging (IC) Power is supplied as soon as BEV is connected to the charger; Numbers

of chargers are integers.

Optimal charging (OC) Power supply within each charging time interval of all BEVs is arranged

optimally to minimize the number of chargers in use at the same time; Number of chargers

are integers.

Fractional average charging (FIC) Actual charging time is the same as activity time; Numbers

of chargers needed are estimated in average as a fractional value.

Fractional optimal charging (FOC) Power supply within each charging time interval of all

BEVs is arranged optimally to minimize the number of chargers in use at the same time;

Number of chargers needed is estimated in average as a fractional value.

For average charging, we estimate the average number of chargers people use during different

activities based on the fractional actual charging time. Suppose a person has activity time interval

[s, u] and actual charging time τ , the average number of chargers used for this person in average

charging is τ
u−s during the whole activity. We sum the average number of chargers used at the same

time for each person to obtain the total number of people charging at the same time.

For immediate charging, we assume that charging starts as soon as BEV users’ activity begins

and charging ends when BEV battery is full. Suppose a person have activity time interval [s, u] and
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actual charging time τ , the number of chargers used for this person in maximum SOC strategy is 1

during time interval [s, s+ τ ] and 0 during time interval [s+ τ, u].

For optimal charging, we assume that the actual charging time can be optimally scheduled for

every person so that the total number of chargers needed at the same time is minimized. Sundstrom

and Binding (2011) noted that grid network operators, retailer and charging service providers could

be a single entity and share the same objective of minimizing the cost of energy for the charging

service providers. In that case, attractive products can be provided to BEV owners, and charging

service providers need to interact with the grid network operators by following the peak hour power

supply penalty and optimizing their charging infrastructure network. Thus, we set our goal in this

optimization problem is to minimize the largest number of chargers since it should help reduce peak

hour power usage, even though multiple stakeholders with different objectives are involved.

We count the total number of chargers at the same activity locations during the same time to

estimate the total power supply needed in the local area. Approximately, we consider the SOC

level of each 20-min time interval instead of continuous-time during a 5-day-period to simplify

the problem. Based on the current assumptions, we have 360 time intervals and we can find the

minimum value of the maximum number of chargers in use among the whole population in different

scenarios based on the optimization problem formulated mathematically.

We use the following integer programming problem to find the minimum value of the maximum

number of chargers in use while the actual charging time is optimally scheduled for the same activity

type q in Optimal charging scenario.

min yq (11)

subject to:

uqk∑
j=sqk

xqij = τ qk ∀(k, i) ∈ K̂, i ∈M (12)

|M |∑
i=1

xqij ≤ y
q ∀j ∈ N (13)

xqij ∈ {0, 1} ∀i ∈ N, t ∈ T (14)

yq ∈ Z+ (15)

where Z+ denotes the set of non-negative integers. We want to minimize the number of people

charging (or chargers in use) within each 20-min time interval for the same activity type in the

objective function. We use a binary variable of xqij = 1 to denote that a person i is charging during

time interval j with activity type q, and we use an integer variable yq to denote the maximum

number of people charging at the same time with activity type q. Here, we have different activity

types of home, work, shopping, school, and leisure, and we count the total number of chargers

needed separately for different activity types. We use N to denote the set of time intervals and M

to denote the set of all people. We assume that an activity k with activity type q starts at time sqk
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Table 3: Charging settings

Type Property Values

Infrastructure

Home None; Level 1; Level 2

Public None; Level 2

Long distance trip None; Level 3

Vehicle
Starting SOC level Fixed; Random

Ranges (miles) 100; 200; 300

Charging strategies
BEV users Max SOC; Min cost

Grid network IC; OC; FIC; FOC

and ends at time uqk, and the actual charging time during this activity is τ qk . We use K̂ to denote

the set of pairs (k, i) where activity k belongs to person i. Thus, constraint (12) ensures that a

person gets enough charging time during an activity and constraint (13) ensures that the total

number of people charging at the same time does not exceed the limit.

For fractional optimal charging, we can modify the model so that the chargers may work at lower

power and it can be formulated as a linear problem with the same objective and constraints (11) to

(13). Instead of a binary variable, we define a linear variable xqij ∈ [0, 1] as the fractional power of

the charger that a person i is charging during time interval j with activity type q. Similarly, we

also relax yq as a linear variable to denote the average number of people charging at the same time

with activity type q.

Although the number of operating chargers in fractional average charging and immediate charging

scenarios can be easily calculated according to the given equation, we can also replace constraints in

the optimal charging model so that all scenarios are compared in the same discrete time unit. We

can replace (12) by the following constraint (16) to model fractional average charging scenario.

xqij =
τ qk

uqk − s
q
k

∀(k, i) ∈ K̂, i ∈M, j ∈ [sqk, u
q
k] (16)

Note that xqij andyq are linear variables in fractional average charging scenario. For immediate

charging scenarios, we can add the following constraint (17) to ensure travelers keep charging as

soon as possible until battery is full.

xqi,j − x
q
i,j+1 ≥ 0 ∀(k, i) ∈ K̂, i ∈M, j ∈ [sqk, u

q
k] (17)

This constraint ensures that travelers can only charge from the beginning of the activity.

2.4.5 Summary of charging settings

We summarize the charging settings in our assumptions in Table 3. Based on the charging settings

of infrastructure, we can define the following charging availability scenarios in Table 4. We use H1
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Table 4: Scenario descriptions

Available locations Scenario name Details

Home only

S(H1) Home Lv1

S(H2) Home Lv2

S(H2, T3) Home Lv2, Trip Lv3

Work only S(W2) Work Lv2

Shop only S(S2) Shop Lv2

School only S(C2) School Lv2

Leisure only S(L2) Leisure Lv2

Home & Work
S(H2,W2) Home Lv2, Work Lv2

S(H2,W2, T3) Home Lv2, Work Lv2, Trip Lv3

Home & Public

S(H1, A2) Home Lv1, Activity Lv2

S(H2, A2) Home Lv2, Activity Lv2

S(H1, A2, T3) Home Lv1, Activity Lv2, Trip Lv3

S(H2, A2, T3) Home Lv2, Activity Lv2, Trip Lv3

No home or public
S(Nc) No home or activity charging

S(Nc, T3) Trip Lv3

to denote level 1 home charging and H2 to denote level 2 home charging, and similar assumptions

are applied in other cases. We use A2 to denote level 2 charging available in locations of all activities

including work as well as public activities (shop, school, and leisure). We use T3 to denote level 3

charging can be inserted during the trips, and other charging opportunities may be also available

depending on scenario definitions.

We also include the following other minor assumptions to define our scenarios:

1. The starting battery level of each vehicle is random (from 0 to full battery) or half of the full

battery, depending on different assumptions in charging scenarios.

2. People are divided into groups of low MIV (≤ 20 percentile), medium MIV and high MIV (≥
80 percentile).

Our current charging scenarios set up should involve multiple stakeholders, including BEV users,

charging facility constructors, charging service providers, grid network operators. Some stakeholders

may involve in multiple roles in the reality, and their objective may be complex. Deaton (2019)

mentioned both government or policymakers and private firms are encouraged to build charging

infrastructure for public or private usage in New York City, Iowa, and Austin. Thill (2019) also

claimed that utilities, private developers, and business owners may all play a role in Illinois state’s

BEV infrastructure construction depending on facility location, and different incentives exist for

different investors and equipment owners. Utilities like ComEd and Ameren may invest in charging
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infrastructure in different places than other companies like Tesla, whose equipment only works with

its own cars.

Many stakeholders emphasize that charging infrastructure planning should incentivize efficient

charging behaviors even different stakeholders have different objectives. ChargePoint argued for

the ability to set charging prices for drivers to maximize effective utilization whether they own

the equipment on the land or not (Thill, 2019). Bagdasarian (2018) revealed a demand charge fee,

which usually occurs during peak hour power supplies, can be responsible for around 90 percent of

a public charging station’s monthly utility bill. Fast BEV charging service operators that regularly

use spurts of electricity can have a conflict with electricity rate structures from grid networks that

were designed to keep the flow of electrons on the grid steady. Since the high cost of electricity on

charging service providers during peak hours from grid networks may easily be passed to travelers

as a higher price, we believe the optimized charging infrastructure planning plays a key role in

reducing peak-hour power usage and can be critical to all stakeholders including BEV users.

2.5 BEV feasibility assumptions

Many studies have focused on the potential impact on energy consumption, emissions profiles, and

potential changes of operating PHEVs and BEVs (Axsen et al., 2011; Dong and Lin, 2012; Gonder

et al., 2007; Kang and Recker, 2009; Zhang et al., 2011; Dong et al., 2014; Kang and Recker, 2014b;

Khayati and Kang, 2015). There are also works using activity-travel patterns and their flexibility of

modeling complex activity-travel decisions as inputs for refueling/recharging station siting studies

(Dong et al., 2014; Jung et al., 2014; Kang and Recker, 2014a; Xi et al., 2013). In these works,

scenario analysis assumed different charging availability and charging behaviors. These analyses

generated temporal vehicle operations and charging profiles that served to understand the electricity

demand and emissions. For PHEVs, studies showed the change in energy consumption and electricity

charging demand does not alter the activity-travel patterns since PHEVs have no range limitation.

When the same approach is applied for travel-range-limited BEVs, travel behavioral assumptions

are made to deal with trips when battery is depleted. Dong et al. (2014) assumed that a traveler

misses out on activities and travels if the battery is depleted. Kang and Recker (2014b) assumed

that 1) delay occurs for the duration of time that is sufficient to make the next trip possible, or 2)

travelers are willing to reschedule their intended activity-travel patterns within their scheduling

flexibility. Khayati and Kang (2015) assumed that intra-household interactions of vehicle allocation

and activity allocation occur to compensate for the limited range of BEVs as well as to utilize lower

operating cost of BEVs.

Previous literature suggests that electric vehicle driving ranges, travel patterns, and charging

placement are correlated and cost considerations need to be included in order to extract BEV

adoption insights. Neubauer and Wood (2014) examined the sensitivity of BEV utility based on a

simulation tool considering range anxiety and different charging infrastructure scenarios. Simple

time-based availability is considered for chargers in different activity locations and arbitrarily selected

decaying rate is used to demonstrate the impacts of fast-charging battery wear. Kontou et al. (2017)
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focused on minimizing the societal cost of replacing gas-powered household passenger cars with BEVs

centrally. They considered multiple aspects including operational costs of heterogeneous driving

patterns’ cars, the government investments for charging deployment and monetized environmental

externalities or gasoline emission. Their results indicated that the time-frame for the socially optimal

conversion of 80% of the sample vehicles can take 6 to 12 years. More recently, Björnsson et al.

(2018) compared multiple objectives to find a fleet-optimized PHEV battery range under different

techno-economic conditions, and drivers are assumed to choose PHEVs when these are economically

beneficial given a driver’s movement pattern. However, they assumed that the battery is recharged

only and fully in every parking period of at least 10 hours, which is greatly different from our work.

However, we assume that travelers’ scheduled activities are not affected by charging activities

or vehicle battery status in this study. The properties of BEVs can affect travelers’ behaviors and

travelers are more likely to accept BEVs if their intended travel demand can be well satisfied. This

interactive relationship may take place as the BEV market share grows over time, but we believe

whether BEVs can serve travelers’ original activities in the early stages is quite important. Thus,

we focus on the problem of BEV adoption without considering travelers’ major behavior changes,

and all daily activities are required to be served as scheduled by BEVs.

Studies focusing on BEV market acceptance found that considering trip coverage, multi-vehicle

households, long-distance trips as well as the cost of ownership (Pearre et al., 2011; Khan and

Kockelman, 2012; Tamor et al., 2013; Tamor and Milačić, 2015). According to their findings,

occasional very long trips greatly affect the acceptance of BEVs and most users may not be satisfied

with a realistic BEV range of 100 miles without other convenient alternative transportation means.

However, BEVs ranging of 60 miles could be accepted by nearly 90% of two-car households and

cover one-third of all travels assuming ‘BEV as a second-car’ according to the study of Tamor and

Milačić (2015). In that case, longer trips are covered by conventional vehicles or other means of

transportation, and a large fraction of shorter daily trips can be satisfied by electric vehicles with

modest range.

Motivated by this idea, we consider a similar concept of BEV feasibility in this study. People

may have different attitudes and preferences towards longer non-habitual trips, either using BEV,

conventional vehicle or other transportation means. Thus, different people may have different views

on whether a BEV should help them finish the limited number of long-distance trips. However,

people are less likely to consider buying a BEV if their shorter daily travel demand cannot be served.

Thus, we assume that a BEV is feasible to a person if all or most of the daily habitual trips can

be served regardless of long-distance trips. We consider these people as potential buyers of BEV

since most of their short daily trips can be satisfied by a modest range. Note that these are only

the potential buyers of BEV or an upper bound of the BEV market, and the actual acceptance of

BEV will be less than the feasibility of BEV in the same area.
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3 Scenario Analysis: Multi-Day Battery Electric Vehicle (BEV)

Feasibility Assessment

The objective of this scenario analysis is to assess BEV feasibility of daily usage based on our

generated multi-day data. Comparing the BEV feasibility results of daily habitual usage, we can

extract insights on travelers’ attitudes towards BEV range as well as charging opportunities and

show that our sampling method is applicable in real-world applications. Given limitations in BEV

range, an area with adequate charging opportunities may greatly improve the user experience of local

travelers since they can recharge vehicles during activities. We develop various charging scenarios

and analyze the maximum number of chargers needed to derive insights on charging infrastructure

planning.

3.1 Data Description

We apply our models based on the household travel data from the 2010−2012 California Statewide

Household Travel Survey provided by the California Department of Transportation (Kunzmann,

2013). The survey included much socio-economic information including trip travel time and activity

duration time from 42,431 households from various counties and regions. We extracted the activity-

travel patterns as well as travel distances based on the activity information provided by the dataset.

We can easily define different clusters of activities according to the activity purpose given in the

dataset. We have a total of 108,778 people in this single-day dataset. Among those people, we have

72,400 employed people with at least one trip each day, and we randomly choose 2000 of them as

our sample data in order to shorten the computational time for generating multi-day sample data.

Based on the chosen sample data, we generate a 5-day sample data with our sampling method with

the assumption that all travel activities happen during weekdays.

3.2 BEV feasibility insights

Based on our range and charging opportunity scenarios, we show the number of people covered

(among the whole population of 2000) in percentage value in the following Tables 5 and 6. We

assume that if a person can finish all trips and the percentage of time with positive SOC level in

five days is higher than a threshold, we say the person is covered (or feasible for BEV adoption).

Here, we set the threshold values as 80%, 90% and 100%, assuming that a person needs to have at

least 80%/90%/100% of time with positive SOC level to be considered feasible for BEV adoption.

Based on the results in Tables 5 and 6, we can see that starting SOC level has little effect on

the estimation of BEV feasibility since the results of fixed starting level and random starting level

are similar. Comparing to other charging locations, home charging is quite effective and helps most

people to cover most trips even with low BEV range. As the range increases, the number of people

with home charging that could be fully served (with 100% positive SOC level) will grow fast. In

general, 90% of the trips of most people can be covered with either high range BEV or good charging

infrastructures.
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Table 5: Percentage of people covered with fixed starting SOC level

Coverage(%)
Range 100 Range 200 Range 300

80% 90% 100% 80% 90% 100% 80% 90% 100%

S(Nc) 10.8 5.9 0.2 39.5 29.6 6.0 62.7 55.1 22.4

S(H2) 95.9 90.2 64.5 97.4 94.9 86.0 98.1 96.4 90.6

S(W2) 48.3 38.3 14.4 70.2 63.1 38.4 80.6 76.0 54.7

S(S2) 25.3 17.7 2.3 51.2 42.8 14.0 70.0 63.9 33.3

S(C2) 35.0 24.2 7.6 59.2 51.1 26.0 74.7 68.5 44.1

S(L2) 47.6 38.9 13.0 69.9 64.2 36.2 84.2 79.9 57.9

S(H2,W2) 96.4 90.9 67.8 98.1 95.3 86.9 98.3 96.9 90.8

S(H2, A2) 98.3 95.1 76.5 98.8 97.1 90.2 98.9 98.2 92.8

Table 6: Percentage of people covered with random starting SOC level

Coverage(%)
Range 100 Range 200 Range 300

80% 90% 100% 80% 90% 100% 80% 90% 100%

S(Nc) 14.4 9.8 0.6 37.8 31.6 7.6 52.0 46.0 17.6

S(H2) 95.8 90.0 64.2 97.3 94.6 85.8 97.8 96.2 90.0

S(W2) 48.0 38.6 14.2 65.2 58.0 33.0 75.0 70.2 47.7

S(S2) 26.2 19.8 2.9 46.8 40.8 13.2 61.6 56.4 27.4

S(C2) 34.2 25.6 7.8 55.8 48.2 24.2 65.8 60.4 36.6

S(L2) 46.3 38.6 12.7 65.0 59.4 33.0 75.2 71.5 48.4

S(H2,W2) 96.4 90.8 67.8 97.8 95.0 86.4 98.4 96.6 90.3

S(H2, A2) 98.3 95.0 76.4 98.6 97.1 90.0 98.8 97.9 92.4

We also include the number of people covered (with 100% positive SOC level) with Level 1

chargers available at home in the following table 7. In table 7, we use S(H1, ·) to denote scenarios

where level 1 home charging is used and S(H2, ·) to denote scenarios where level 2 home charging

is used. Charging availability in various locations is listed in different columns, denoting various

scenarios: home only, home and work locations, home and activity locations.

According to the table, the differences in the number of covered people between level 1 home

charging scenario and level 2 home charging scenario are less significant regarding total coverage,

especially when BEVs with higher ranges are available. We can conclude that most people may be

well served by Level 1 home chargers and they have no need to upgrade their home chargers to level

2.

3.3 Compared with single-day data results

Based on the multi-day sample data, we can calculate the percentage of time when SOC level

remains positive for each person i in 5 days, denoted as P imulti. For single-day sample data, we

can calculate the percentage of time when SOC level remains positive for each person i in one
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Table 7: Level 1/level 2 home charging comparison results

Scenario
Range 100 Range 300

Home Home & Work Home & Act Home Home & Work Home & Act

S(H1, ·) 966 1130 1410 1540 1638 1792

S(H2, ·) 1284 1356 1528 1800 1806 1848

Difference 318 226 118 260 168 56

S(H1, ·, T3) 1418 1557 1728 1863 1889 1924

S(H2, ·, T3) 1580 1648 1759 1918 1918 1933

Difference 162 91 31 55 19 9

day, denoted as P isingle. By comparing these two values, we can define the following three different

comparison results for person i.

Same (M ≈i S): We say BEV feasibility comparison results are the same for person i if |P imulti −
P isingle| ≤ 5%, and we use M ≈i S to denote this comparison result.

Overestimation (M .i S): We say BEV feasibility estimation results are overestimated for person

i if P isingle − P imulti > 5%, and we use M .i S to denote this comparison result.

Underestimation (M &i S): We say BEV feasibility estimation results are underestimated for

person i if P imulti − P isingle > 5%, and we use M &i S to denote this comparison result.

Thus, estimation results can be calculated for each person i based on multi-day sample data and

original single-day data, and we count the fraction of travelers that fall in the three comparison

results as percentage value in Table 8. We assume that if multi-day sample data provides correct

estimation results of BEV feasibility, then we use M ≈ S to denote the amount of correct estimations

based on original single-day data; we use M . S to denote the amount of people whose BEV

feasibility is overestimated based on original single-day data; we use M & S to denote the amount

of people whose BEV feasibility is underestimated based on original single-day data. In addition

to our sampling method, we can easily generate multi-day data from single-day data by duplicate

the travel activities of one day to all other days and we use trivial sample to refer to the sample

data generated by this method. Similar assumptions are applied to achieve the comparison results

of M ≈ T , M . T and M & T between multi-day sample data and trivial sample data, and the

results are shown in Table 9.

According to the results in table 8, we can see significant overestimation in single-day BEV

feasibility results, especially when charging opportunities and BEV range are limited. The error

in BEV feasibility estimation can be reduced when we have more charging infrastructures and

larger BEV range. Comparing with Table 9, the performance of the trivial sampling method is

different from the performance of using original single-day data alone. An interesting observation

is that the percentage of underestimations increase in trivial sample results, and the number of

overestimations and underestimations are similar. We believe trivial method may provide a good
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Table 8: Multi-day results vs Single-day results

MvsS(%)
Range 100 Range 200 Range 300

M ≈ S M & S M . S M ≈ S M . S M . S M ≈ S M & S M . S

S(H2) 84.35 6.25 9.40 92.70 3.25 4.05 94.45 2.55 3.00

S(W2) 35.50 5.75 58.75 55.95 2.85 41.20 68.20 2.10 29.70

S(S2) 17.05 0.75 82.20 37.35 0.35 62.30 53.05 0.45 46.50

S(C2) 23.75 5.45 70.80 46.00 2.90 51.10 58.10 2.20 39.70

S(L2) 35.20 4.55 60.25 56.55 2.90 40.55 68.75 2.05 29.20

S(H2,W2) 85.55 5.65 8.80 93.15 3.25 3.60 94.60 2.45 2.95

S(H2, A2) 90.90 3.55 5.55 94.95 2.15 2.90 96.50 1.55 1.95

S(Nc) 7.90 0.00 92.10 27.65 0.00 72.35 42.15 0.00 57.85

Table 9: Multi-day sample results vs Trivial sample results

MvsT(%)
Range 100 Range 200 Range 300

M ≈ T M & T M . T M ≈ T M & T M . T M ≈ T M & T M . T

S(H2) 84.75 6.25 9.00 92.25 4.10 3.65 93.55 3.85 2.60

S(W2) 35.90 29.95 34.15 47.20 25.30 27.50 57.50 21.75 20.75

S(S2) 28.05 26.95 45.00 33.25 24.60 42.15 44.25 23.60 32.15

S(C2) 29.40 31.05 39.55 38.65 30.55 30.80 46.35 26.30 27.35

S(L2) 33.95 28.25 37.80 47.40 23.45 29.15 57.15 20.55 22.30

S(H2,W2) 85.65 6.05 8.30 93.05 3.70 3.25 94.20 3.25 2.55

S(A2) 91.05 3.60 5.35 95.30 2.05 2.65 96.70 1.60 1.70

S(Nc) 23.55 27.50 48.95 26.95 27.60 45.45 33.50 27.35 39.15

bound for potential BEV market estimation, and we may focus on utilizing both multi-day samples

as well as trivial samples to provide more reliable BEV feasibility assessment in future works.

Multi-Day data is required while studying people’s travel patterns since results based on single-day

data will overestimate the BEV feasibility. Note that single-day data may work as well when we

have good charging opportunities and BEV range since most people can be covered.

3.4 Level 3 charging insights

In this work, we assume that level 3 charging activities can be inserted during trip activities, and

the charging time does not affect later activity schedules. People may stop and rest after hours of

driving, and BEVs can be recharged. Given such assumptions, we show the number of trips with

different length in hours under various charging scenarios in Table 10. We only include results based

on scenarios S(H2, T3) , S(H2,W2, T3) and S(Nc, T3) since other scenarios (like S(H2, A2, T3)) show

similar observations. We also show the number of people inserting level 3 charging activities during

their trips in the same table. Most of the trips last less than two hours, and only a few trips last

longer than 3 hours. The results show that the number of trips with level 3 charging is similar to

the number of people inserting level 3 charging activities, indicating that most people may only

22



need level 3 charging in one of their daily trips.

Table 10: Trips with level 3 charging activities

Number of trips

Trip duration ≤2h 2h–3h 3h–4h 4h–5h ≥5h

S(H2, T3) 219 179 50 42 65

S(H2,W2, T3) 213 177 50 42 64

S(Nc, T3) 534 272 69 54 94

Number of vehicles

Trip duration ≤2h 2h–3h 3h–4h 4h–5h ≥5h

S(H2, T3) 202 142 46 41 63

S(H2,W2, T3) 196 141 46 41 62

S(Nc, T3) 395 227 63 52 89

Based on the assumption of level 3 charging activities, we analyze the number of people with

negative SOC level under different level 2 charging scenarios (denoted as uncovered), the rate in

percentage comparing to MIV group population as well as the number of level 3 charging activities

inserted during trips. We list the number of people uncovered with level 2 charging only as well as

the number of level 3 chargers they required during long-distance trips. We also show the origin and

destination of the trips where level 3 charging activities are inserted. Note that we did not include

scenarios of S(H2,W2, T3) and S(H2, A2, T3) since the results are similar to that of S(H2, T3). The

results are listed in the following Table 11.

In general, the uncovered rate for different MIV groups are similar, and higher MIV groups are

slightly less covered in its group population comparing to lower MIV groups. With home charging,

the major demand for level 3 charging would be leisure origin trips and home destination trips.

Higher MIV people have higher demand in other activities, indicating their highly multi-purpose

trips. However, home charging availability can still greatly reduce the need for level 3 charging

events, even for a high MIV population that travel a lot.

3.5 Parking-based charging infrastructure planning

In this section, we study the demand as well as energy management in grid networks, and we

evaluate the charging infrastructure needed in different activity locations based on the demand for

power supply.

BEV charging demand is concerned to avoid heavy burden in the power grid, and this is critical

in charging infrastructure planning. Multiple aspects including time-of-use rates as well as dynamic

pricing can change travelers’ charging behaviors and alter them to avoid peak charging demand,

and charging when grid power costs are lower will help to increase the utilization of grid assets

and to avoid investments in additional peak generation capacity, renewable energy generators or
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Table 11: Number of charges at activity locations under various scenarios

S(H2, T3) with home charging only

Origin Uncovered Rate Lv3 inserted H W S C L O P

Low MIV 180 44.1% 23 3 2 3 0 12 2 1

Med MIV 534 44.6% 173 40 7 4 0 61 46 15

High MIV 181 45.7% 234 71 4 6 8 53 73 19

Destination Uncovered Rate Lv3 inserted H W S C L O P

Low MIV 180 44.1% 23 18 1 1 0 2 0 1

Med MIV 534 44.6% 173 76 4 1 5 41 36 10

High MIV 181 45.7% 234 77 1 3 0 62 68 23

S(Nc, T3) with only level 3 charging

Origin Uncovered Rate Lv3 inserted H W S C L O P

Low MIV 387 94.9% 112 42 23 6 3 24 10 4

Med MIV 1139 95.2% 830 264 82 30 21 209 177 47

High MIV 384 97.0% 773 257 32 27 19 141 251 46

Destination Uncovered Rate Lv3 inserted H W S C L O P

Low MIV 387 94.9% 112 53 6 20 0 20 9 4

Med MIV 1139 95.2% 830 305 40 27 29 173 207 49

High MIV 384 97.0% 773 229 20 34 9 205 221 55

distribution system upgrades (Fitzgerald et al., 2017). Thus, we include detailed scenarios of BEV

users’ travel behaviors and charging strategies as well as grid charging strategies to consider the

contribution to the burden for a power grid so that we can derive charging infrastructure planning

insights.

We have explored BEV feasibility based on whether their travel demand can be satisfied, as

well as charging infrastructure utilization in different activity locations. However, the cost is also

an important factor affecting people’s decisions, and BEV user’s travel cost is closely related to

electricity price that is related to grid network demand. Electricity prices at home and public

locations do not vary with time in Flat scenarios, while TOU rate is applied for home and public

charging in TOU scenarios. Work charging rates are the same in both charging scenarios, and more

details on pricing and rates can be referred to the previous section 2.4.2. In the following Figure

1, we show the results of average charging cost spent in different activity locations, the average

amount of distance charged as well as average vehicle idle time and BEV feasibility for all users

in five days. Here, idle time is defined as the amount of time a vehicle is parked but not charged

during a charging event time interval. For example, a vehicle is charged from 2:00 PM to 4:00 PM

and it reaches full battery at 3:00 PM, then we have idle time for this time interval as 1 hour. In

Figure (1a), limited changes occur in home and work charging activities while public charging cost

is greatly reduced if there are more cost-sensitive users in the group, probably due to the higher
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charging cost at public locations. We have a higher facility utilization rate when there are more

cost-sensitive people in the population since average idle time is decreasing in Figure (1b), and

there is less burden on the grid power supply since the charged distance also decreases. There is a

decreasing trend in BEV feasibility as more people are cost-sensitive and are less willing to spend

too much on charging in Figure (1c). In all figures, resemblances can be observed among Flat and

TOU scenarios for charging cost, facility utilization, and BEV feasibility. From these results, we can

conclude that travelers’ cost-sensitive behaviors will have an impact on their charging decisions and

BEV acceptance while the differences between the current flat pricing and TOU pricing are not

enough to change travelers’ behaviors.
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Figure 1: Overall system affects with different number of cost sensitive users in the population
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To understand how the decreasing trend in BEV feasibility happens, we compare the charging

cost and facility utilization between ρ = 0 and ρ = 1 with flat pricing for 3 different groups of users

in the following Table 12. We use ‘Flat, ρ = 1; Same’ to denote the group of users whose SOC level

coverage remains unchanged as ρ value varies. We use ‘Flat, ρ = 1; ¡=20%’ to denote the group of

users whose SOC level coverage decreases within 20% when users become cost-sensitive, and ‘Flat,

ρ = 1; ¿20%’ to denote the group of users whose SOC level coverage decreases for more than 20%

similarly. The results from ‘Flat, ρ = 1; Same’ indicate that 1636 people have the same SOC level

when they become cost-sensitive and the public charging cost will be decreased by 32.15 with a

higher facility utilization rate since idle time is negative. Thus, we can conclude that as more people

are cost-sensitive, there will be more efficient charging facility usage activities without affecting

their daily travel activities for some people. On the other hand, the reason why we have users facing

significant SOC level coverage decrease for more than 20% is that our current assumption is to

maximize the lowest SOC level in objective (10) for minimum cost charging strategies. However,

some people may have negative lowest SOC level and some trips can not be satisfied. In that case,

the strategy will ignore the need for charging and maintain the SOC level around the minimum

lowest negative SOC level, leading to a lower SOC coverage rate with a significantly decreased

charging distance of 179.93. We believe the results are reasonable to reveal an expected charging

facility usage since it is less likely for these users to buy a BEV when their trips can not be satisfied

easily. The majority in this group may not use charging facilities since they will not own a BEV, so

it is acceptable to have a lower estimated charging distance involved in grid power supply calculation.

Table 12: Charging cost and facility utilization difference between ρ = 0 and ρ = 1

Scenario Pop. H ($) W ($) P ($) Total ($) Dist. (mi) Idle (h)

Flat, ρ = 1; Same 1636 -0.93 -0.82 -32.15 -33.89 -84.18 -64.60
Flat, ρ = 1; <= 20% 108 -1.42 -0.12 -22.14 -23.68 -80.17 -44.03
Flat, ρ = 1; > 20% 256 -3.96 -0.20 -22.97 -27.12 -179.93 -39.59

Given these scenarios indicating BEV users’ behaviors related to cost, we further consider the

maximum number of chargers being used at the same time in different activity locations, hoping

to provide guidelines for parking-based charging infrastructure planning. We visualize the total

number of travelers charging, or the gird network demand, during different activities in multiple

days in the following Figures 2.

We consider gird network charging strategies (IC, FIC, OC) as well as user charging behaviors

Sc1 and Sc3 from Table 12 related to cost-sensitive population ratio and electricity cost rate. TOU

scenarios are omitted since the results are similar to those under Flat scenarios. FOC results are

also omitted due to its similarity to OC results. For each subgraph, the total number of travelers

charging is shown in the y-axis while the time of day is shown on the x-axis.

In Figure (2a), we can observe a higher home charging demand at the end of the fifth day, which

is obvious compared to the demand peak in the other four days. The reason is that usually BEV
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Figure 2: Operating chargers (grid network demand) during different activities based on Scenario
S(H2, A2)

users return to home at the end of each day, and have several hours of home charging in the next

day. While we have no data after the fifth day, the average charging time at home is less than

that in the other four days and the average number of chargers during this time increases since the

amount of time to charge the same amount of battery decreases.

Comparing Figures (2a), (2c) and Figure (2e), we can see that the number of chargers needed

under optimal grid strategy is much less than fractional average or immediate grid strategy. Average

charging scenarios represent the theoretical charging efficiency during an activity since it indicates

the actual power supply from the grid network within a unit time. Suppose we have two persons

with 40 mins of actual charging time during a one-hour activity, the average number of chargers

they needed is around 1.33; Either immediate charging or optimal charging will require at least 2

chargers to serve both people during the activity for at least 20 mins. In other words, some chargers

may operate lower than the maximum load for a longer time to finish charging demand and the

total power supply of all chargers may be reduced. Thus, these results of average charging represent

the expectation of the electric grid power supply. With optimal scheduling of charging time or

minimum cost strategies, we can see in Table 13 that the number of chargers needed under Sc1 drops

from 227 to 121 for home chargers and significant decreases can be observed in other scenarios. This
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Sc
1 (Flat, ρc = 0.1)

Scenarios FIC IC OC FOC IC/OC

Home 182.22 227 121 121.58 53.30%
Work 55.29 104 33 32.40 31.73%
Shopping 25.96 26 17 15.59 65.38%
School 19.09 42 11 11.27 26.19%
Leisure 71.35 67 40 39.69 59.70%

Sc
3 (Flat, ρc = 0.9)

Scenarios FIC IC OC FOC IC/OC

Home 137.29 224 80 80.14 35.71%
Work 25.09 40 16 15.69 40.00%
Shopping 11.90 11 8 7.56 72.73%
School 12.02 16 8 7.13 50.00%
Leisure 35.47 33 21 20.48 63.64%

Sc
4 (TOU, ρc = 0.9)

Scenarios FIC IC OC FOC IC/OC

Home 132.36 221 77 77.10 34.84%
Work 24.98 41 17 16.80 41.46%
Shopping 12.39 14 10 8.54 71.43%
School 12.40 17 8 8.10 47.06%
Leisure 36.12 34 22 22.48 64.71%

Table 13: Number of people charging (grid network demand) during different activities

indicates that charging can greatly improve the efficiency in utilizing charging infrastructures in

addition to travelers’ charging choices.

Comparing IC and FIC scenarios with OC scenarios, we can see that optimal strategy can always

reduce the maximum number of chargers needed among the whole population regardless of the ratio

of cost-sensitive users. In Figures (2b) and (2d), we can see the number of people using chargers

has an increasing trend among 5 days for ρ = 0.9 scenarios since more people are cost-sensitive

and they only charge when they need. Fewer people are charging in earlier days when they have

enough battery to finish their trips leading to the fact that more people are charging in later days.

The number of chargers needed under ρ = 0.9 scenarios is similar to that from ρ = 0.1 scenarios,

and the results as 227 and 224 in Table 13. However, the minimum cost strategy can reduce the

maximum number of chargers used to around 80 in both ρ = 0.9 scenarios and 121 in ρ = 0.1

scenario according to the findings in Table 13. Thus, even if BEV users have different charging

behaviors as a react of pricing, a correct grid energy management strategy will still greatly help

reduce the general grid network burden.

Besides, we summarize the maximum number of chargers needed as well as the average rate

of operating chargers per traveler in different activity locations in the following Table 13. These
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results are based on the charging scenario S(H2, A2) that level 2 charging is available in all activity

locations, and the results are also similar when level 3 charging insertions are available. Note that

the maximum number of chargers in use at home in FOC scenarios is slightly larger than that in

OC scenarios while theoretically results from FOC should be the lower given fractional value is

applied. This is because we are estimating the power supply with 20-min time intervals, and this

leads to an inaccurate calculation in OC cases where less accurate results are present. However, we

can observe the similarity between the results of OC and FOC scenarios even if inaccurate results

exist, showing that an optimal charging strategy can help reduce power supply burdens in grid

networks. We use the IC/OC rate in Table 13 to denote the utilization rate of the chargers in

different activity locations as well as scenarios. According to the results, level 2 home, shopping

and leisure chargers are more needed than chargers at work and school locations, since the charger

utilization rate is higher. Considering that the miscellaneous expense in public charging leads to

higher charging costs, this indicates that BEV users’ travel demands need to be satisfied with the

chargers in those locations. It is possible that people are willing to pay more and use chargers in

those locations, and it may be more profitable to install chargers in shopping and leisure locations.

On the other hand, we can observe a higher utilization rate in work and school locations as well as

a lower number of chargers for ρ = 0.9 scenarios, indicating that more cost-sensitive people tend not

to charge at those locations if SOC level is enough to satisfy travel demands. In general, we can

observe the differences caused by BEV users’ charging behavior differences, but the power supply

burden in grid networks may still be resolved as long as energy management strategies are applied.

Besides, the charging strategies connecting travelers and electric grid network may be more

complicated than the three scenarios that we have defined in this work. Daina et al. (2017) developed

a random utility model to integrate BEV drivers’ activity-travel scheduling and charging choices for

energy systems analysis. As the market grows, we need to consider BEV users’ charging behavior

preferences as well as their response to charging strategies in power grid networks with more

complicated assumptions.

4 Conclusion

In this paper, we apply a sampling method considering intrapersonal variability information to

generate multi-day samples based on single-day travel data from Zhang et al. (2018), and developed

various charging scenarios for BEV feasibility assessment. Different from previous studies, we focus

on people’s weekly habitual trips and aim to estimate the upper bound of the BEV market.

We design various charging scenarios considering properties of charging infrastructures and

vehicles, allowing level 1 home charging, level 2 activity charging and level 3 trip charging. In

addition, we consider interactions between BEV users’ charging behaviors and gird charging strategies

under different cost-sensitive population and pricing settings. Based on a California dataset, we

conduct several scenario analysis trying to estimate travelers’ feasibility to BEV under different

conditions. According to numerical experiment results, the starting level of BEV has little impact
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on the estimation of BEV feasibility. For most people, 90% of the trips can be satisfied with either a

high-range BEV or well-covered charging infrastructures. Results also indicate that a large number

of people can be well served by level 1 home chargers, and less number of people require level 2 home

chargers. We also compare the results based on multi-day sample data as well as based on original

single-day data, showing that estimation error in BEV feasibility can be reduced after considering

the potential intrapersonal information in single-day data. Home charging greatly reduces the need

for level 3 charging even for people with high travel demands, and those demands usually come from

leisure trips. Also, we consider multiple grid-charging strategies under different BEV user charging

strategies and estimate the maximum number of chargers needed in different locations. Even overall

BEV feasibility is decreasing when more people are cost-sensitive, grid network operators may

choose optimal strategy to help most users improve facility utilization efficiency without affecting

their daily travel charging demands. According to our experimental results, the number of required

chargers can be greatly reduced if grid energy supply can be well scheduled, and this improvement is

less dependent on BEV users’ charging behaviors. Higher charger utilization rates in shopping and

leisure locations are observed in all scenarios even if the miscellaneous expense in public charging

will lead to higher charging costs. This fact indicates that BEV users’ travel demands need to be

satisfied with the chargers in those locations, and it is more recommended to install chargers in

shopping and leisure locations.

Although insightful results related to BEV feasibility are derived based on multi-day sample

data, there are several limitations in our work. The assumptions of level 3 charging activities

are less realistic since we do not allow travelers to delay their activities. Although we consider

a min-cost BEV user charging strategy, people may have more flexible travel options other than

charging under low SOC level or whenever charging opportunities are available in maximum SOC

strategy. For example, they may choose to include other means of transportation, which is also a

reasonable assumption. Thus, building various charging profiles involving taxi options for different

groups of people may increase the accuracy of BEV feasibility assessment. Currently, only a few

longer non-habitual trips can be captured based on our applied sampling method. Although this

method may still be applicable in charging infrastructure studies or other studies where mainly

daily habitual trips of travelers are considered (e.g., Dong et al., 2014), we believe better sampling

methods will help us provide better bounds on potential BEV market.

There are more factors for us to study to improve our findings. Autonomous technology may

be an important factor that would affect how people charge and how grid networks react in the

future. Yi and Shirk (2018) mentioned that the introduction of autonomous technology presents a

driver-free environment for EVs to reach nearby charging stations since the challenge of co-locating

charging infrastructure with driver destinations no longer needs to be considered. They provided an

optimal charging decision-making framework for autonomous electric vehicles, considering personal

daily itineraries and existing charging infrastructure. They designed an energy cost prediction model

as well as multistage charging decision-making models to find optimal charging strategies based on

dynamic programming. This can significantly change the charging behavior of electric vehicles and
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is an effective way to control BEVs’ charging behavior to achieve optimality.

We will improve our scenario analysis given more accurate multi-day samples or datasets,

considering more realistic charging profiles for both vehicles and travelers.
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